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Introduction

“Numerical analysis is the study of algorithms that use numerical approzimation (as op-
posed to general symbolic manipulations) for the problems of mathematical analysis (as
distinguished from discrete mathematics).” (Wiki)

“Die numerische Mathematik, auch kurz Numerik genannt, beschdftigt sich als Teilgebiet
der Mathematik mit der Konstruktion und Analyse von Algorithmen fiir kontinuierliche
mathematische Probleme. Hauptanwendung ist dabei die ndherungsweise ... Berechnung
von Liosungen mit Hilfe von Computern.” (Wiki)

Almost no modern physics without computers.
Even analytical calculations

— often require computer algebra systems (Mathematica, Maple, ...),

— are not fully analytical, but “numerically exact calculations” (e.g. mainly analytically,
at the end simple 1-dimensional numerical integrations, which can be carried out up
to arbitrary precision).

Goal of this lecture: Learn, how to use computers in an efficient and purposeful way.

Implement numerical algorithms, e.g. in C or Fortran, ...
— ... write program code specifically for your physics problems ...

— ... use floating point numbers appropriately (understand roundoff errors, why and to
what extent accuracy is limited, ...) ...

— ... quite often computations run several days, weeks or even months, i.e. decide for
most efficient algorithms ...

— ... in practice: parts of your code have to be written from scratch, other parts use
existing numerical libraries (e.g. GSL, LAPACK, ARPACK, ...), i.e. learn to use such
libraries.

Typical problems in physics, which can be solved numerically:

— Linear systems.

Eigenvalue and eigenvector problems.

Integration in 1 or more dimensions.

Differential equations.

Root finding (Nullstellensuche), optimization (finding minima or maxima).

Computer algebra systems will not be discussed in this lecture:

— E.g. Mathematica, Maple, ...
— Complement numerical calculations.
— Automated analytical calculations, e.g.

% solve standard integrals (find the antiderivative [Stammfunktion]),



x simplify lengthy expressions,
* transform coordinates (e.g. Cartesian coordinates to spherical coordinates),



2 Representation of numbers in computers, roundoff errors

2.1 Integers

e Computer memory can store 0’s and 1’s, so-called bits, b; € {0,1}.

e Integer: z = by_1...bab1by (stored in this way in computer memory, i.e. in the binary
numeral system),
N-1
z = Z b;27  (for positive integers). (1)

j:
e Typically N = 32 (sometimes also N = 8,16, 64,128)
= 0<2<2%2_1=4294967295.

e Negative integers: very similar (homework: study Wiki,
https://en.wikipedia.org/wiki/Integer_(computer_science)).

e Many arithmetic operations are exact; exceptions:

— if range is exceeded,

— division, square root, ... yields another integer obtained by rounding down (Nachkom-
mastellen abschneiden), e.g. 7/3 = 2.

2.2 Real numbers, floating point numbers

e Real numbers are approximated in computers by floating point numbers,
z = SxMx2F (2)

— Sign: S =+1.

— Mantissa:
N 1 j
M = = 3
>m(3) ®

mo = 1 (phantom bit, i.e. M = 1.777, “normalized”), m; € {0,1} for j > 1 (repre-
sentation analogous to representation of integers).

— Exponent: F is integer, e is integer constant.
e Two frequently used data types: £loat (32 bits), double (64 bits) [f]

— float:

* S: 1 bit.
x FB: 8 bits.

!float and double are C data types. In Fortran real and double precision.



x M: Ny = 23 bits.
* Range:
M=1,14¢1+2¢...,2—2¢2—¢, where e = (1/2)2 ~ 1.19 x 1077.
€ is relative precision.
e=127, E=1,...,254, i.e 2876 =27126  o+12T 1038 10138,
1073® is smallest numbers, 1073® is largest number.
— double:
x 5@ 1 bit.
x 11 bits.
M: Ny = 52 bits.
Range:

€= (1/2)%2 ~2.22 x 10716,
2F—€ ~ 107398 101308,

*

*

— Homework: Study Ref. [1], section 1.1.1. “Floating-Point Representation”.

2.3 Roundoff errors

e Due to the finite number of bits of the mantissa M, real numbers cannot be stored exactly;
they are approximated by the closest foating point numbers.

e Equation (2)):

z = SxMx2Fe (4)

i.e. relative precision € ~ 10~7 for float and e ~ 1076 for double.

2.3.1 Simple examples
e l+e=1, if‘€’<6.

e Difference of similar numbers z; and z2 (i.e. the first n decimal digits of z; and 2o are
identical, they differ in the n + 1-th digit):

Z1 — 2y = a1 105 — Q9 105 = <a1 —Oég) 10'3. (5)
~1.777 1.277 m

— When a1 — as is computed, the first n digits cancel each other
— resulting mantissa has accuracy 10~ (7= (float) or 10~(16=") (double).

— E.g. difference of two floats, which differ relatively by 1079, is accurate only up to
1 digit.



2.3.2 Another example: numerical derivative via finite difference

e Starting point: function f(z) can be evaluated, f/(z) not (e.g. expression is very long and
complicated or can only be calculated numerically).

e Common approach: approximate f’(z) numerically by finite difference, e.g.

flet+h) = fl@)+ f(2)h+ f”( )h? + O(h?) (6)
- fllx) = fla+ h})L f( ) + O(h) (asymmetric) (7)
- flx) = fle+h) th( h) +O(h?)  (symmetric). (8)

e Problems:

— If h is large
— O(h), O(h?) large.

— If h is small
— f(z+h)—f(x), f(x+h)— f(x—h) is difference of similar numbers (see section [2.3.1]).

e Optimal choice h = hqpt for asymmetric finite difference @:

— Relative error due to O(h):
fx+h) - fz)

(Sf/(l') = f/(x)_ff/initedifference(x) = f/(x)_ h =
= /@t O0)
5f'(z) _ —f"@=@h/2 =)
7w T P fla)” Y

— Relative error due to f(z + h) — f(z):

fle+h) = fz) = f()h
flx+h) =~ f(z)

| @)
—  relative loss of accuracy f(z)h
of'(x) _  fl@)
O ION a

— For h = hgpt both errors are similar:

f//( ) J \)opt -~ f(l‘)

(e.g. ~ 10? implies that 3 digits are lost)

%

f() F(@)hops
. 1/2
ot~ (i) e
of' () - f"(x)h J L) Ropt - 1/2
F@ by~ @ | -




e Optimal choice h = hgpt for symmetric finite difference : analogous analysis yields

1/3 of'(x) £2/3

hopt ~ € )

f/(CC) opt - 7 (12)

i.e. symmetric derivative superior to asymmetric derivative.
e In practice:

— Estimate errors analytically as sketched above ...

— ... and test the stability of your results with respect to numerical parameters (h in
the derivative example).

e Above estimates are confirmed by the following example program ﬂ

// derivative of sin(x) at x = 1.0 via finite differences
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *xargv)
{
int j;
[/ *xxxx

printf("h rel_err_asym rel_err_sym\n");

for(j = 1; j <= 15; j++)

{
double h = pow(10.0, -(double)j);
double df_exact = cos(1.0);
double df_asym = (sin(1.0+h) - sin(1.0)) / h;
double df_sym = (sin(1.0+h) - sin(1.0-h)) / (2.0 * h);
double rel_err_asym = fabs((df_exact - df_asym) / df_exact);
double rel_err_sym = fabs((df_exact - df_sym) / df_exact);
printf("%.1le %.3e %.3e\n", h, rel_err_asym, rel_err_sym);
}
[/ *kkkk

return EXIT_SUCCESS;
¥

2Throughout this lecture I use C.

