Advanced quantum mechanics
 SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC $0 \mid 21$
Christian Reisinger: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 0

Presence sheet, to be discussed in the week of 22.04.19. 18.04.19

Exercise 1 [Spin and measurements in quantum mechanics]

In quantum mechanics, the $\operatorname{spin} \mathbf{s}=\left(s_{x}, s_{y}, s_{z}\right)$ of a particle is described by a set of three operators fulfilling the angular momentum algebra

$$
\left[\hat{s}_{j}, \hat{s}_{k}\right]=i \hbar \epsilon_{j k l} \hat{s}_{l},
$$

which can be represented by 2×2 matrices.
(a) Write down a representation of the three spin operators in terms of 2×2 matrices.
(b) Find the eigenvectors and eigenvalues for each of the three spin operators.
(c) Suppose a system is in the eigenstate of \hat{s}_{x} with eigenvalue $+\hbar / 2$. Calculate the expectation value of a measurement of s_{y} in this system. What are the possible results of the measurement and what are the corresponding probabilities?
(d) For the same system as in (c), calculate the expectation value for a measurement of spin in the direction $(+1,+1,0) / \sqrt{2}$, i.e. along an axis at a 45° angle w.r.t. the x-axis. What are the possible results of the measurement and what are the corresponding probabilities?
(e) For the same system as in (c), we first measure spin in the direction $(+1,+1,0) / \sqrt{2}$. After that we measure s_{y}. Calculate the expectation value of the latter measurement. What are the possible results of the latter measurement and what are the corresponding probabilities?
(f) Same as (e), but instead of a single measurement at a 45° angle, we take $N-1$ measurements for which the direction of measurement is increased by $90^{\circ} / N$ for each successive measurement, starting from 0° (along the x-axis) and ending at 90° (along the y-axis). Calculate the expectation value of a measurement of s_{y} taken after these $N-1$ measurements in the limit $N \rightarrow \infty$. What are the possible results of the measurement and what are the corresponding probabilities?

Write down a representation of the operators and states of the angular momentum algebra given above, such that the eigenvalues of $\hat{s}_{x}, \hat{s}_{y}, \hat{s}_{z}$ are $+\hbar, 0$ and $-\hbar$. Represent the operators using
(g) 3×3 matrices,
(h) suitable combinations of \mathbf{r} and ∇

Which physical systems can be described by these representations?

