Advanced quantum mechanics
 SS 2019 - Prof. Dr. Marc Wagner

Organization: Room GSC $0 \mid 21$
Christian Reisinger: reisinger@th.physik.uni-frankfurt.de

Exercise sheet 11

To be handed in 04.07 .19 before the lecture. To be discussed in the week of 08.07.19.
27.06.19

Exercise 1 [Rapidity]

Show that the composition of two boosts with rapidities χ_{1} and χ_{2} along the same axis is equal to a single boost along this axis with rapidity $\chi=\chi_{1}+\chi_{2}$.

Exercise 2 [Properties of $S O(3), S U(2), U(1)$ and the Poincare group] ($2+2+3+4=11$ pts.)
(a) Show graphically that the group $S O(3)$ is non-Abelian, e.g. draw the effect of a rotation around the x-axis followed by a rotation around the y-axis on a vector, and vice versa.
(b) Show that the matrices $R_{j}(\alpha)=1+i \alpha J_{j}$ with $J_{j}=\sigma_{j} / 2$, which were defined in the lecture, are infinitesimal $S U(2)$ matrices.
(c) Explain in simple words, or by a suitable diagram, why the generators of the Poincare group fulfill the relations $\left[J_{x}, P_{x}\right]=0$ and $\left[J_{x}, P_{y}\right] \propto P_{z}$.
(d) $U(1)$ is the group of unitary 1×1-matrices where the operation is a simple multiplication.

- Show that $U(1)$ fulfills the defining properties of a group.
- Is $U(1)$ an Abelian or a non-Abelian group?
- What are infinitesimal $U(1)$ transformations?
- What are the generators and the algebra of $U(1)$?

Exercise 3 [Further properties of $S U(2)$]
In the lecture it was shown that $S U(2)$-matrices can be written as $g=\exp \left(i \alpha_{j} J_{j}\right)$ with $J_{j}=\sigma_{j} / 2$.
(a) Typically for calculations, the equivalent form

$$
\begin{equation*}
g=\cos \left(\frac{|\vec{\alpha}|}{2}\right)+i \sin \left(\frac{|\vec{\alpha}|}{2}\right) \frac{\alpha_{j}}{|\vec{\alpha}|} \sigma_{j} \tag{1}
\end{equation*}
$$

is more convenient. Show that both expressions for g are indeed equivalent.
(b) A rotation of a spinor $\psi=\left(\psi_{1}, \psi_{2}\right)$ with 2 components is described by an $S U(2)$-matrix. Explain why a 720° rotation, instead of only a 360° rotation, is needed to transform such a spinor into itself. Show that this is not the case for the expectation value of the spin $\psi^{\dagger}(\vec{\sigma} / 2) \psi$.
(c) Show that an element of $S U(2)$ can be written as $g=g_{0}+i g_{j} \sigma_{j}$, where $\left(g_{0}\right)^{2}+\sum_{j}\left(g_{j}\right)^{2}=1$. Relate g_{0} and g_{j} to the parameters α_{j} in eq. (11). What does this imply for the geometrical form of the parameter space of $S U(2)$?