10
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.0e-01
.0e-02
.0e-03
.0e-04
.0e-05
.0e-06
.0e-07
.0e-08
.0e-09
.0e-10
.0e-11
.0e-12
.0e-13
.0e-14
.0e-15

rel_err_asym
.947e-02
.804e-03
.789e-04
.787e-05
.787e-06
.787e-07
.742e-08
.497e-09
.724e-08
.082e-07
.163e-06
.003e-05
.358e-03
.861e-03
.741e-02
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rel_err_sym
.666e-03
.667e-05
.667e-07
.667e-09
.062e-11
.130e-11
.597e-10
.T77e-09
.497e-09
.082e-07
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163e-06

.271e-05
.309e-04
.861e-03
.741e-02
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3 Ordinary differential equations (ODEs), initial value problems

3.1 Physics motivation

3.2

Newton’s equations of motion (EOMs), N point masses m,
mjrj(t) = F](rl(t)7arN(t)vrl(t)?7rN(t)7t) ) jzla"wN? (13)
initial conditions

I‘j(t:O) = I‘j70 s I'j(t:O) = Vj70. (14)

Calculate trajectories r;(t).

Cannot be done analytically in the majority of cases, e.g. three-body problem “sun and
two planets”.

For boundary value problems see section @ (e.g. quantum mechanics [QM], Schrédinger
equation, ¥(z1) =0, ¥(z2) =0).

FEuler’s method

Preparatory step: rewrite ODEs to system of first order ODEs.

— Newton’s EOMs equivalent to

B0 = ) L %) = - (19
— Define
YO = @), rxOW0), v (10
(00 = (a0, vy, MO, ENOT0) (17)
ey(t)
— Then
§0) = (0.0 (19

(left hand side (lhs) can be evaluated in a straightforward way for given ¢ and y(t)).
— Always possible to rewrite a system of ODEs according to .

Solve by iteration, i.e. perform many small steps in time, step size 7:

y(t+71) = yO) +yO)r+0(%) = y(t)+£f(y(t),t)r +O(7?). (19)

12
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Yo @ 3y )

¥ (¢=0) - - 0
¥(2T)

e 7 can be positive (— computation of future) or negative (— computation of past).
e Problem: method inefficient, because of large discretization errors.

— O(7?) error per step.

— Time evolution from ¢ = 0 (initial conditions) to t = T'
— T/7 steps
— O((T/7)7%) = O(7) total error (very inefficient).

— Total error might be underestimated (e.g. chaotic systems are highly sensitive to
initial conditions and, thus, to the error per step).

3.3 Runge-Kutta (RK) method

e Same idea as in section but improved discretization (stronger suppression of errors
with respect to 7).

o “2nd-order RK”:

ki = f(y(t),t)r — “full Euler step” (20)

ke = £(y()+(1/2kit+(1/2)7 )7 (21)
— “half Euler step”

y(t+7) = y(t)+ko+O(T). (22)

— f(y(t) + (1/2)ky,t + (1/2)7) in (21)): estimated derivative y(t + 7/2), i.e. after half
step.
— : 2nd order RK step, i.e. full step using derivative after half step.

13
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e Proof of (22)), i.e. that error per step is O(73):

ke = f(y+(1/2frt+(1/2)7)r =

B oF 1, Of1 o 1(of . Of\ o
= fT+<8nyT+8tZT>T+O(T) = fT+2<6yy+8t>T +0(r°) =
= fr+ %fﬁj +0(73)
1 1.
yit+71) = y+y7+§y72+0(73) = y+f7+§f7'2+0(7'3) =

= y+ko+O(%)
(no arguments imply time ¢, e.g. y = y(t), f = f(y(¢),1)).
e Discretization with O(73) error per step not unique (— tutorials).
e Straightforward to derive discretizations with O(74), O(7°), ... error per step:
— “3rd-order RK”:
ky = f(y(®),0)r
ke = £(y()+kit+7)r
ke = £(y(0)+1/0) (ki ko) e+ (1/2)7)7
y(t+7) = y(0)+ g (ki + e + k) + O,
— “4th-order RK”:

ki = f(y(t),t)r
ky — f(y(t) +(1/2)k,t + (1/2)T)T

ks — f(y(t) +(1/2)ko, t + (1/2)T)T
ks = f(y(t)+k3,t+T>T

1
yit+71) = y)+ 6(k1 + 2k + 2k + k4> +O(r).

14



e Common choice is 4th-order RK.

e Even better: numerical tests with different order RKs (higher orders: larger step size 7
possible [good], larger number of arithmetic operations per step [bad)).

e Example: compute the trajectory of the 1-dimensional harmonic oszillator (HO).

Lagrangian:
_m mw?

L = 5 &= =t (35)
EOMs:

mi(t) = —mw’z(t), (36)
y(t) = f(y(t),1) (37)
with

y(t) = (.’L‘(t),?)(t)) ) f(Y(t)7t) = ('U(t),—wa(t)). (38)

Initial conditions: z(t = 0) = xg, ©(t = 0) =0, i.e. y(t = 0) = (x0,0).
w = 1.0, zg = 1.0, step size 7 = 0.1 ﬂ

Resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK are
shown in Figure [I}

Errors of the trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK
are shown in Figure

Corresponding C code: see appendix [A]

3.3.1 Estimation of errors

e Error per step for n-th order RK can be estimated in the following way:

RK step with step size 7
= y-(t+7)

— 0, ~ et
2 RK steps with step size 7/2
- Y2><7-/2(t +7)

- g?XT/Z ~ 2¢(T/2)" .

3 Assigning dimensionless numbers to dimensionful quantities, e.g. w = 1.0 or zo = 1.0, is not always rec-

ommended.

section .

Usually it is advantageous to define and exclusively use equivalent dimensionless quantities (see

15



HO: V(x) = mo®?/2, © = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, T = 0.1

HO: V(x) = mo®?/2, 0 = 1.0,

ic’s X(t=0.0) = 1.0, v(t=0.0) = 0.0, t = 0.1

25 T T T T 25 T T T T
Euler = Euler
2nd order RK  ® 2nd order RK
2r 3rdorderRK o 7 2r 3rd order RK 1
4th order RK 4th order RK
15 1 analytical solution ] 15 1 . analytical solution —— |
goeon,,
o 3
1
x 05
0
0.5
s
1.5
0

HO: V(x) = moPx®/2, = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, T = 0.1

25 T T T T
Euler =
2nd order RK =
2r 3rdorder RK = |
4th order RK
15 analytical solution 4

990 992 994 996 998 1000

Figure 1:

"_.qwzf. BC

]

.--(_ar-’ECJ' 4r—ajif{__;@rr

y (¢+T) #
y’C‘;{_—-— ———— >
)ig,,%féw*w ¥?Cé}f’)
RSl e e

L%

Tatio 14 : =

— Estimated absolute error for yo, . /o(t + 7):

P Yoxr/2(t +7) —yr(t+7)|

abs — on _q )
where |...| can be e.g. Euclidean norm, maximum norm (might be a better choice
for many degrees of freedom [dof’s]), ...

