Advanced quantum mechanics
 SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC $0 \mid 21$
Christian Reisinger: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 6

To be handed in before 30.05.19, 11:00 by e-mail or in office 2.10%.
To be discussed in the week of 03.06.19.
23.05.19

Exercise 1 [Higher partial waves]

In the lecture we calculated the contribution of the partial wave with $l=0$ for a scattering process in the potential of a hard sphere

$$
V(r)=\left\{\begin{array}{ll}
+\infty & \text { if } r \leq R \tag{1}\\
0 & \text { otherwise }
\end{array} .\right.
$$

(a) Consider the cases $k R=2$ and $k R=0.2$. Is the partial wave contribution σ_{0} a good approximation of the total cross-section, i.e. $\sigma \approx \sigma_{0}$?
(b) Calculate the contributions of the partial waves with $l=1$ and $l=2$. Determine both the phase shift $\delta_{l}(E)$ and the contribution to the total cross-section σ_{l}. Do you find convergence with increasing l ? Note that the equation to determine the phase shift can only be solved analytically for $l=0$. To find the solution, use a computer, or determine the solution graphically.
(c) Plot the differential cross-section, including contributions of the partial waves with

$$
\begin{aligned}
& -l=0 \\
& -l=0 \text { and } l=1 \\
& -l=0, l=1 \text { and } l=2
\end{aligned}
$$

For which of the cases is the scattering isotropic? Do you observe convergence in the calculations and plots for the three cases?

Exercise 2 [Yukawa potential, Born approximation] (4+4+4=12 pts.) Consider scattering at a Yukawa-potential

$$
\begin{equation*}
V(r)=A \frac{e^{-\lambda r}}{r}, \lambda>0 \tag{2}
\end{equation*}
$$

which is frequently used in physics, e.g. to describe forces between neutrons and protons due to pion exchange.
(a) Using the Born approximation, calculate the scattering amplitude $f(\vartheta)$.
(b) Using your result from (a), show that the differential cross-section is given by

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(\vartheta)=\frac{A^{2}}{\left(4 E_{k}(\sin (\vartheta / 2))^{2}+\hbar^{2} \lambda^{2} / 2 m\right)^{2}} \tag{3}
\end{equation*}
$$

(c) Calculate the potential and differential cross-section in the limit $\lambda \rightarrow 0$. Are the Born approximation and the assumptions used to derive scattering theory in the lecture applicable in this limit? Compare your result for the differential cross-section with the correct result from the literature.

