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Lecture I, Exercise 1.

Prove the Newtonian H-theorem, that is,
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where fj is the equilibrium distribution function. Condition (1) is fully equivalent to

the condition

fo(u’2) fo(u’1) — fo(d@2)fo(t1) =0, (2)
where f1 9 := f(t, %, U12), fi 2= f(t, T, 11'/172) are the distribution functions before
and after the collision at time ¢ and position &.

Here we introduce Boltzmann’s H function as

1) = [ ) @)d. 3
Taking a time derivative gives
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Ifof/ot =0,dH/dt = 0. So dH/dt = 0 is necessary condition for 0 f /0t = 0.
Next, we consider binary collisions, which gives
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By adding Eq. (5) in Eq. (4) we obtain
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dt

/d3U1 /d3u2/dQJ(Q)|ﬂ1 — ﬁ2|(féf{ - fzfl)[]. + In fl] = 0, (6)

which is equivalent to

dH (1)
dt
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because the cross section o (£2) is invariant under the swapping of u; with uy. Thus we
can add the two equations to obtain
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Since for each collision there is an inverse collision with the same cross section, the
integral (8) is invariant under change of @y, @y with i, i@,. Similarly fo, fi and f5,
fi,ie.
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By adding together Eq. (8) and Eq. (9) using d®ud3u}, = d3uyd>us, |ty — @] =
|ty — |, and o(Q) = o’(2) we obtain
dH(t)
da

1 [du [ | dQU(Q)Iﬁz—ﬁ1|(féf{—fzﬁ)[ln(flfz)—ln(f{fé)(]l(;0-
Using = (f1f2)/(f1f5), this is changed to

%ﬁt) - i/d?)“l/d:}“?/dQU(Q)Wz — @ |(f5f)[(1 —2)Ina] =0. (11)

The integrand of Eq. (11) is never positive for x > 0, which implies that
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As aresult, dH /dt = 0 only when

(fofi = faf1) = 0. (13)

Lecture I, Exercise 2.

The transport equation is

A(n())  I(n{up)) o n o n /OF; \

For the first moment, we use as collisional invariant ¢» = m in Eq. (14). Let’s
consider each terms as follows. First term is

9 (n(¥)) = 0(n(m)) = 9y (nm) = Oyp, (15)
where nm = p. The second term is
Oi(n(ui)) = di(n{u;m)) = 0;(nm(u;)) = Oi(pvi). (16)
The third term is
—n{u;0;¢) = —n(9ym) = 0. (17)
The fourth term is - 5
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The fifth term is
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because F' = F(&£). Thus, the first moment equation becomes

Oip + 0i(pvi) =0

This is the mass conservation equation (continuity equation).
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For the second moment, we use as collisional invariant ¢ = mu; in Eq. (14). Let’s

consider each terms as follows. First term is

Oy(n()) = Ou(n(mu;)) = Oy (nmu;)) = 0, (pv;)-

The second term is

95 (n{us)) = Oi(n(muiu;)) = Oi(p(uiuy)).

ey
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Here we introduce P;; = p((u; — v;)(u; — v;)), which is also called the “pressure

tensor”’. We consider

Pij/p = ((ui—vi)(u; —vj)) = (uinj — uiv; — viug + viv;)
(ugug) — (uivy) — (viug) + (vivj)

= (uluﬁ — ViV — VU5 + ;v = <u1u]> — VU

Thus
(uiug) = ((u; —vi)(uj — v5)) + viv;

Using Eq. (26), Eq. (22) can be written as

di(pluiug)) = 0i(pvivs) + Oip{(u; — vi)(u; — v;))
= @(pvivj) + .P”

The third term is
—n{u;0;1) = —n{uw;0;mu;) = —nm(u;0;u;) =0,

because d;u; = 0. The fourth term is
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The fifth term is
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Thus, the second moment equation is written as

Bt(pvj) + ai(pUin) + &Pw — %F] =0.
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This is the momentum conservation equation.

