Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary

Dissipative relativistic Magnetohydrodynamics of polarizable matter

David Wagner

Goethe-Universität Frankfurt

dwagner@th.physik.uni-frankfurt.de

December 5, 2019

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
●00	00000000	00000000000	0000	0000000	0000000
Outline					

1 Reminder: Electrodynamics in matter

- 2 The macroscopic picture: Hydrodynamics
- 3 The microscopic picture: Kinetic Theory
- 4 Connecting the pictures
- 5 Results
- 6 Summary and Outlook

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	0000000	0000000000	0000	000000	0000000

(Inhomogeneous) Maxwell Equations in matter

$$\partial_{\mu}F^{\mu\nu} = \mathcal{J}_{f}^{\nu} + \mathcal{J}_{b}^{\nu} \tag{1}$$

$$\partial_{\mu}H^{\mu\nu} = \mathcal{J}_{f}^{\nu} \tag{2}$$

$$\partial_{\mu}M^{\mu\nu} = -\mathcal{J}_{b}^{\nu}$$
 (3)

where we have

- the displacement tensor $H^{\mu\nu} = F^{\mu\nu} + M^{\mu\nu} \equiv (D^{\mu}, H^{\mu})$
- the polarization tensor $M^{\mu
 u}\equiv (-P^{\mu},M^{\mu})$
- the fluid current $\mathcal{J}^{\mu}_f = q N^{\mu}$
- the bound current \mathcal{J}^{μ}_{b}

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	0000000	0000000000	0000	000000	0000000

Electromagnetic Energy-Momentum Tensor

$$T_{em}^{\mu\nu} = \frac{1}{4} F^{\alpha\beta} F_{\alpha\beta} g^{\mu\nu} + H^{\mu}_{\ \alpha} F^{\alpha\nu} \tag{4}$$

- There has been some debate over the form of this tensor
 → Abraham-Minkowski controversy (will not be covered here)
- We choose this form because it satisfies

$$\partial_{\mu}T_{em}^{\mu\nu} = -f^{\nu} = -\left(F^{\nu\rho}J_{f,\rho} + \frac{1}{2}M_{\alpha\beta}\partial^{\nu}F^{\alpha\beta}\right)$$
(5)

where f^{μ} is the force density exerted on a piece of polarizable material

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	●0000000	00000000000	0000	0000000	0000000
Outline					

- 1 Reminder: Electrodynamics in matter
- 2 The macroscopic picture: Hydrodynamics
- 3 The microscopic picture: Kinetic Theory
- 4 Connecting the pictures
- 5 Results
- 6 Summary and Outlook

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
	o●oooooo	0000000000	0000	0000000	0000000
Hvdrodvna	amic equation	ons			

• All of hydrodynamics is based on conservation equations

Energy-momentum conservation

$$\partial_\mu T_f^{\mu
u} = f^
u$$

Particle four-current conservation

$$\partial_{\mu}N^{\mu} = 0 \tag{7}$$

(6)

The question is now how to split these quantities meaningfully
 →introduce fluid 4-velocity u^µ as a timelike four-vector

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	oo●ooooo	00000000000	0000	0000000	0000000
Decomposit	tion of N^{μ}				

• Utilize projection operators $u^{\mu}u^{
u}$ and $\Delta^{\mu
u}:=g^{\mu
u}-u^{\mu}u^{
u}$

$$N^{\mu} = nu^{\mu} + n^{\mu} \tag{8}$$

where

• $n := u_{\mu} N^{\mu}$ constitutes the **particle number density**

• $n^{\mu} := \Delta^{\mu}_{\nu} N^{\nu}$ is the particle diffusion current

- What to do with the Energy-momentum tensor?
- We can **not** assume it to be symmetric in the presence of polarizable matter...