(39)

— Estimated relative error for yy,,/o(t + 7) (might be more relevant than estimated

16



HO: V(x) = mo®?/2, © = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, T = 0.1

HO: V(x) = mo®?/2, © = 1.0, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, T = 0.1

error 2nd oraer RK =

150 . T T T 0.2
error Euler =
0.15
100
0.1
R =
3 S 3
= £ 005
3 3
5 .
. 0 . 0
> >
© w©
5 g -005
2 50 Z
S ES
0.1
-100 +
-0.15
150 L L L L -0.2
0 20 40 60 80 100 0
t
HO: V(x) = moPx®/2, © = 1.0, ic’s X(t=0.0) = 1.0, v(t=0.0) = 0.0, T = 0.1
. . . : 0.0001
error 3rd order RK =
0.004 «
s !
AE :
A . 5¢-05
= 0.002 | A 4 3
3 . g
MA ] 3
.
< AN A 4 7 0
¢ VY 1%
s o 5
3 o 3
£ 0002 | LI
-5e-05
-0.004 i
: : . . -0.0001
0 20 40 60 80 100

40 60 80 100
t
HO: V(x) = mo?x®/2, @ = 1.0, ic’s X(t=0.0) = 1.0, v(t=0.0) = 0.0, T = 0.1
‘ ‘ ‘ error 4th or&er RK
. 4
20 40 60 80 100

Figure 2: HO, errors of the trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order

RK.

absolute error):

0 bs
Srel = ——, 40
ST “0)
e Estimated error allows local extrapolation:
— Correct by estimated error:
Yoxr2(t +7) —y-(t+7)
Yoxrp(t+T) = Yaerpplt+7) + e (41)

— However, no estimation of errors, when using .

3.3.2 Adaptive step size

e Small step size 7
— small errors, computation slow.

e Large step size 7
— large errors, computation fast.

17



e Compromise needed: large 7 in regions, where y(¢) is smooth, small 7 otherwise.

~—
Lz 7=
’2:4 /._.—,.7 7 ?

?//@e/

e For given maximum tolerable error dabs max OF Orel,max, €stimated error allows to estimate
corresponding step size Tiax:

Sx = Tt —  Tmax

1
5X,rnax o (Tm’au()nJr - 5X,rnax
Ox

1/(n+1)
> , X € {abs,rel}. (42)

e Use e.g. the following algorithm to adapt 7 in each RK step:

— Input:
« Initial conditions y(t = 0).
* Maximum tolerable error 0gps maz-

« Initial step size T (can be coarse).

—t=0.
(1) RK steps:
y(t) = yo(t+7) (43)
y(t) =22 Yoxrs2(t +7). (44)

— FEstimated error:
[Voxrs2(t+7) —y-(t+7)]

5abs = o _ 1 . (45)
— Change step size:
5oy 1/(n+1)
Tnew = 0.9X T(as’max) (46)
abs

(“0.9” reduces number of RK steps, which have to be repeated with smaller step size).
— Clamp Tpeyw to [0.2x7,5.0x 7] (avoid tiny/huge step size, which might cause breakdown
of algorithm,).
- If 6abs < 5abs,ma$:
— Accept your/o(t +7) (e.g. output to file).
t =t+ 7 (i.e. continue at time t + 7).
T = Tpew (i-€. continue with estimated optimal step size).

Go to (1).

18



FElse:

— T = Tpew (i-€. Teduce step size).
Go to (1) (i.e. repeat RK steps with smaller step size).

e Modifications possible, e.g. estimate error and Tyew by performing RK steps of n-th and
n + 1-th order instead of RK steps with step sizes 7 and 7/2.

e Example: 1-dimensional anharmonic oszillator.

— Lagrangian:

m .,
L = —i?

5 &~ maz”™ , n€{2,20}. (47)

— EOMs:
mi(t) = —man(z(t))" L, (48)

y(t) = (@(),0@t) . fy@).t) = (v(t),—an(x(®)"). (50)

Initial conditions: z(t = 0) = zg, #(t =0) =0, i.e. y(t = 0) = (x0,0).

a = 05,10 for n = 2,20, g = 1.0, maximum tolerable error fapsmax = 0.001,
initial step size 7 = 1.0.

— Resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK are
shown in Figure 3| (for n = 2) and Figure 4] (for n = 20).

— Corresponding C code: see appendix

19



HO: V(x) = mox?, a = 0.5, ic’s x(t=0.0) = 1.0, v(

1=0.0) = 0.0, 8 max = 0-001, Tiigt = 1.0
‘

2 T T T
Euler =
analytical solution
15 q
1 4
05 4
x
0
T \\/
T ‘..\-/
15 . . . .
0 2 4 6 8 10
t
HO: V(x) = max?, o = 0.5, ic’s x(t=0.0) = 1.0, v(t=0.0) = 0.0, Sabs,max = 0-001, Tipnjjig = 1.0
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Figure 3: Harmonic oscillator, V(z)

= max?,

0.5

-0.5

0.5

-0.5
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HO: V(x) = mao®, o = 0.5, ic’s X(t=0.0) = 1.0, v(t=0.0) = 0.0, 83pg max = 0.001, Tiyjjjy = 1.0

T
4th order RK
analytical solution

resulting trajectories for Euler, 2nd-order RK,

3rd-order RK and 4th-order RK using adaptive step size.
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AHO: V(x) = mox®, o = 1.0, ic’s x(t=0.0) = 0.0, v(t=0.0) = 0.0, B¢ rmay = 0.001, Ty = 1.0
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Figure 4: Anharmonic oscillator, V(z) = max
3rd-order RK and 4th-order RK using adaptive step size.
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4 Dimensionful quantities on a computer

4.1

4.2

e Computers work with dimensionless numbers ...

e ... but the majority of quantities in physics is dimensionful (e.g. lengths, time differences,
energies) ...7

Method 1: define units for your computation

e Define units for your computation, e.g. all lengths are measured in meters, i.e. a length
3.77 in computer memory corresponds to 3.77 m.

All lengths have to be measured in meters, otherwise results are nonsense.

Choose units appropriately (very small and very large numbers should be avoided,
e.g. use fm in particle physics and ly in cosmology).

e Advantage: easy to understand.

Method 2: use exclusively dimensionless quantities

e Reformulate the problem using exclusively dimensionless quantities.

e Example: compute the trajectory of the 1-dimensional harmonic oszillator (same example

as in section .

Lagrangian:
2
m mw
L = —i?——22 1
5 5 % (51)
EOMs:
mi(t) = —mw?z(t) — i) = —wa(t), (52)

i.e. m irrelevant.

Measure time in units of 1/w:
d2

) = (). (53)

Moreover, initial conditions introduce length scale, e.g. z(t = 0) = xg, &(t =0) =
— measure z in units of zg:
x d?

& o= = ﬁg:«(f) = —2(0). (54)

t = wt —

Now only dimensionless quantities in (54)), i.e. straightforward to treat numerically.

Figure [5| showing trajectory #(f) is analog of Figure |1| (left top).

e Advantage: a single computation for different parameter sets (above example: trajectory
#(t) shown in Figure || valid for arbitrary m, w and ).
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HO: V(x) = mox?/2, ic's x(t=0.0)/xy = 1.0, v(t=0.0) = 0.0, &t = 0.1
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Euler =
2nd order RK  »
2r 3rdorder RK = |
4th order RK
15 analytical solution 4
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Figure 5: HO, resulting trajectories for Euler, 2nd-order RK, 3rd-order RK and 4th-order RK
(same data as in Figure [1| [left top], but coordinate axes correspond to dimensionless quantities
t =wt and & = z/x0).
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5 Root finding, solving systems of non-linear equations

5.1

5.2

Physics motivation

e N non-linear equations with N unknowns,

fj(l‘l,...,x]\/’) = 0 5 j:]_,...,N (55)
or equivalently written in a more compact way

f(x) = 0. (56)

Find solutions x of (56), i.e. find roots of f(x).
Standard problem in physics, e.g. needed to solve the Schrodinger equation (see section @

For systems of linear equations see section

Bisection (only for N =1)

Starting point: x1, zo fulfilling f(z1) < 0 and f(z2) > 0 (e.g. plot f(x), then read off
appropriate values for z; and z3).