For the third moment, we use as collisional invariant ¥ = %m|ﬁ — @]? in Eq. (14).

Let’s consider each terms as follows. First term is

outn(0)) =00 (n (gl ) ) =01 (Gam(ja— o)) = (5o

The second term is

2

Oin(Yu;) = Oin <;mﬂ’ — 17|2ui> = &-lp(uiw— 7)) = %p&(ui\ﬁ’— 7%). (34)

The third term is

“nfusdrw) = - (wids (gmla — 52 ) =~ Gpluor(a - 7).

The fourth term is
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because the kinetic energy is a function of space only. The fifth term is

n oF;\  n /1 . _,0F;\
‘m<%ui>— m<2m'“ g aui>—0

Therefore the third moment equation is

Here, we introduce two quantities,
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Using these quantities, first term of Eq. (38) is

o0 (5ot~ o)) = 01(p0)

The second term of Eq. (38) is

pd; (ui|@ — T|%) 0i{(u; — vi)|@ — B + pvil@ — 7%
0i{(u; — vy)|@ — B) + 9i{pvil@ — T*)
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For the third term of Eq. (38), we use 4 — ¥ = A. Then it becomes
pluidi (A AR61)) = pluil(0;A7) A6, + AT (8;A%)6;1])

(45)
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= 2p(u[0;(uj — v;)|(uj —v3)) = 2p(w;[Oiu; — Ojv;](u; — ¢47)

= —2p(ui0iv;(u; — v;)) = —20iv;(ui(u; — v;))
Next, we reconsider the pressure tensor,

Py = p(us —vi)(uj —vy))

(48)
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plui(ug —vj) —vi(ujg —vj)) = plui(u; —v;)) — p{vi(u; — v;)) (50)

= plui(u; —v;)) — pl{vig) — (vivy)]
= pluiluy — ;) = plviug) — vivs] = plui(u; —vy)).
Using Eq. (52), the third term of Eq. (38) is written as
p(uid;|t — B|*) = —2p0;v;(u;(u; — v))) = —2P;;0;v;.
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Here we introduce 0;v; = A;;. This is a generic tensor. However, P;; is a symmetric

tensor. Hence A;; must also be symmetric tensor.
1
Ay = 5(Aiy + Aji)
1 1
= 5(811)]- + 8jvi) = §A”
Using Eq. (55), Eq. (53) can be changed as
—2Pijaﬂ]j = —Piinj.
Finally, we can obtain the third moment equation
at(pﬁ) + ai(pévi) + 0;q; + Piinj =0.

This is the energy conservation equation.

Lecture I, Exercise 3.
The mass conservation equation Eq. (20) can be written as

3tp = —8,-(,0111') = —pam - Uiaip~
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Next, we consider the momentum conservation equation Eq. (32). We expand the

derivative in Eq. (32) and using Eq. (58),
Ou(pvy) + (pvivy) + 0Py — L Fy
= pOw; + v;0p + pv;0;v; + pv;0iv; + v;v;0;0 + 0; Pyj — %Fj
= pOw; — pv;0;v; — v;00;p + pv;0;v; + pv;0iv; + v;v;0ip + 0; Py —

= pow; + pv;0iv; + 0; Py — %Fj =0.
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Then it is divided by p, we obtain
1 1
6tvj + vzﬁivj + *ailjij — *Fj =0. (63)
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Next, we consider the energy conservation equation Eq. (57). We expand the
derivative in Eq. (57) and using Eq. (58),

Oe(pe) + 0;(pev;) + Dig; + Pij A (64)
= pOie + €0ip + pediv; + pv;0ie + €v;0;p + 0;q; + PijAY (65)
= poie — pediv; — €v;0;p + pediv; + pv;0ie + €v;0;p + Oiq; + Piinj (66)
pOse + pv;Oie + dig; + PijAY = 0. (67)

Finally, dividing by p we obtain

1 1 .
Oi€ + v;0;€ + ;&-qi + ;PijA” =0. (68)



