Advanced quantum mechanics
 SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC $0 \mid 21$
Christian Reisinger: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 9

To be handed in before 20.06.19, 11:00 by e-mail or in office 2.10\%.
To be discussed in the week of 24.06.19.
13.06.19

Exercise 1 [Dirac equation and γ-matrices]
($3+2+4=9$ pts.)
(a) Prove the important property of the γ-matrices

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \tag{1}
\end{equation*}
$$

by using the properties of the Pauli matrices and their product.
(b) Show that the components of a solution $\psi(x)$ of the Dirac equation $\left(i \gamma^{\mu} \partial_{\mu}-\right.$ $m) \psi(x)=0$ also fulfill the Klein-Gordon equation, i.e. that

$$
\begin{equation*}
\left(\square+m^{2}\right) \psi(x)=0 \tag{2}
\end{equation*}
$$

(c) In the lecture the γ-matrices in the standard representation were introduced. There are other equivalent useful representations, e.g. the so called "Weyl" or "chiral" representation,

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2} \tag{3}\\
\mathbb{1}_{2} & 0
\end{array}\right), \gamma^{j}=\left(\begin{array}{cc}
0 & \sigma^{j} \\
-\sigma^{j} & 0
\end{array}\right)
$$

where σ^{j} are the Pauli matrices.

- Show that a change of the representation can be described by a linear transformation of the four spin components of ψ by explicitly constructing this linear transformation between the standard and Weyl representation.
- The standard representation is useful for non-relativistic particles (often heavy particles), because two of the four spin components of ψ nearly vanish. For which kind of particles can a similar statement be made in the chiral representation, i.e. in which case does the Dirac equation decouple in two 2×2 matrix equations?
(a) Show that an infinitesimal Lorentz transformation (infinitesimal angle or boost-velocity) has the form

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=\eta^{\mu}{ }_{\nu}+\epsilon^{\mu}{ }_{\nu}, \tag{4}
\end{equation*}
$$

with $\epsilon^{\mu \nu}=-\epsilon^{\nu \mu}$.
(b) Show that infinitesimal Lorentz transformations $S(\Lambda)$ can be written as

$$
\begin{equation*}
S(\Lambda)=1-\frac{i}{4} \epsilon^{\mu \nu} \sigma_{\mu \nu} \tag{5}
\end{equation*}
$$

with $\sigma_{\mu \nu} \equiv i\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2$, by verifying that this expression is a solution of the defining equation of $S(\Lambda)$,

$$
\begin{equation*}
\gamma^{\nu}=S(\Lambda) \gamma^{\mu} S^{-1}(\Lambda) \Lambda^{\nu}{ }_{\mu} \tag{6}
\end{equation*}
$$

(c) Show that, for a finite Lorentz transformation, the corresponding transformation matrix for spinors is

$$
\begin{equation*}
S(\Lambda)=\exp \left(-\frac{i}{4} \epsilon^{\mu \nu} \sigma_{\mu \nu}\right) \tag{7}
\end{equation*}
$$

Relate the entries of $\epsilon^{\mu \nu}$ to (i) the relative velocity v of a boost in x direction and (ii) to the angle α of a rotation around the x-axis.
(d) Show that the bilinear $\bar{\psi} \gamma^{\mu} \psi$ transforms like a 4 -vector under Lorentz transformations.