Bisection always finds a root of f(z), somewhere between z; and zs.

Algorithm:
(1) T = (x1+ x2)/2.
~ If f(@1) (@) <0
— X9 =T.
Else:
— 1 =T1T.

— If |z1 — x2| sufficiently small:

— X1 & T2 1S approximate root.
End of algorithm.

Flse:
— Go to (1).

e Convergence:

— Error of approximate root ¢ defined via f(x1 +d) = 0.

— After n iterations
|21 — 29

b < g (57)
i.e. error decreases exponentially (after 3 to 4 iterations 1 decimal digit more accu-
rate).
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— Op+1 = 0,/2 is called linear convergence (6,41 linear in d,).
e Advantages and disadvantages:

(+) Always finds a root.

(—) Linear convergence rather slow (evaluating f(z) might be expensive, can take weeks
on HPC systems, when performing e.g. lattice QCD simulations).

5.3 Secant method (only for N =1)

e Starting point: z1, zo fulfilling |f(z2)| < |f(z1)|-
e Secant method might find a root of f(x), not necessarily between 1 and xs.
e Basic principle:

— Iteration.

— Each step as sketched below.

(%) | = - e
e 2 ) /5?
5 /I secant
{ I
S I S
! o N/ K Ru-q
o e i
| AR = Ko i = g s \KM—X:_;‘-
o el
=l | {(x,.)- f(x‘,‘_,}
S
e Algorithm:
-n=2
(1)
Ax = —f(zn) Tn — In-l Tpni1 = xn+ Az (58)

— If |Az| sufficiently small:

— Tpy1 1S approximate root.
End of algorithm.

FElse:

— n=n-+1.
Go to (1).
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e Convergence: 0,41 =~ ¢(dyp) can be shown), i.e. better than linear convergence, better

than bisection.
e Advantages and disadvantages:

(+) Converges faster than bisection.

(—) Does not always find a root.

5.4 Newton-Raphson method (for N = 1)
e Starting point: arbitrary xj.
e Newton-Raphson method might find a root of f(x).
e Basic principle:

— Similar to secant method (see section |5.3]).

— Use derivative f’(z,) instead of secant
— f" has to be known analytically/cheap to evaluate numerically.

— Each step as sketched below.
ad

Ax-.x.d_d‘:}/ | - 4% L
/OSSR L0 - A£0x)

e Algorithm:
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1
m ) Tn+l
— If |Ax| sufficiently small:

— Tp41 1S approzimate Toot.
End of algorithm.

Else:

— n=n+1.
Go to (1).

Ax = —f(zp) Ty + Az, (59)

e Convergence: 6,11 ~ (f"(2n)/2f'(2,))(0n)? (can be shown), i.e. quadratic convergence,
i.e. even better than secant method.

e Advantages and disadvantages:

(4+) Converges faster than bisection and secant method.
(—) Does not always find a root.

(—) f' has to be known analytically/cheap to evaluate numerically.

5.5 Newton-Raphson method (for N > 1)

e For N > 1 root finding is extremely difficult.

- N=2:
fi(z1,22) =0, fa(wy,22) = 0.
One has to find intersections of isolines fi(z1,22) = 0 and fo(x1,z2) = 0.

T
- N> 2
One has to find intersections of N — 1-dimensional isosurfaces fj(z1i,...,zn) = 0,
j=1,...,N.

e Method very successful, if one has a crude estimate of a root (e.g. from a plot, or an
approximate analytical calculation).
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e Starting point: x; (should be close to a root).
e Basic principle:

- of;
0 = featd) = G+ DO 0@ o 60)
k X=Xn
Jjk(x)

(Jjr(x): Jacobian matrix) or equivalently

0 = f£(x)+ J(x,)0 +O(6?). (61)
— Neglect O(62):

0 = f(x,)+ J(x,)Ax (62)

or equivalently
-1
Ax = —(J(xn)> f(xp) (63)

(Ax =~ g, i.e. approximate difference between root and x,,).

— (62)) is system of linear equations (solve analytically for N = 2,3 or numerically as
discussed in section @
— N=1: J(z,) = f'(zy) and becomes
1
Ar = ——f(z,), 64
which is identical to , left equation, i.e. the N > 1 Newton-Raphson method is a
generalization of the the N = 1 Newton-Raphson method discussed in section

e Algorithm:

Ax = —(J(xn))ilf(xn) , Xpi1l = X, + Ax. (65)

— If |Ax| sufficiently small:

— Xnp+1 48 approximate root.
End of algorithm.

Else:

— n=n+1.
Go to (1).
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6 Ordinary differential equations, boundary value problems

6.1 Physics motivation
e Newton’s EOMs, N point masses m;,
m;i;(t) = Fj(ri(t),...,rn(t),01(t),...,en(8),t) , j=1,...,N,
boundary conditions
rj(t)) = 1o, ri(t) = T
(“Compute trajectory of a particle, which is at r; at time ¢; and at ro at time ¢2.”).
e QM, Schrodinger equation in 1 dimension,

hQ
—o V(@) +V@)(r) = Bu),

boundary conditions
Y(z1) = Plz2) = 0

(i.e. “V(z) =00 at © = x1, 22", e.g. infinite potential well).

— Example appropriate? F is unknown, i.e. and is rather an eigenvalue prob-

lem, not an ordinary boundary value problem ...7
— Yes, can be reformulated:

« Consider E as a function of z, i.e. E = E(x).
* Add another ODE: E'(x) = 0.
— System of ODEs,

B @) VaE = Eee) . B = o
where each solution fulfills F(z) = const.
6.2 Shooting method
e Preparatory step as in section rewrite ODEs to system of first order ODEs,
Y(@) = fy(@)2)
(both y and f have N components) and boundary conditions

, 7J=1....n<N

9i(y(z1)) =
= , j=1,...,N—n.

0
0
e Basic principle:

29

(70)



— Choose/guess initial conditions y(x1) such that
* boundary conditions g;(y(z1)) =0, j=1,...,n < N are fulfilled,

* boundary conditions h;(y(x2)) =0, j =1,..., N — n are approximately fulfilled
(y(z2) can be computed using e.g. a RK method from section [3.3)).

— Use root finding methods from section (e.g. Newton-Raphson method) to iteratively
improve initial conditions y(z1), i.e. such that h;(y(x2)) = 0.

e Example: mechanics, mi(t) = F(x(t)) with z(t1) = a, x(t2) = b.
— y(t) = (z(t),v(t)), £(y(t),t) = (v(t), F(z(t))/m) (as in section [3.2).

gy (t)) = 2(tr) — a = 0, hly(t2)) = x(t2) — b= 0.
Choose initial conditions y(t1) = (a, A).

% a in 1st component — g(y(¢1)) = 0 fulfilled.
* A in 2nd component should lead to h(y(t2)) =~ 0.

— RK computation of y(t) from ¢ = t; to t = ta.

/ E'GJ s w COMCL {"I‘C‘ﬂ
,&(;gaz =x(4;)-6=0

—— —— b

— Improve initial conditions, i.e. tune A, using the Newton-Raphson method (see sec-
tion :
« Interpret h(y(t2)) = x(t2) —b as function of A (z(t2) depends on initial conditions
y(t1), i.e. on A).
« Compute derivative dh(y(t2))/d\ (needed by the Newton-Raphson method) nu-
merically (see section .
* Newton-Raphson step to improve A:
N oo o My(t2)
dh(y(t2))/dA
— Repeat RK computation and Newton-Raphson step, until h(y(t2)) = 0 (numerically
0, e.g. up to 6 digits).

