# Advanced quantum mechanics <br> SS 2019 - Prof. Dr. Marc Wagner <br> Organization: Room GSC $0 \mid 21$ <br> Christian Reisinger: reisinger@th.physik.uni-frankfurt.de 

## Exercise sheet 10

To be handed in 27.06.19 before the lecture.
To be discussed in the week of 01.07.19.
20.06.19

Exercise 1 [Pauli equation, auxiliary calculations] (5+4=9 pts.)
Show the following relations, which were used in the lecture, when deriving the Pauli equation
(a)

$$
\begin{equation*}
\left(\sum_{j} \sigma_{j}\left(-i \partial_{j}-e A^{j}(\mathbf{r}, t)\right)\right)^{2}=(-i \nabla-e \mathbf{A}(\mathbf{r}, t))^{2}-e \vec{\sigma} \mathbf{B}(\mathbf{r}, t) \tag{1}
\end{equation*}
$$

(b) For constant magnetic field and $\mathbf{A}=\mathbf{B} \times \mathbf{r} / 2$,

$$
\begin{equation*}
(-i \nabla-e \mathbf{A}(\mathbf{r}))^{2}=\mathbf{p}^{2}-e \mathbf{L} \mathbf{B}+e^{2}(\mathbf{A}(\mathbf{r}))^{2}, \tag{2}
\end{equation*}
$$

with $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ and $\mathbf{p}=-i \nabla$.

## Exercise 2 [Relativistic treatment of a pion in a Coulomb potential] ( $1+2+3+1+4=11$

 pts.)A pion $\pi^{-}$is a quark-antiquark pair $d \bar{u}$, i.e. a boson with negative electric charge $-e$. A quantum mechanical treatment of such a pion in a Coulomb potential of an atomic nucleus with proton number $Z$ is possible with the Klein-Gordon equation.
(a) Write down the Klein-Gordon equation of a pion in an electromagnetic field with the 4-potential $A^{\mu}=(\phi, \mathbf{A})$.
(b) Consider a time-independent 4-potential $A^{\mu}(\mathbf{r})$ and solutions with positive energy. Use the technique of separation of variables to derive the corresponding stationary Klein-Gordon equation, which is the relativistic analog to the stationary Schrödinger equation.
(c) Consider a time-independent and rotationally symmetric 4-potential $A^{\mu}(r)$. Use again the technique of separation of variables to obtain an ordinary differential equation in the radial coordinate $r$ from the stationary KleinGordon equation you derived in (b).
(d) For a Coulomb potential $\phi=-Z e / r, \mathbf{A}(r)=0$, show that the differential equation for the radial part $R(r)$ of the solution of the Klein-Gordon equation from (c) has the form

$$
\begin{equation*}
\left(-\frac{1}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} r+\frac{l(l+1)-Z^{2} e^{4}}{r^{2}}-\frac{2 Z e^{2} E}{r}-\left(E^{2}-m^{2}\right)\right) R(r)=0 . \tag{3}
\end{equation*}
$$

(e) The solution of this equation gives energies

$$
\begin{equation*}
E_{n l}=m\left(1+\frac{Z^{2} e^{4}}{\left(n-(l+1 / 2)+\sqrt{(l+1 / 2)^{2}-Z^{2} e^{4}}\right)^{2}}\right)^{-1 / 2} \tag{4}
\end{equation*}
$$

with $n=1,2, \ldots$ and $l=0,1, \ldots, n-1$ (cf. e.g. F. Schwabl, "Quantenmechanik für Fortgeschrittene (QMII)", Springer, section 8.1.2). Identify a small dimensionless parameter and expand $E_{n l}$ as a series in terms of this parameter. Compare your result to the one obtained from a nonrelativistic calculation using the Schrödinger equation, which you can find in the literature. What is the leading order relativistic correction that follows from your calculation? Make a qualitative plot of the energy spectrum for small $n$ and discuss, which degeneracies disappear due to relativistic corrections.

