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Lecture III, Exercise 1.

The four momentum p'is

p=mcii = (p°,p’). (1)
The contravariant and covariant forms of four momentum is written as

pt= mW (1Y), )

Pp = mW(—l,vi), (3)

where W is Lorentz factor and v is the three velocity. The square of the four momen-
tum is
2 2 2
P =ptpy=-—m"c. “4)

Now we consider the frame boosted z-direction. The Lorentz matrix is given by

w —Wv 0 0

v Wu W 0 0

T = 0 0 1 0 |- )
0 0 0 1

The Lorentz transformation for the four-momentum is obtained

pu’ — I‘Z'pﬂ. (6)
And it becomes
P = W’ - 7
pt = W' -’ ®)
P o= p ©)
=7 (10)
d3p = dp*dp2dp? and d3p’ = dp*' dp® dp® . Taking a derivative in Eq (8) yields
dpl' dpo
—=Wll—-v—. 11
dp' < “ap? (o
From eq (4),
1/2 ~1/2
dp® d , ) 1
i () +m’e | =p! W) +me | =5,
P Pm\ili23 i=1,2,3 p
(12)



(where we use (pY)? = pip; + m3c?.) Using Eq (12), Eq (11) becomes

dl’ 1 0 _ 1 0’
U S A W ULl N
dp* p° p° p°

It can be written as

dpll _ dp?
o
Because dp? = dp? and dp® = dp?, we obtain
&' _ dp
PO

Lecture II1, Exercise 2.

Start from the Euler equation:

P

o (1 ., 1, 1 pa .
E)t<2pv +pe)+V~{<2pv +pe+p>v} 7EF.U

g (1 1
= 6t<2pﬁz+pe)+(2pv2+pe+p)v-1‘f

1 _,
+(T- V) <2pv2+pe+p) =—F.7

8 1 —2 — 1 —2
i <2pv +pe) + (7-V) (zpv +pe>

1 _
+<pv2+pe+p)v'f)’:F'f)’—6-Vp.
2 m

3=

Here using D/Dt = 9/0t + ¥ - V, we obtain

D (1 1 F 1
Dt(2p172+p6>+<2p112+p6+p)v~17 pf)’(—Vp

Lecture III, Exercise 3.

First we assume the flow is incompressible
V-v=0.

And we use mass and momentum conservations

9p L
a‘f‘V(pU)—O

Opif

%—FV-(pﬁﬁ'—&—pI) = —pgey.
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In the static state, we assume following condition
P = Po, 6: (007070)7 P = Po, (23)

where pg, vg, and pg are a function of y-direction only. The set of equations are written
as

V- -95=0 24)
V - (poTo) = (25)
V - (poPoTo +POI) = —pogey, (26)

where we do not use the partial time derivative term because it is in static state (9/0t =
0).
Here we introduce perturbations in all quantities,

p = po+0p, T= vy + 9 = (vo + vz, 0vy,0), p = po + Ip. (27)

Eq (22) can be written as

eq(22) = V Ty + V08 =V .67 =0, (28)
where we use eq (26). Eq (23) can be changed as

@) = (oo +09)+ V- [(po+ 5p)(B + 5] 29)

- i@+V(m%Hv«@%+mww (30)

_ ;@+V(@%+mw) a1

= Dot (o V)op+ 00V - 50) + (55 V) + pol(V -55) (32

_ ;w+wo®m+wavm=& (33)

where we ignore time derivative of the initial sate and use Eqgs (26), (27), and (28). Eq
(24) is also changed as

cq@4) = = (po -+ 8p)(Fo + 58)

+V - [(po + 6p)(To + 66)(To + 6%) + (po + 6p)Z] (34)

0 . i
= g[(p()&v + dpto)

+V - [po¥oTo + 0pToTo + potod¥ + podTvy + (po + Ip)I]
—(po +dp)gey, (35)
where we neglect time derivative of initial state and 2nd-order terms. Using Eq (26),

eq (35) is given as

1o}
eq(35) = 5 (podT + dpin)

0
+V - [6pToTo + poUodT + podTUy + 0pZ] = dpge, (36)



Eqgs (28), (33), and (36) are linearized equations for this problem. Next we divide these
linearized equations in each component

eq (28)

eq (33)

eq (36),

eq (36),

=

=

=

0 0

0] 0 0] 0]

§5p + ’ani(sp + 6’UE8 p() + 5Uy87yp0

0] 0 0]

§5p+’00%5p+5vy8—yp0 —0, (38)

(where py is a function of y only)

0 0 0

P0—= 5 0vg + UO@ op + %[(cmvo)xvo + (povo)z0vz + (podv)zvo + Ip]
0

+87y[(p000)15vy] (39)

0 0 0 0
0 815501 o (voagcép + 5vyaypo> + %(vgép + 2ppvodvy + Op)

—I—aﬁy (povoduy) (where we use eq(38)) 40)
5 0 0 0 0 0
atévr voa op — voéya po + voa—ép + 2pov06 0vg + a—ép
0 0 0
+U05vya—ypo + pgévya—yvo + povoa—y&)y 41)
0 0 0 0 0
Po— 5 OV + ZpOUOa O0vg + %51) + poévya—yvo + povoa—yévy (42)
8(51} + pov 8(51} + pov 2v —l—ﬁv
Poatgcpooa prOax:v ayy
0 0
— - 4
0P Podvy 5 v (43)
0 0 0
00 Gt(SUI + povoa 0vg + %517 + poévya—yvo =0 (44)
(where we use Eq (37)),
0 0
Po at&)y I [(0pv0)yv0 + (Pov0)yOvs + (podv)y o]
0
+a—y[(5pvo)y -0+ (povo)ydvy + (podv), - 0+ dp] (45)
0 0 0
- 4
Poat5vu oz - (Podvyvo) + 8y6p (46)
0 0 0
Po 8t6vy + Povo 5~ dvy + @5]9 = —dpg 47
(where pgy and v are a function of y only)
(48)



