Numerische Methoden der Physik
 SoSe 2021 - Prof. Marc Wagner
 LASSE MÜLLER: lmueller@itp.uni-frankfurt.de
 Laurin Pannullo: pannullo@itp.uni-frankfurt.de

Exercise sheet 3

To be discussed on 04.05.2021 and 05.05.2021

Exercise 1 [Pendulum motion]

$(2+2+9+2+3+2=20$ pts. $)$
Consider the so-called simple pendulum (mass m and length l), for which the only external considered force is the gravitational one, $\vec{F}=-m g \vec{e}_{z}$. The angle ϕ describes the angular displacement of the pendulum from the neutral position $\phi=0$. Suppose to have an initial displacement $\phi(t=0)=\phi_{0}$.
(i) Derive the equation of motion of the pendulum.
(ii) Solve analytically the equation of motion assuming $\phi_{0} \ll 1$.
(iii) Implement the $4^{\text {th }}$ order Runge-Kutta method discussed in the lecture, in order to solve the equation of motion obtained in task (i). How can you solve a second order ordinary differential equation with RungeKutta methods? What would you do if you had to solve a higher order ordinary differential equation?
(iv) Test your code in the small-angle regime. Set ϕ_{0} properly and compare the numerical solution to the previously calculated analytical one.
(v) Use your program to solve the equation of motion for initial conditions $\phi_{0} \in\left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}\right\}$. Calculate the motion $\phi(t)$ for at least a complete period of the pendulum. Compare again your analytical solution with the numerical one. Can you explain the discrepancy?
(vi) Set $\phi=\frac{\pi}{2}$ and think of a way to calculate the period of the pendulum. Provide an error estimate for your result.