• We can decompose $T_f^{\mu\nu}$ as follows:

$$T_{f}^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P_{0} + \Pi) \Delta^{\mu\nu} + W^{\mu} u^{\nu} + \left(\tilde{W}_{0}^{\nu} + \tilde{W}^{\nu}\right) u^{\mu} + \pi^{\mu\nu} + \tilde{\pi}^{\mu\nu}$$

Notice that we have to take care of antisymmetric parts

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
	oooo●ooo	00000000000	0000	0000000	0000000
Decomposit	tion of $T_f^{\mu u}$				

Components of $T_f^{\mu\nu}$

- energy density $\epsilon := u_{\mu}u_{\nu}T_{f}^{\mu\nu}$
- equilibrium and bulk viscous pressure $P_0 + \Pi := \Delta_{\mu\nu} T_f^{\mu\nu}$
- energy diffusion $W^{\mu} := \Delta^{\mu}_{\alpha} u_{\beta} T_{f}^{\alpha\beta}$
- momentum density $ilde W^\mu_0 + ilde W^\mu := \Delta^\mu_eta u_lpha T^{lphaeta}_f$
- shear-stress tensor $\pi^{\mu\nu} := \Delta^{\mu\nu}_{\alpha\beta} T^{\alpha\beta}_f$
- antisymmetric momentum flux tensor $\tilde{\pi}^{\mu\nu} := \frac{1}{2} \left(\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} - \Delta^{\nu}_{\alpha} \Delta^{\mu}_{\beta} \right) T_{f}^{\alpha\beta}$

 $\Delta^{\mu\nu}_{\alpha\beta} := \frac{1}{2} \left(\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} + \Delta^{\nu}_{\alpha} \Delta^{\mu}_{\beta} \right) - \frac{1}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta} \text{ denotes the traceless symmetric projector}$

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0000000	0000000
Hydrodynai	mic quantiti	ies			

- We are now dealing with 14 degrees of freedom \rightarrow *n*, *n*^{μ}, ϵ , Π , *W*^{μ}, $\pi^{\mu\nu}$
- Note that $\tilde{W}^{\mu}_0,~\tilde{W}^{\mu}$ and $\tilde{\pi}^{\mu\nu}$ are no independent degrees of freedom
 - ightarrow we will express them through the others later
- \tilde{W}^{μ}_0 denotes the equilibrium, \tilde{W}^{μ} the dissipative part of the momentum density
- For the equilibrium quantities, we can immediately find equations of motion...

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0000000	0000000
Faultions	of motion f	$or \epsilon n \mu^{\mu}$			

EoM for equilibrium quantities

$$u_{\alpha}\partial_{\beta}T^{\alpha\beta} = -qE^{\alpha}n_{\alpha} + \frac{1}{2}M_{\alpha\beta}\frac{d}{d\tau}F^{\alpha\beta}$$
(9)

$$\Delta^{\mu}_{\alpha}\partial_{\beta}T^{\alpha\beta} = q\left(E^{\mu}n - Bb^{\mu\rho}n_{\rho}\right) + \frac{1}{2}M_{\alpha\beta}\nabla^{\mu}F^{\alpha\beta} \qquad (10)$$

$$\partial_{\mu} N^{\mu} = 0 \tag{11}$$

with

$$\frac{d}{d\tau} := u^{\mu} \partial_{\mu}, \quad \nabla^{\mu} := \Delta^{\mu}_{\nu} \partial^{\nu}, \quad b^{\mu\nu} := \epsilon^{\mu\nu\alpha\beta} u_{\alpha} \frac{B_{\beta}}{B}, \quad B^2 := -B^{\alpha} B_{\alpha}$$

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	ooooooo●	00000000000	0000	0000000	0000000
Viscous qua	ntities				

- Now we have exact equations for the equilibrium quantities
- What about the dissipative ones?

 \Rightarrow Macroscopic conservation laws are not enough anymore, we have to refer to **kinetic theory**...

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	●0000000000	0000	0000000	0000000
Outline					

- 1 Reminder: Electrodynamics in matter
- 2 The macroscopic picture: Hydrodynamics
- 3 The microscopic picture: Kinetic Theory
- 4 Connecting the pictures
- 5 Results
- 6 Summary and Outlook

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	o●ooooooooo	0000	0000000	0000000
Distribution	function				

• We now work with a **particle distribution function** which we split into an equilibrium and a dissipative part:

$$f = f_0 + \delta f$$

Equilibrium distribution function

$$f_0 = \left(e^{E_k\beta_0 + \alpha_0} + a\right)^{-1} \tag{12}$$

- β_0, α_0 denote the inverse temperature and chemical potential over temperature in equilibrium
- $E_{\mathbf{k}}:=u_{\mu}k^{\mu}$ coincides with the energy in the particle rest frame
- a equals 1 for fermions, -1 for bosons and 0 for classical particles

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00●00000000	0000	0000000	0000000
Expansion c	of δf				