Then we introduce Fourier mode for perturbed state,
dp, 0T, dp llhz—wt) 49)
Eqgs (37), (38), (44), and (47) are then written as

eq(37) = ikdv, + agévy =0 (50)
Yy
10
. dpo . B
eq(38) = —iwdp+ 5vya— + ikvgdp =0 (52)
Yy
o Ipo
eq44) = —iwpedv, + ikpovodv, + ikdp + podvy? (54)
Yy
. . 8@0
= —ipo(w — kvg)dv, + ikdp + podvya—y =0 (55)
w — kg .Po . Oug
— op= z Podv, + zzévya—y (56)
(w—kvy) O ) vy .
= szoa—yévy + zzdvya—y (using eq. (51)) 57
0
eq (47) = —iwpedvy + ikpovodvy + a—yép = —dpg (58)
. 0 [ (w—Fkvy) O Po 0
—  —ipo(w — kvg)dvy + a—y {Zlﬂpoﬁyévy + zzévya—yvo
g

o Foo vya—y (using eq. (53) and (57)) 59)

We multiply Eq. (59) by a factor of k2 /i to obtain that

0
—pokQ(w — ]{J’U())(S’Uy + 87/

8 31}0
[(w - kvo)poa—y&)y + pokévyay]
gk? dpo
= vy ——.
w — kv dy
Next we consider boundary condition for this problem. Since at the region of y # 0,
Opo /0y = dvy /Ay = 0, the Eq (60) can be expressed as

(60)

82
(w— kjvo)poa—yQ(Svy — pok?(w — kuvg)ov, =0 61)
82
— —k —
[(w o) pol (ayg
The perturbation in y-direction becomes small far from contact surface. Thus the per-
turbed velocity in y-direction can be given by

dv, = Aexp(—klyl). (63)

- k2) Sv, =0 (62)



At the contact surface (y = 0), perturbation gives change of surface. We introduce
changing profile Y = n(x,t). This surface should move with fluid motion. It means

that
DYy

0 0

ovy = ot or

dy follows Fourier mode. Therefore 7 o< e!**=«%) Since the amplitude is small, we
can lininalize the eq (64),

dvy = [—iw + (vodug)ik|n = —i(w — kvo)n. (65)

The ratio between upper region of the contact surface and lower region of the contact

surface is shown as
5v§1) w— kv(()l)

= . (66)
(51}1(,2) w— kv((f)
Adding eq (66) in eq (63), we can obtain dv, in y # 0 region,
5113(,1) = (w— kzvél))e_ky
50l (2)) 67
vy = (w—kuy)e Y

Next we consider contact surface (y = 0) region. Here we introduce A;(f) which
is integrated in small region between the upper and lower regions of contact surface,

[_65 6]’
O+e

A =tm [ iy < mise - o) (68)

e—0 O—e Yy e—0

We integrate eq (60) in small region between the upper and lower regions of contact
surface, [—e, €],

O+e
lim pok?(w — kvg)dv,dy — 0, (69)
0—e
Oe ) dvg
li — —k —0 kdv, — 70
im . Dy {(W o) po By Uy + pokovy By } (70)
0 aUO
= As <(LL) — k'l}o)poay(s'l)y> + As (pgkavy@) (71)
0
= A, <(w - kvo)poay%y) (Ovp /Oy = 0 aty # 0), (72)
O+e O+e
lim vy 9604 i / K9P0 1 (using eq. (67)) (73)
0—e W— kvo ay 0—e ay
O+e 8
_ e’kly‘As(po) — lim poaiyefk\y\dy (74)
0—e
ov
=z z:vo As(po)- (75)



Therefore the integrated Eq. (66) can be written as

0 ov
A, [t = kg ou,| = Koo o). 76)
Eq (67) is inserted to eq (76) then
L B Y L PR
—(w = ko)l (w — k) (k)e* &)
5 —kl(w = ku§)2p" + (w — ko$)205)) (y 78)
Aslpo) = pi —pi. (79)

Therefore from eq (76) we can obtain

—E[(w — ki)oMY + (w = koi)2p8] = K29l — p5)  (80)
=y + p?)w” = 2k v + o 0w
—p

2o 4 Do) + kg (ol — o) = 0. 81)

This is dispersion relation for this problem. The solution is given by

= arv{? + agv(? £ \/—alaz(vé“ — P2 = %(al — ), (82)

> &€

where o = pél)/(p(l) + p(() )) and oy = py )/( 4 p(() )) From this equation, the
system is unstable when the inside of the root becomes negative. Therefore the system
becomes unstable when

(2)* (1)?
k> (1361((@) (‘i‘)ﬁo <3> 2’ (83)
Po Po (v —vp )

This is stability condition of Kelvin-Helmholtz instability with gravity. From this cri-
terion, we see that gravity stabilizes the KH instability at long-wavelengths.