(74)

6.2.1 Example: QM, 1 dimension, infinite potential well

e Infinite potential well:

0 ifo<z<L
oo otherwise ’

Viz) = {
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Schrodinger equation and boundary conditions:

2
_fﬂw@)z Ey(x) , ¢@=0) = ¢@=L) = 0 (76)

2m

Reformulate equations using exclusively dimensionless quantities:

x
po= = 7
2= 2 (77)
d
= L— 78
7@ v (78)
2 2mEL?
5 g = P ) (79)
——
)
(E is “dimensionless energy”), i.e.
d? ~
L@ = Be@) . w@=0) = wE=1) = 0 (50)
Analytical solution (to check numerical results):
Y(#@) = V2sin(nrd) , E = % |, n=12,... (81)

Numerical solution:

— Rewrite Schrodinger equation to system of first order ODEs:
V(@) = @) , @) = -E@wE) . E@) = o (82)
(" denotes d/dz) i.e.

y@) = (V@.0@).E@) . fy@)n) = (#@),-E@v@.0).  (83)

— Initial conditions for RK/shooting method:
(i =0.0) = 0.0
(boundary condition at & = 0),
x ¢(& =0.0) = 1.0
(must be # 0, apart from that arbitrary; different choices result in differently
normalized wavefunctions),

x BE(#=00)=¢&
(will be tuned by Newton-Raphson method such that boundary condition
(& =1) =0 is fulfilled).
— C code: see appendix [C]
— Crude “graphical determination” of energy eigenvalues (necessary to choose appro-
priate initial condition for the shooting method):

x Figure |§| shows 9(Z = 1.0) as a function of £ computed with 4th order RK; roots
indicate energy eigenvalues,
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potential well: graphical determination of energy eigenvalues

0.8 [ B

06 ]

1.0)

Wi

02+ — 4

Figure 6: Infinite potential well, crude graphical determination of energy eigenvalues.

x There are 3 eigenvalues in the range 0.0 < E < 100.0:
Ey =~ 10.0, E1 =~ 40.0, E> =~ 90.0.

— Shooting method with £ € {10.0,40.0,90.0}.

* Figure[7| (top) illustrates the first Newton-Raphson step for the second excitation
(4th order RK).

« Figure [7| (bottom) shows the resulting wave functions of the three lowest states
(4th order RK).

« Convergence after three Newton-Raphson steps (7 digits of accuracy); see pro-
gram output below.

ground state:
E_num = +10.000000 .

E_num = +9.868296 , E_ana = +9.869604 , \psi(x=1) = -0.006541 .
E_num = +9.869604 , E_ana = +9.869604 , \psi(x=1) = +0.000066 .
E_num = +9.869604 , E_ana = +9.869604 , \psi(x=1) = +0.000000 .

1st excitation:
E_num = +40.000000 .

E_num = +39.472958 , E_ana = +39.478418 , \psi(x=1) = +0.006539 .
E_num = +39.478417 , E_ana = +39.478418 , \psi(x=1) = -0.000069 .
E_num = +39.478418 , E_ana = +39.478418 , \psi(x=1) = -0.000000 .

2nd excitation:

E_num = +90.000000 .

E_num = +88.813303 , E_ana = +88.826440 , \psi(x=1) = -0.006537 .
E_num = +88.826438 , E_ana = +88.826440 , \psi(x=1) = +0.000074 .
E_num = +88.826440 , E_ana = +88.826440 , \psi(x=1) = +0.000000 .
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potential well: RK/shooting method for the 2nd excitation potential well: RK/shooting method for the 2nd excitation

T T T T 0.05 T T T T
0.15 before 1st Newton-Raphson step b before 1st Newton-Raphson step
after 1st Newton-Raphson step after 1st Newton-Raphson step
0.04 1
0.1 | 4
/
/ 0.03 | g
005 / B
> = 0.02 - 1
ol
0.01 1
-0.05 4
0
0.1 4
L L -0.01
0 0.2 0.4 0.6 0.8 1 0.95 0.96 0.97 0.98 0.99 1
X X

potential well: wave functions of the lowest states (not normalized)

0.4 . . ‘ ‘
ground state
1st excitation
03 2nd excitation

02 r |

> 01 |

0
-0.1 |
0.2 . . . .
0 0.2 0.4 0.6 0.8 1

Figure 7: Infinite potential well. (top) First Newton-Raphson step for the second excitation.
(bottom) Wave functions of the three lowest states.

6.2.2 Example: QM, 1 dimension, harmonic oscillator
e Schrodinger equation and boundary conditions:

h? mw?
S @)+ () = Bor) L de=-) = Yle=+oc) = 0 (84)

(numerical challenge are boundary conditions at = 00).
e Reformulate equations using exclusively dimensionless quantities:

— Length scale from A, m, w:

[A] = kgm?/s
[m] = ke
w] =1/s

— length scale a = (h/mw)/? .

SIS
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5 2 - Gl
di  dx
d2
— —@1/1(33)

e Parity:

— Parity P: spatial reflection, i.e. PzP = —x, Piy(+z) = ¢¥(—x).

— Eigenvalues and eigenfunctions of P:

Pi(x) = Mp(z)  — @w(m):ﬁ/}(m) - M =1 = X = =+l

« Common notation: P = % (instead of A = +).

=1

(89)

x P = +: PyY(z) = ¢¥(—x) and PyY(z) = +¢(x) — (z) = +¢(—x), i.e. even

eigenfunction.

* P = —:

eigenfunction.

Py(z) = ¢(—z) and PY(z) = —¢(z) = ¢¥(z) = —¢(—x), i.e. odd

— [H,P] =0, if V(+z) = V(—=z), i.e. for symmetric potentials.

— Eigenfunctions ¢ (z) of H can be chosen such that they are also eigenfunctions

of P.
— P=+
= p(x)
- P=-
- Y()

+i(—2)

—(—x)

~ W(e=0)

— Pz =0)

0. (90)

0. (91)

e Numerical problems with boundary conditions (& = —o0) = (& = +o0) = 0 (eq. (88)).

e Numerical solution, first attempt:

— Use either ¢/(# = 0) = 0 or 1(& = 0) = 0 ((90) or (91)) instead of 1(& = —o0) = 0.
— Use ¥(Z = L/a) = 0, where x = L is far in the classically forbidden region
(E < V(L)), i.e. where 1) is exponentially suppressed.
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— Rewrite Schrodinger equation to system of first order ODEs:

V@) = o) . d@) = (#F-B@)e@ , B@) = o (92)

y@) = (v(@).0@),E@) . fy@).2) = (#@) (4% B@)(@).0). 93)

— Initial conditions for P = + for RK/shooting method:
x (2 =0.0) =10
(must be # 0, apart from that arbitrary; different choices result in differently
normalized wavefunctions),
x (2 =0.0)=0.0
(boundary condition at & = 0),
x B(z=00)=¢&
(will be tuned by Newton-Raphson method such that boundary condition
(& = L/a) = 0 is fulfilled; has to be close to the energy eigenvalue one is
interested in [e.g. ground state: F = hw/2, ie. E = 1, i.e. choose £ ~ 1];
typically & is the result of a crude graphical determination of energy eigenvalues
[see section [6.2.1]).
(For P = — use ¢(2 = 0.0) = 0.0, ¢(z = 0.0) = 1.0.)
— Boundary condition ¢(# = L/a) = 0 numerically hard to implement; a tiny admixture

of the exponentially increasing solution will dominate for large Z, as shown in Figure
(4th order RK).

e Numerical solution, more practical approach:
— Use “... a tiny admizture of the exponentially increasing solution will dominate for

large & ...” to your advantage:
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HO: bc w(x>>1) = 0 numerically hard to implement

: :
E=1-10° =
E=1+10°

Figure 8: HO, numerical problems with boundary condition ¢(z = L/a) = 0.

x Start far in the classically forbidden region using arbitrary initial conditions, e.g.
(& =1L/a)=1.0, ¢(& = L/a) =0.0, E(& = L/a) =&
or
(& = L/a) = 0.0, $(& = L/a) = 1.0, E(& = L/a) = £

or

x Tune & via the RK/shooting method such that ¢/'(z = 0) = 0 for P = + (or
(@ =0)=0for P=—).

