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Lecture VIII, Exercise 1.
The vorticity tensor is defined as

Ωµν = 2∇[µων] (1)
= ∇ν(huµ)−∇µ(huν) (2)
= h∇νuµ + uµ∇νh− h∇µuν − uν∇µh (3)
= h(∇νuµ −∇µuν) + uµ∇νh− uν∇µh. (4)

The kinematic vorticity tensor is defined as

ωµν = hα
µh

β
ν∇[βuα] (5)

= ∇[µuν] + a[µuν] (6)

=
1

2
(∇νuµ −∇µuν) + a[µuν]. (7)

Thus,
∇νuµ −∇µuν = 2(ωµν − a[µuν]). (8)

Substituting Eq (8) into Eq (4) we obtain

Ωµν = 2h(ωµν − a[µuν]) + uµ∇νh− uν∇µh (9)

= 2h

[
ωµν − a[µuν] +

1

2

(
uµ

1

h
∇νh− uν

1

h
∇µh

)]
(10)

= 2h[ωµν − a[µuν] + u[µ∇ν] lnh]. (11)

From the equation above it is clear that only for a test fluid (i.e., e = 0 = p
and h = 1) in geodetic motion (i.e., aµ = 0) two tensors are directly proportional,
Ωµν = 2ωµν .

Lecture VIII, Exercise 2.
The Carter-Lichnerowicz equation is given by

Ωµνu
µ = T∇µs. (12)
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Here we consider Newtonian limit of the Carter-Lichnerowicz equation. First we
rewrite Eq. (12) as

Ωµνu
µ = uνΩνµ (13)

= uµ[∇ν(huµ)−∇µ(huν)] (14)

= u0

[
1

c

∂

∂t
(hui)−

∂

∂xi
(hu0)

]
+ uj

[
∂

∂xj
(hui)−

∂

∂xi
(huj)

]
. (15)

As already discussed in the exercise of Lecture VII, the covariant components of
the four-velocity vector in the Newtonian limit are given by

uα ≃
(
u0,

vi

c

)
=

(
1− ϕ

c2
+

1

2

vjv
j

c2
,
vi

c

)
, (16)

while the corresponding covariant components are given by

uα ≃
(
u0,

vi
c

)
=

(
−1− ϕ

c2
− 1

2

vjv
j

c2
,
vi
c

)
. (17)

Similarly the expression for the relativistic specific enthalpy is

h = c2
(
1 +

hN

c2

)
, (18)

where hN is the specific enthalpy in the Newtonian limit, hN = ϵ+ p/ρ. We substitute
these relations into Eq (15) to obtain

Ωµνu
µ = u0

{
∂t

[(
1 +

hN

c2

)
vi

]
− ∂i[(c

2 + hN)u0]

}
+vi

{
∂j

[(
1 +

hN

c2

)
vi

]
− ∂i

[(
1 +

hN

c2

)
vj

]}
. (19)

In tthe Newtonian limit, the terms u0 and hN/c
2 can be set to 1 and 0 respectively, so

that the second term in the RHS of Eq (19) can be changed as

∂i[(c
2 + hN)u0] = −∂i

[
(c2 + hN)

(
1 +

ϕ

c2
+

vjv
j

2c2

)]
(20)

≃ −∂i

(
ϕ+

1

2
vjv

j + hN

)
. (21)

Finally we get

∂tvi + ∂i

(
hN +

1

2
vjv

j + ϕ

)
+ vi(∂jvi − ∂ivj) = T∂is (22)

⇒ ∂v⃗

∂t
+ ∇⃗ ·

(
1

2
v2 + ϵ+

p

ρ
+ ϕ

)
− v⃗ × (∇⃗ × v⃗) = T ∇⃗s. (23)

This equation is known as the Crocco equation of motion.
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Lecture VIII, Exercise 3.
The vorticity four-vector is written as

Ωµ = ∗Ωµνuν =
1

2
ϵµναβΩαβuν . (24)

The kinetic vorticity four-vector is given by

ωµ = ∗ωµνuν =
1

2
ϵµναβωαβuν (25)

Writing out Eq (24) explicitly we obtain

Ωαβuν = [∇β(huα)uν −∇α(huβ)uν ] (26)
= [h∇β(uα)uν + uαuν∇βh− h∇α(uβ)uν − uβuν∇αh] (27)
= huν(∇βuα −∇αuβ) + uαuν∇βh− uβuν∇αh (28)
= huν2∇[βuα], (29)

where the terms including uαuν and uβuν vanish because of the symmetry in the
indices and the antisymmetry of the Levi-Civita tensor.

From the definition of the kinetic vorticity tensor, we instead obtain

ωµν = ∇[µuν] + a[µuν] (30)
⇒ ∇[µuν] = ωµν − a[µuν]. (31)

Therefore connecting these two results, the vorticity four-vector can be given by

Ωµ =
1

2
ϵµναβhuνωβα − ϵµναβhuνa[βuα] (32)

= 2hωµ, (33)

where the second term of the RHS in Eq. (32) vanishes because of the symmetries in
the four-velocity.
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