ADVANCED QUANTUM MECHANICS

SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC 0|21

CHRISTIAN REISINGER: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 0

Presence sheet, to be discussed in the week of 22.04.19. 18.04.19

Exercise 1 [Spin and measurements in quantum mechanics]

In quantum mechanics, the spin $\mathbf{s} = (s_x, s_y, s_z)$ of a particle is described by a set of three operators fulfilling the angular momentum algebra

$$[\hat{s}_i, \hat{s}_k] = i\hbar\epsilon_{ikl}\hat{s}_l,$$

which can be represented by 2×2 matrices.

- (a) Write down a representation of the three spin operators in terms of 2×2 matrices.
- (b) Find the eigenvectors and eigenvalues for each of the three spin operators.
- (c) Suppose a system is in the eigenstate of \hat{s}_x with eigenvalue $+\hbar/2$. Calculate the expectation value of a measurement of s_y in this system. What are the possible results of the measurement and what are the corresponding probabilities?
- (d) For the same system as in (c), calculate the expectation value for a measurement of spin in the direction $(+1,+1,0)/\sqrt{2}$, i.e. along an axis at a 45° angle w.r.t. the x-axis. What are the possible results of the measurement and what are the corresponding probabilities?
- (e) For the same system as in (c), we first measure spin in the direction $(+1,+1,0)/\sqrt{2}$. After that we measure s_y . Calculate the expectation value of the latter measurement. What are the possible results of the latter measurement and what are the corresponding probabilities?
- (f) Same as (e), but instead of a single measurement at a 45° angle, we take N-1 measurements for which the direction of measurement is increased by 90°/N for each successive measurement, starting from 0° (along the x-axis) and ending at 90° (along the y-axis). Calculate the expectation value of a measurement of s_y taken after these N-1 measurements in the limit $N \to \infty$. What are the possible results of the measurement and what are the corresponding probabilities?

Write down a representation of the operators and states of the angular momentum algebra given above, such that the eigenvalues of \hat{s}_x , \hat{s}_y , \hat{s}_z are $+\hbar$, 0 and $-\hbar$. Represent the operators using

Produced with the ExerciseHandler

- (g) 3×3 matrices,
- (h) suitable combinations of ${\bf r}$ and ∇

Which physical systems can be described by these representations?