— From Figure |§| (top) one can read off rough estimates for the energy eigenvalues,

which can be used to intialize £ (4th order RK).

— Figure [9 (bottom) shows the resulting wave functions of the four lowest states (4th

order RK).

— For initial values £ € {0.9,2.9,4.9,6.9} convergence after three Newton-Raphson

steps (7 digits of accuracy); see program output below.

ground state:

E_num
E_num
E_num
E_num

+0.900000 .
+0.988598.
+0.999834.
+1.000000.

1st excitation:

E_num
E_num
E_num
E_num

+2.900000 .
+2.988617.
+2.999835.
+3.000000.

2nd excitation:

E_num
E_num
E_num

+4.900000 .
+4.990699.
+4.999911.
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HO: graphical determination of energy eigenvalues HO: graphical determination of energy eigenvalues

1.264+22 T T T T — T T T -
V(x=0) + log(ly'(x=0)|+1) ~ +
1e+22 y(x=0) + 4 50 log(lw(x=0)|+1)  + A
8e+21 | ,
T ees2 [ { g%
G G
S de+21 | 1 s
£ £ 30
2 26421 i
8 8
> >
& 0 5
< £ 1
3 2es21 1 3
-de+21 | B 10l |
-6e+21 ,
86421 . . . . . 0 . . . . .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
E E

HO: wave functions of the lowest states (not normalized)

T
1 ground state e 1

1st excitation s

2nd excitation s

3rd excitation s
05 1

> 0
-05 B
b 4
. . . .

0 1 2 3 4 5

Figure 9: HO. (top) Crude graphical determination of energy eigenvalues. (bottom) Wave
functions of the four lowest states.

E_num = +5.000000.

3rd excitation:

E_num = +6.900000
E_num = +6.990720.
E_num = +6.999911.
E_num = +7.000000.

6.2.3 Example: QM, 3 dimensions, spherically symmetric potential
e Spherically symmetric potential: V(r) = V(r), where r = |r|.
e Rewrite Schrodinger equation in spherical coordinates ...

e ... angular dependence of wavefunctions proportional to spherical harmonics, i.e.
Y(r, 9, ¢) < Yim (¥, ¢) ..

e ... remaining radial equation is second order ODE in r, which can be solved using
RK/shooting.
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e For details see e.g. Ref. [2].

6.3 Relaxation methods

o see e.g. Ref. [I], section 18.0.
e Discretize time, guess solution ...

e ... then iteratively improve the solution, until the ODE is fulfilled.

e ————

crode  approxivation
of +Le solubon

SOl
)

. D

+(qur €
~J
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7 Solving systems of linear equations

7.1 Problem definition, general remarks

7.2

A: N x N matrix, i.e. a square matrix, with det(A) # 0 (rows and columns are linearly
independent).

bj, 7=0,...,M — 1: vectors with N components.
Typical problems:

— Solve Ax; = b; (possibly for several vectors bj).

— Compute A™1.
Do not compute A~! and solve Ax; = b; via x; = A~'b; ... roundoff errors
are typically large.

— Compute det(A).
Two types of methods:

— Direct methods:

* Solution/result after a finite fixed number of arithmetic operations.
x For large IV roundoff errors are typically large.

— Iterative methods:
« Iterative improvement of approximate solution/result.
* No problems with roundoff errors.
*x Computationally expensive; therefore, only suited for sparse matrices (“dinn
besetzte Matrizen”).

How large can N be?

— Dense matrices (“dicht besetzte Matrizen”): N Z O(1000).
— Sparse matrices: N 2 O(10°).

It might be a good idea to check your result, e.g. by computing Ax; and comparing to b;,
e.g. to exclude large roundoff errors.

Gauss-Jordan elimination (a direct method)
Goal: solve Ax; = b;.
Problem “compute A" included: choose b; = e;, then A7 = (x1x2 ... xn).

Basic idea: add/subtract multiples of the linear equations, until solution x; is obvious.

Notation
app ao1 aop2 ---|boo ... bom-1
aip aiy a2 ... |bio ... bim—1
AX] = bj — (94)

aso a1 ago ... |bag ... boar1

39



e Step 1: elimination of column 0,

(1) Qo k
o) = . k=0,...,N—1 95
G - )
bo
p) = 22 k=0,...,M-1 96
0,k CL070 ; ; ) ( )
al) = a;; - ajoal’) j=1,....N-1 , k=0,...,.N—1 97
ajp = ik —ajodyr 5 J=1,..., . k=0,..., (97)
b = b —ajobl) . j=1,...,N-1 , k=0,...,M~1 (98)
(assumption: ago # 0), then aélg) 1 and a( ) = =0,7=1,...,N—1,1ie
1 1 1 1
Ll ag e e
I R @)
1 1 1 i
0 Ay Qg9 bz,o b2,M—1
e Stepn (n=2,...,N): elimination of column n — 1
. !
U1k = ) , k=n-1 N -1 (100)
n—1,n—1
o by
bl = g s k=0e Ml (101)
n—1n—1
dn = G —dn el L j#n-1  k=n-1,.. N-1 (102)
n n—1) n—1);(n) .
o) = bV Gl -1 k=0, M 1 (103)
(assumption: ann 117)1 1 # 0), then agl )1 no1=1land a( n) 1 =0,7#n—1,1ie. columnn—1
contains 0 ... 010 ... 0.
° to are contained in (100)) to (103)), when defining a(lz = ajk, b;olz bj k-
o After step N:
N N
100 bé]’\(;; bé,ﬂ%l
010 bi o by ar—1 (N)
9 ; — 1x; = b (104)
00 1 b{Y) b, j j

i.e. “b columns” are solutions x;.
e Advantages and disadvantages:

(—) Rather slow to solve Ax; = b;.

(—) All vectors b; have to be treated at the same time, otherwise even more inefficient.

(+) Quite o.k. to compute A1
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7.2.1 Pivoting
e Problems, when using the Gauss-Jordan elimination as presented above:

— Assumption a\™ # 0 might not be fulfilled.

n— 1 n 1
— Large roundoff errors, if a( -b 0.
g ) n—1,n—1 ~

e Solution: reorder linear equations, i.e. rows of A and bj, in a numerically advantageous
way.

e Partial pivoting;:

— Before step n swap row n — 1 and row j, where n — 1 < j < N — 1 and
-1 1
jag il = maxaf ). (105)
— agl” 11n 1 # 0, because det(A) # 0 (see section .

— Significantly smaller roundoff errors.
e Scaled partial pivoting:

— Problem with partial pivoting:

* E.g., if apo = |a(()?())] is small, then partial pivoting will swap line 0 with another
line before step 1.