• We expand δf (more specific: its momentum dependence) in a basis of irreducible tensors:

$$\delta f = \sum_{l=0}^{\infty} \alpha_{\mu_1 \cdots \mu_l} k^{\langle \mu_1 \cdots k^{\mu_l \rangle}}$$
(13)

where

$$k^{\langle \mu_1}\cdots k^{\mu_l\rangle} = \Delta^{\mu_1\cdots \mu_l}_{\nu_1\cdots \nu_l} k^{\nu_1}\cdots k^{\nu_l}$$

denote the symmetric traceless projection

• These tensors form a **complete and orthogonal** set, analogously to the spherical harmonics

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	000●0000000	0000	0000000	0000000
Reduction of	of the proble	em			

• We have now reduced the problem to finding equations of motion for

$$\rho_r^{\mu_1\cdots\mu_n} := \langle E_{\mathbf{k}}^r k^{\langle \mu_1}\cdots k^{\mu_n \rangle} \rangle_{\delta} = \int \frac{d^3 \mathbf{k}}{(2\pi)^3 k^0} E_{\mathbf{k}}^r k^{\langle \mu_1}\cdots k^{\mu_n \rangle} \delta f_{\mathbf{k}}$$

and then truncate them at some order

- These irreducible moments of δf appear after expanding the coefficients in (13) as polynomials in energy
- In order to get the needed equations, we need to take a look at the **particle equations of motion** and the **Boltzmann Equation**

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	0000●000000	0000	0000000	0000000
Kinetic theo	ory for dipole	es			

• Since we are now operating on the level of individual particles, we need **Equations of Motion** for these

Mathisson-Papapetrou-Dixon (MPD) Equations

$$\frac{dk^{\mu}}{d\tau} = qF^{\mu}_{\ \alpha}\mathfrak{u}^{\alpha} + \frac{1}{2}\mathcal{M}_{\alpha\beta}\partial^{\mu}F^{\alpha\beta}$$
(14)

$$\frac{d\Sigma^{\mu\nu}}{d\tau} = 2k^{[\mu}\mathfrak{u}^{\nu]} - 2\mathcal{M}^{[\mu}_{\ \alpha}F^{\alpha\nu]}$$
(15)

 $A^{[\mu}B^{\nu]} := A^{\mu}B^{\nu} - A^{\nu}B^{\mu}$

- $\mathcal{M}^{\mu\nu}$ denotes the **microscopic dipole tensor**, which entails the dipole moments of the particles
- $\Sigma^{\mu\nu}$ is the **spin tensor**

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000●00000	0000	0000000	0000000
Kinetic the	ory for dipol	es			

• As a first approximation, we set

$$\frac{d}{d\tau}\Sigma^{\mu\nu}=0$$

• This entails the assumption that the time scales of spin precession are much faster than the slowest microscopic time scale

ightarrow this gives a relation between \mathfrak{u}^μ and k^μ

• In a weak-field approximation (neglecting terms of third order or higher in the electromagnetic fields) we have

$$\mathfrak{mu}^{\mu} \approx k^{\mu} + rac{2}{\mathfrak{m}} k_{\alpha} F^{[\mu}_{\ \beta} \mathcal{M}^{\alpha]\beta} \equiv k^{\mu} + \pi^{\mu}$$

 The particle four-velocity is thus no longer parallel to the momentum, but is augmented by an anomalous velocity

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	000000●0000	0000	0000000	0000000
Kinetic theo	ory for dipol	es			

• A further novelty is the modified mass shell

Mass shell for dipoles

$$k^{\mu}k_{\mu} = m_0^2 + \frac{m_0}{2}\mathcal{M}_{\mu\nu}F^{\mu\nu}$$
(16)

 (16) complicates life quite a bit, as now k^μ and u^μ do not share the same SO(3)-symmetry

 \rightarrow No one-to-one correspondence of irreducible moments to hydrodynamic quantities

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0000000	0000000
Kinetic theo	ory for dipole	es			

• Electric and magnetic dipole moments can be determined from the MPD equations

Dipole moments

$$m_E^{\mu} = \kappa_E \mathcal{E}^{\mu} + \kappa' \mathcal{B}^{\mu} \tag{17}$$

$$m_B^{\mu} = \kappa_B \mathcal{B}^{\mu} + \kappa' \mathcal{E}^{\mu} \tag{18}$$

- $\kappa_E, \kappa_B, \kappa'$ are the electric, magnetic and mixed microscopic susceptibilities
- \mathcal{E}, \mathcal{B} are the electric and magnetic fields in the particle rest frame

