Exercise sheet 1

To be discussed on 20.04.2018 and 23.04.2018

Exercise 1 [Floating-point numbers]

Let us assume we have a (rather primitive) computer that uses 8-bit floating-point arithmetic. The first bit represents the sign, the next 4 bits the exponent with bias $b = 7$ and the last 3 bits for the mantissa (normalized representation with leading 1 before the comma). With this we have the representation of a real number x as

$$x = (-1)^s \left[1 + \sum_{n=1}^{3} m_n \cdot 2^{-n} \right] \cdot 2^{\left(\sum_{i=0}^{3} e_i \cdot 2^{3-i} \right) - b}$$

which leads to a bit string $s e_3 e_2 e_1 e_0 m_2 m_1 m_3$. Assume that non-representable numbers are rounded to the nearest representable one (as usually it happens).

(i) Which number is represented by the bit-string 10111000?

(ii) Which is the bit-string for the number -26? And for the number 0?

(iii) How many different numbers can be exactly represented in this way? Which are the smallest and the largest positive ones?

(iv) What is the result of the differences $(35 \cdot 32 - 33 \cdot 32)$ and $(37 \cdot 32 - 35 \cdot 32)$?

(v) Which number(s) have the largest absolute error? Which have the largest relative error in the interval between the smallest and the largest representable positive numbers?

(vi) Repeat the task (iii) setting $b = 3$. Which role does the bias play? What happens varying it?

(vii) How could you determine the smallest positive representable number on your computer? Try to write a simple program which prints to the screen the outcome using single and the double precision.

(viii) Do you think it is a good idea, in a program, to check for equality between two floating-point numbers using the equality operator? When is it safe and when not? Which could be an alternative?

Exercise 2 [Golden ratio and relatives]

(i) It is well known, that the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$ is the limit of the ratio of consecutive Fibonacci numbers $F(n-1)$ and $F(n)$. Write a short program to calculate

$$\delta(n) \equiv \frac{F(n)}{F(n-1)} - \phi$$

and plot $\delta(n)$ as function of n. How does the plot changes using single and double precision? What happens for large n?

(ii) Prove that, for any value of n,

$$\phi_{\pm}^{n+1} = \phi_{\pm}^{n-1} - \phi_{\pm}^{n},$$

where

$$\phi_{\pm} = \frac{-1 \pm \sqrt{5}}{2}.$$

(iii) Implement a short program to calculate the first 20 powers of ϕ_{\pm}

(a) both using the iterative formula given above

(b) and raising ϕ_{\pm} directly to the given power.

Repeat both strategies in single and double precision. Can you explain what happens?