* However, if you multiply line 0 with a huge number, before using the Gauss-
Jordan elimination method, you solve an equivalent system of linear equations,
which has the same solution; ag g = |a((]?3| is now large and pivoting will not swap
line 0 with another line before step 1; roundoff errors might then be rather large.

— Before step n swap row n — 1 and row j, wheren — 1 < j < N — 1 and

‘a(n—l)’ ‘a n— 1)
_mmll  ax A (106)
0
max; |a§.’l)| k' max; |ak7l |

(“the n — 1-th element in line j is large compared to the other elements in the line”).

e There are even better pivoting strategies, e.g. full pivoting, where also columns are
swapped.

7.3 Gauss elimination with backward substitution (a direct method)

e Similar to Gauss-Jordan elimination:

— Stepn (n=1,...,N —1):
* Proceed as defined for Gauss-Jordan elimination (section [7.
(n—1)

. but modify only rows below row n — 1, i.e. generate 0’s below a,,_ ,,_;, but
not above.
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0 0 0 0 0

O e T
2 2 2

0 0 s b2,0 b2,M—1

— Then backward substitution, i.e. computation of x,,:

* Start with

pV-1)
N-1,n
T
aN_1,N-1
* Then
(N-2) (N-2)
B be2,n — ANy 9 N_1TN-1n
IN-—2n = (N—2) .

ON_2 N-2
x Le. performN Stepsj—N— 1L,N—-2,...,0,

o Zk =j+1 kakrn
S ) '
J5J

e Advantages and disadvantages:

(—) All vectors b; have to be treated at the same time, otherwise inefficient.

(107)

(108)

(109)

(110)

(+) For a small number of vectors by, i.e. for M < N, Gauss elimination with backward

substitution is ~ 1.5x faster than Gauss-Jordan elimination.

e Numerical experiment:

— Random matrices and vectors, N € {4,100}, elements a;; and b; chosen uniformly

n [—1,+1].

— Gauss elimination with backward substitution using different pivoting strategies.

— Corresponding C code: see appendix [D]

no

+0.
-0.
-0.
+0.

+0.
+0.
+0.
+0.

+0.
+0.

4

pivoting:

68 -0.21 +0.57 +0.60 | +0.82
60 -0.33 +0.54 -0.44 | +0.11
05 +0.26 -0.27 +0.03 | +0.90
83 +0.27 +0.43 -0.72 | +0.21
68 -0.21 +0.57 +0.60 | +0.82
00 -0.52 +1.04 +0.09 | +0.84
00 +0.24 -0.23 +0.07 | +0.96
00 +0.53 -0.26 -1.45 | -0.79
68 -0.21 +0.57 +0.60 | +0.82
00 -0.52 +1.04 +0.09 | +0.84
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+0.00 +0.00 +0.26 +0.11 | +1.35

+0.00 +0.00 +0.81 -1.36 | +0.07
+0.68 -0.21 +0.57 +0.60 | +0.82
+0.00 -0.52 +1.04 +0.09 | +0.84
+0.00 +0.00 +0.26 +0.11 | +1.35
+0.00 +0.00 +0.00 -1.69 | -4.19

x = ( -2.22 +7.31 +4.24 +2.47 ).

b_check = ( +0.82 +0.11 +0.90 +0.21 ).

b_check - b = ( -2.2e-16 +1.5e-16 -1.le-16 -1.7e-15 ).
|b_check - b| = +1.74535e-15.

partial pivoting:

+0.68 -0.21 +0.57 +0.60 | +0.82
-0.60 -0.33 +0.54 -0.44 | +0.11
-0.05 +0.26 -0.27 +0.03 | +0.90
+0.83 +0.27 +0.43 -0.72 | +0.21
+0.83 +0.27 +0.43 -0.72 +0.21
+0.00 -0.13 +0.85 -0.97 +0.26

|

|
+0.00 +0.27 -0.25 -0.01 | +0.92
+0.00 -0.43 +0.21 +1.18 | +0.65

+0.83 +0.27 +0.43 -0.72 | +0.21
+0.00 -0.43 +0.21 +1.18 | +0.65
|
|

+0.00 +0.00 -0.11 +0.73 +1.32
+0.00 +0.00 +0.79 -1.33 +0.07
+0.83 +0.27 +0.43 -0.72 | +0.21
+0.00 -0.43 +0.21 +1.18 | +0.65
+0.00 +0.00 +0.79 -1.33 | +0.07
+0.00 +0.00 +0.00 +0.54 | +1.33

x = ( -2.22 +7.31 +4.24 +2.47 ).

b_check = ( +0.82 +0.11 +0.90 +0.21 ).

b_check - b = ( -1.1e-16 -3.6e-16 -3.3e-16 +1.1e-16 ).
|b_check - b| = +5.15537e-16.

scaled partial pivoting:

+0.68 -0.21 +0.57 +0.60 | +0.82
-0.60 -0.33 +0.54 -0.44 | +0.11
-0.05 +0.26 -0.27 +0.03 | +0.90
+0.83 +0.27 +0.43 -0.72 | +0.21

43



+0.68 -0.21 +0.57 +0.60
+0.00 -0.52 +1.04 +0.09
+0.00 +0.24 -0.23 +0.07
+0.00 +0.53 -0.26 -1.45

+0.68 -0.21 +0.57 +0.60
+0.00 +0.24 -0.23 +0.07
+0.00 +0.00 +0.55 +0.23
+0.00 +0.00 +0.25 -1.59

+0.68 -0.21 +0.57 +0.60
+0.00 +0.24 -0.23 +0.07
+0.00 +0.00 +0.55 +0.23
+0.00 +0.00 +0.00 -1.69

+0.
+0.
+0.
-0.

+0.
+0.
+2.
-2.

+0.
+0.
+2.
-4.

82
84
96
79

82
96
88
88

82
96
88
19

x = ( -2.22 +7.31 +4.24 +2.47 ).

b_check = ( +0.82 +0.11 +0.90

b_check - b = ( -2.2e-16 -6.9e-17 +1.1le-16

|b_check - b| = +1.52081e-15.

no pivoting:

|b_check - b| = +2.25693e-11.

partial pivoting:

|b_check - b| = +1.46047e-12.

scaled partial pivoting:

|b_check - b| = +3.28886e-13.

+0.21 ).

-1.5e-15 ).

7.4 LU decomposition (a direct method)

e LU decomposition of A:

A = LU
1 0
1.0 1
L = Q20 Q21

a3o0 31

0

0

1
a3 2

— o O O
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— L: lower triangular matrix.

— U: upper triangular matrix.

(113)

— Allows efficient computation of the solution of Ax = b as well as of det(A) (see

section and section [7.4.3]).

7.4.1 Crout’s algorithm

e To compute the LU decomposition of A, one has to solve N? equations,

N-1
ajr = > B
1=0

with respect to o, and 3; .
e Solving these equations is trivial, when treating them in a particular order:

— For k=0,1,...,N — 1, i.e. for all columns:

x Step 1:
j—1
Bj,k: = LLjJ{ — Z ()4]'7[33[’]{ 5 ] == 0, 1, ey k.
=0
* Step 2:
1 k—1
L = B(aj’kzaﬂgl*k) , j:k—}—l,k—{—Z,...,N—l.
kk 1=0
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e Pivoting as important as for Gauss-Jordan elimination and for Gauss elimination with

backward substitution.

— Proceed as discused in section|7.2.1} e.g. use partial pivoting or scaled partial pivoting.

— For j = k in (115)) use “optimal row”, i.e. swap row k with one of the rows k+ 1,k +
2,..., N —1 (the resulting LU decomposition corresponds to a “row-permuted matrix

A??)‘

— “Optimal” depends on the pivoting strategy, e.g. for partial pivoting the optimal row

has the largest 3y .