Electrodynamics Hydrodynamics Kinetic Theory Watching Results Summary 000 00000000 0000 0000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 000000000 000000000 000000000 00000000000 0000000000 00000000000 00000000000 000000000000 00000000000000000 000000000000000000000000000000000000	Kinetic th	eony for din	مامد			
	Electrodynamics	OOOOOOOO	Kinetic Theory 0000000000000	Matching 0000	Results 0000000	Summary 0000000

Boltzmann equation

$$\delta \dot{f}_{\mathbf{k}} = -\dot{f}_{0} + \frac{1}{E_{\mathbf{k}}} \left(1 + \frac{1}{E_{\mathbf{k}}} u_{\rho} \pi^{\rho} \right) C[f] - \frac{1}{E_{\mathbf{k}}} \left[k^{\rho} \left(1 + \frac{\pi^{\mu} u_{\mu}}{E_{\mathbf{k}}} \right) - \pi^{\rho} \right] \nabla_{\rho} f - \frac{m_{0}}{E_{\mathbf{k}}} \frac{dk^{\mu}}{d\tau} \frac{\partial}{\partial k^{\mu}} f \quad (19)$$

• *C*[*f*] denotes the **collision kernel** which incorporates the underlying microscopic interactions

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	000000000€0	0000	0000000	0000000
Kinetic theo	ory for dipol	es			

- Utilizing the Boltzmann equation, we can find equations of motion for the ones of relevance
- In our case, that means finding expressions for

$$\dot{
ho}_r, \quad \dot{
ho}_r^{\langle \mu
angle}, \quad \dot{
ho}_r^{\langle \mu
u
angle}$$

• These are quite lengthy due to the mass shell corrections and the anomalous velocity

• We can now express the conserved quantities from hydrodynamics in the language of kinetic theory (as collisional invariants)

Particle four-current

$$N^{\mu} = \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}k^{0}} \left[k^{\mu}f - m_{0}\psi \frac{\partial f}{\partial k_{\mu}} \right]$$
(20)

Energy-Momentum Tensor

$$T_f^{\mu\nu} = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3 k^0} \left[\left(k^{\mu} k^{\nu} - m_0 \psi g^{\mu\nu} \right) f - m_0 \psi k^{\nu} \frac{\partial f}{\partial k^{\mu}} \right] \quad (21)$$

 $\psi:=-\frac{1}{4}\mathcal{M}_{\mu\nu}\textit{F}^{\mu\nu}$ is the mass shell correction

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	●000	0000000	0000000
Outline					

- 1 Reminder: Electrodynamics in matter
- 2 The macroscopic picture: Hydrodynamics
- 3 The microscopic picture: Kinetic Theory
- 4 Connecting the pictures
- 5 Results
- 6 Summary and Outlook

Electrodynamics
ocoHydrodynamics
ococococoKinetic Theory
ocococococoMatching
ocococResults
ococococoSummary
ocococoConnection
hydrodynamicsbetween
irreducible
momentsandh

- The modified mass shell lets the expressions for N^{μ} and $T_f^{\mu\nu}$ get quite lenghty
- Nevertheless, it is still possible to derive relations between the sought-after hydrodynamic quantities (as projections of $T_f^{\mu\nu}$ and N^{μ})
- This is the point where we have to make another approximation

11			0000	0000000	0000000
14-moment	. approxima	ation			

- All moments $\rho_r^{\mu_1\cdots\mu_l}$ with $l\geq 3$ are set to zero
- Also we reduce the space of **dynamical moments** (those that constitute degrees of freedom to

$$\rho_0, \ \rho_1, \ \rho_2, \ \rho_0^{\mu}, \ \rho_1^{\mu}, \ \rho_0^{\mu\nu}$$

• All other moments are expressed through these, meaning:

$$\rho_r \propto \rho_0, \ \rho_1, \ \rho_2 \\ \rho_r^\mu \propto \rho_0^\mu, \ \rho_1^\mu \\ \rho_r^{\mu\nu} \propto \rho_0^{\mu\nu}$$

• This corresponds to the leading order of an expansion in the Knudsen number $Kn = \frac{l_{micro}}{L_{macro}}$

