Advanced quantum mechanics
 SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC $0 \mid 21$
Christian Reisinger: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 1

To be handed in 25.04.19 before the lecture. To be discussed in the week of 29.04.19. 18.04.19

Exercise 1 [Position and momentum space representation] pts.)

In the lecture, we saw that a representation of the position and momentum operators can be either

- $\hat{p} \equiv-i \hbar d / d x, \hat{x}=x$ (representation in position space) or
- $\hat{p}=p, \hat{x} \equiv+i \hbar d / d p$ (representation in momentum space).
(a) Write down the eigenvalue equation for the Hamilton operator with arbitrary potential $V(x)$ (i.e. the Schrödinger equation) both in position space and in momentum space. Why is it more straightforward to use a position space representation for most potentials? Discuss obvious mathematical problems when using the momentum space representation for e.g. a square well potential.
(b) Give eigenvalues and eigenfunctions in both representations for the potential $V(x)=m \omega^{2} x^{2} / 2$. Which representation is more appropriate to solve this problem?
(c) Calculate explicitly the eigenvalues and eigenfunctions for a free particle in both representations.

Exercise 2 [Time evolution]

Consider a particle in one spatial dimension in an infinite square well

$$
V(x)= \begin{cases}0 & \text { if } 0 \leq x \leq L \tag{1}\\ +\infty & \text { else }\end{cases}
$$

At time $t=0$ the particle is in a state described by the wave function

$$
\begin{equation*}
\psi(x)=\frac{1}{\sqrt{2}}(\sin (\pi x / L)+\sin (2 \pi x / L)) . \tag{2}
\end{equation*}
$$

Determine the probability to find the particle at time t at position x as a function of x and t. Visualize your result using a computer, e.g. by plotting the probability for several values of x as a function of t (and vice versa).