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
			0000		

- Now we have the hydrodynamic quantities as functions of the irreducible moments (and electromagnetic fields)
- Since we know the evolution of the latter, we also know the evolution of the former
- Writing this down requires a bit of work, since we first have to rediagonalize the system of equations, but is doable

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	•000000	0000000
Outline					

- 1 Reminder: Electrodynamics in matter
- 2 The macroscopic picture: Hydrodynamics
- 3 The microscopic picture: Kinetic Theory
- 4 Connecting the pictures
- 5 Results
- 6 Summary and Outlook

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0●00000	0000000
Equilibrium					

• The Energy-Momentum Tensor is **not symmetric**, not even in equilibrium

Equilibrium Energy-Momentum Tensor $T_{f,eq}^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - P_0\Delta^{\mu\nu} + u^{\mu}\Pi^{\nu} \qquad (22)$ with $\Pi = \mathbf{P} \times \mathbf{B} - \mathbf{M} \times \mathbf{E} \qquad (23)$

- This was also a result by Israel [1]
- So what's new?

Second-orde	er relaxation	equation			
Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
	00000000	0000000000	0000	00●0000	0000000

- Equilibrium dynamics is not all
- We also know the dynamics of dissipation (to second order in *Kn* and field strengths)
- Equations of motion for $\Pi,\,n^\mu,\,W^\mu$ and $\pi^{\mu\nu}$ are very long; not shown here
- Two main effects:
 - known coefficients get corrections $\propto B^2 \propto {f M} \cdot {f B}$
 - $\bullet\,$ new coefficients emerge, first and second order in Kn
- Now for some interesting limits

- In the spin-1/2 case, the anomalous velocity π^{μ} vanishes \rightarrow still lots of new terms
- This actually saves us a more complicated consideration, since massless particles do not feature SO(3) symmetry in velocity
- Also microscopic electric and mixed susceptibilities vanish

$$\Rightarrow \mathcal{M}^{\mu\nu} = \kappa_B \epsilon^{\mu\nu\alpha\beta} \mathfrak{u}_{\alpha} \mathcal{B}_{\beta} \tag{24}$$

- Reminder: Spins are assumed to be static
 - \rightarrow Assumption to be checked
- If we assume a Boltzmann gas with constant cross section, we can calculate coefficients analytically

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0000●00	0000000
The massle	ss spin $1/2$	limit			

\bullet Usually the bulk viscosity Π vanishes in the massless limit

$$\Pi \text{ in the massless limit}$$

$$\Pi_{m_0=0} = \frac{13}{3} \tilde{\kappa}_B \epsilon^{\mu\nu\alpha\beta} W_\mu u_\nu E_\alpha B_\beta + \frac{8}{3} \tilde{\kappa}_B B^\mu B^\nu \pi_{\mu\nu} \qquad (25)$$

• The reason for this lies in the effective mass generated by dipole-field interactions

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	00000●0	0000000
Navier-Stok	es Limit				

- We set all terms of order $\mathcal{O}(Kn^2)$ to zero and solve for dissipative quantities
- Acausal and unstable due to infinite signal propagation speed, but a good starting point for comparison nonetheless

Navier-Stokes limit (Eckart frame)

$$\Pi_{NS} = \zeta^{\mu\nu} \partial_{\mu} u_{\nu} \tag{26}$$

$$n_{NS}^{\mu} = \kappa_{\alpha}^{\mu\nu} \nabla_{\nu} \alpha_{0} + \kappa_{\beta}^{\mu\nu} \nabla_{\nu} \beta_{0} + \sigma_{E}^{\mu\nu} E_{\nu}$$
(27)

$$\pi_{NS}^{\mu\nu} = \eta^{\mu\nu\alpha\beta}\sigma_{\alpha\beta} - \eta_{\theta}\theta b^{\langle\mu}b^{\nu\rangle} - \eta_{\omega}b_{\alpha}\omega^{\alpha\langle\mu}b^{\nu\rangle}$$
(28)

$$b^{\mu} := B^{\mu}/B, \qquad \theta = \Delta_{\mu
u}\partial^{\mu}u^{
u}, \qquad \sigma^{\mu
u} = \Delta^{\mu
u}_{lphaeta}\partial^{lpha}u^{eta}, \qquad \omega^{\mu
u} =
abla^{[\mu}u^{
u]}$$

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	000000●	0000000
Navier-Stok	es Limit				

Navier-Stokes limit (Eckart frame)

$$\Pi_{NS} = \zeta^{\mu\nu} \partial_{\mu} u_{\nu} \tag{29}$$

$$n_{NS}^{\mu} = \kappa_{\alpha}^{\mu\nu} \nabla_{\nu} \alpha_{0} + \kappa_{\beta}^{\mu\nu} \nabla_{\nu} \beta_{0} + \sigma_{E}^{\mu\nu} E_{\nu}$$
(30)

$$\pi_{NS}^{\mu\nu} = \eta^{\mu\nu\alpha\beta}\sigma_{\alpha\beta} - \eta_{\theta}\theta b^{\langle\mu}b^{\nu\rangle} - \eta_{\omega}b_{\alpha}\omega^{\alpha\langle\mu}b^{\nu\rangle}$$
(31)

- Can split all coefficients into components parallel/orthogonal to B^{μ}
- Coefficients are subject to B^2 -corrections
- Dependencies (new ones in red):
 - $\Pi_{NS} \propto \theta, \sigma^{\mu\nu}$
 - $n_{NS}^{\mu} \propto \nabla^{\mu} \alpha_0, \nabla^{\mu} \beta_0, E^{\mu}$
 - $\pi^{\mu\nu} \propto \sigma^{\mu\nu}, \theta, \omega$

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0000000	0000000
Outline					

- 1 Reminder: Electrodynamics in matter
- 2 The macroscopic picture: Hydrodynamics
- 3 The microscopic picture: Kinetic Theory
- 4 Connecting the pictures
- 5 Results
- 6 Summary and Outlook

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	0000000000	0000	0000000	0●00000
Summary					

- We have derived a theory of dissipative relativistic magnetohydrodynamics for polarizable and magnetizable fluids
- The dipole-field interaction complicates a lot of things, but the method of DNMR theory can still be applied (with some caveats)
- There are some quite restrictive assumptions in the derivation:
 - Restriction to weak fields
 - Static Spins
 - Classical description through kinetic theory
- However, the results are encouraging to undertake more research in this direction

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
000	00000000	00000000000	0000	0000000	0000000
Outlook					

- Numerically simulate the resulting equations and compare with experiment
- Check stability and causality
- Relax the assumption of static spins
- Use quantum theory to get corrections for the derived classical results
- Take Landau quantization into account

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
					0000000

Thank you for your attention!

Electrodynami 000		Hydrodynamics 00000000	Kinetic Theory 00000000000	Matching 0000	Results 0000000	Summary 0000000
Refere	nces					
	W. ISR. <i>The Dy</i> General	AEL (1978) namics of Pola Relativity and	<i>rization</i> Gravitation, Vol.9,	lssue 5		

S. R. DE GROOT, W. A. VAN LEEUWEN, CH. G. VAN WEERT (1980)

G. S. DENICOL, E. MOLNAR, H. NIEMI, D. H. RISCHKE (2019) Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov

Relativistic Kinetic Theory: Principles and Applications

Irreducible Cartesian Tensors. II. General Formulation

Elsevier Science I td

Phys. Rev. D, Vol.99, Issue 5

Journal of Math. Phys., Vol. 11 L. REZZOLLA, O. ZANOTTI (2013)

Relativistic Hydrodynamics Oxford University Press

J. A. R. COOPE, R. F. SNIDER (1970)

Equation

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
	00000000	0000000000	0000	0000000	00000●0
References					

D. XIAO, Y. YAO, Z. FANG, Q. NIU

Berry-Phase Effect in Anomalous Thermoelectric Transport Phys. Rev. Letters 97, 026603 (2006)

M. STONE V. DWIVEDI, T. ZHOU

Berry Phase, Lorentz Covariance, and Anomalous Velocity for Dirac and Weyl Particles

Phys. Rev. D 91, 025004 (2015)

H. VAN HEES

Introduction to Relativistic Transport Theory (2018)

R. Medina, J. Stephany

The energy-momentum tensor of electromagnetic fields in matter (2017) arXiv:1703.02109v1

Electrodynamics	Hydrodynamics	Kinetic Theory	Matching	Results	Summary
	00000000	00000000000	0000	0000000	000000
References	(pictures)				

https://en.wikipedia.org/wiki/Stress%E2%80% 93energy_tensor#/media/File: StressEnergyTensor_contravariant.svg