— Optimal row can be determined rather efficiently, because expressions marked in red

in (115)) and (116)) are identical for j > k
— first compute all “red expressions”
— then exchange rows according to pivoting strategy.

7.4.2 Computation of the solution of Ax =b

e Proceed in two steps:

(1) Compute y, defined by

Ax = LUx = b,
~~—
=y

via forward substitution,

j—1
Y = bj_za]}kyk , J=0,1,...,N—1,
k=0
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i.e. solve Ly = b (note that, when pivoting has been used in the computation of
the LU decomposition, the components of b have to be reordered accordingly, i.e.
one has to keep track of and store the permutation of rows, while computing the LU
decomposition).
Compute x via backward substitution (as in section |7.3)),

N-1

Yj = D k—jr1 i kT .
z; = Z’“ﬁj“ e ., j=N-1,N-2,...,0, (119)
9,3

i.e. solve Ux =y.

e Advantages and disadvantages:

(+)
(+)

(+)

LU decomposition independent of vectors bj, i.e. corresponding solutions x; do not
have to be computed at the same time.

Not slower than Gauss-Jordan elimination and Gauss elimination with backward
substitution for Ax; = b; as well as for AL

Allows computation of det(A) (see section [7.4.3))

7.4.3 Computation of det(A)

N-1
det(A) = det(LU) = det(L)det(U) = ][] 8- (120)
§=0

——
=1

e Pivoting can change the sign of det(A):

N-1

det(A) _ (_1>sign(row permutation) H /Bj,j- (121)

Jj=0

7.5 (R decomposition (a direct method)

e Due to limited time not discussed.

7.6 Iterative refinement of the solution of Ax = b (for direct methods)

e Numerically obtained x (e.g. via LU decompos}tion) is only approximate solution of
Ax = b, because of roundoff errors, i.e. Ax =b # b

e Refine x as follows:

A(x+5x) — b — Abx = b- A

= ob, (122)

»

~~
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7.7

i.e. solve
Adx = {b; (123)

refined solution is x + §x.
Several iterations possible.
Highly recommended:

— Computationally inexpensive, when using the LU decomposition

— Might improve accuracy significantly.

Conjugate gradient method (an iterative method)

Problem: storing N x N matrices for N > 10000 typically exceeds memory limit.
— E.g. a real 10000 x 10000 matrix requires (10000)? x 8 ~ 1 GB.

Sparse matrices of that size can be stored easily (only elements # 0 need to be stored).
— E.g. a real tridiagonal 10000 x 10000 matrix requires 3 x 10000 x 8 < 1 MB.

Applying direct methods to large sparse matrices still not practicable, because direct
methods “transform sparse matrices into dense matrices”.

Iterative methods do not transform A, i.e. only use the original A.
— Iterative methods particularly suited to solve Ax = b, when A is a large sparse matrix.

7.7.1 Symmetric positive definite A

e Goal: solve Ax = b (a single vector b, no computation of A1 or det(A)).

e Basic idea:

— Minimize
1
X) = =—xAx— bx, 124
2

which describes an N-dimensional paraboloid, with respect to x.

— The minimum is characterized by
Vfx) = Ax—b = 0, (125)

i.e. it is the solution of Ax = b.

e Algorithm:

— Guess solution Xq, e.g. Xog = 0 (can be far away from the correct solution).
- n=0.

(1) Select direction p,, (details below).
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— Minimize f(X, + anpn) with respect to ou,.

— Xptl = Xp + QpPn-

— If |b — Ax,41]| sufficiently small:

— Xp41 @S approzimate solution.

End of algorithm.

FElse:

— n=n+1.
Go to (1).

e Detailed equations:

— 19 = b — Axq (“residual”), pg = ro.

— During each iteration:

rnry

Aqp =
PrApPn

rni1 = Iy—a,Ap,
nt1Tp41

B = ——
rnry

Pn+1 Tpt+1 + /Bnpn

(see Ref. [1], section 2.7.6).

e One can show: after n steps x, is not just minimum with respect to direction p,_1, but
y Pn—2-

also minimum with respect to all previous directions pg, p1, - - -

— Solution of Ax = b after N steps or less.

e Typically solution of Ax = b obtained after significantly less than N steps.

Figure

7 3
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7.7.2 Generalizations

e For non-symmetric and/or non-positive definite matrices A:

— Biconjugate gradient method.
— Minimum residual method.

— Generalized minimum residual method.

7.7.3 Condition number, preconditioning

e Any N x N matrix can be decomposed according to
A = U diag(wo,w1, ..., wn_1) VI, (130)

where U and V are orthogonal matrices and w; > 0 are the singular values of A ﬂ
e Condition number:

cond(4) = B (131)

min; (w;)

e If cond(A) is large, the conjugate gradient method is inefficient:

— Many iterations necessary.

— Numerical accuracy limited.
e Illustration for symmetric positive definite A:

— wj are eigenvalues of A.

— Semi-axes of the ellipsoids f(x) = (1/2)xAx — bx = const are proportional to
(wy) 2.

Numerically problematic, if ellipsoids have significantly different semi-axes.

— Numerically ideal, if ellipsoids are spheres (solution obtained after one step).
e Caution:

— If A is not symmetric and positive definite, one could solve AT Ax = A”b instead of
Ax = b; then one could use the conjugate gradient method, since AT A is symmetric
and positive definite.

— Do not do that, because cond(A” A) = (cond(A))?, i.e. the conjugate gradient method
applied to AT A is significantly more inefficient than other generalized methods (see

section [7.7.2]) applied to A.

e Quite often preconditioning is advantageous:

4For symmetric positive definite matrices A, as discussed in section [7.7.1] singular values are identical to
eigenvalues.
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— Select an N x N matrix A with the following properties:
x A~ A.
% Ax = b can be solved easily (e.g. analytically).

— Compute A1, solve Ay = b.

— Solve A7'Ax = A~'b = y numerically (advantage: cond(flflA) ~ 1, because
A~ A).

o1



8 Numerical integration

8.1 Numerical integration in 1 dimension

e Goal: Compute the definite integral
b
I = / dx f(x). (132)

e Many applications in physics, e.g. normalizing wave functions in quantum mechanics,
solving ODEs by separation of variables, etc.

8.1.1 Newton-Cotes formulas

e Basic principle: Approximate f(z) using a polynomial, integrate the polynomial analyti-
cally.

e In detail:

— Approximate f(z) using Lagrange polynomials:
* Select n + 1 points z;, j =0,1,...,n.
* Compute/evaluate samples f; = f(x;).
* Langrange polynomials:
L) = [1— (133)
ktj 0Tk

i.e. lJ(IEk) = Ojk-

* Approximation of f(x):
flx) = g(x) = fili (). (134)
§=0
Jiqure g. A
A
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— Integrate g(z) instead of f(x) to obtain an approximation of the integral,

I = [fdxf@ﬂ ~ [fdxg@» ::lébdvézfﬂﬂx>

n b n
= ij/ dolj(z) = fiw;. (135)
j=0 \“__ — J=0

— Error estimates (valid for a < x; < b):

* Even n:
st = | a0 = gty
j=

~(b—a)n+3

(136)
with a < € < b (f("+2) denotes the n + 2-th derivative, i.e. the integration of
degree n + 1 polynomials is exact).

x Odd n: \ \ .
st = | [lan (o] = gy ([ o0 w0 107050

~(b—a)nt2

(137)
with a < € < b (f(”H) denotes the n + 1-th derivative, i.e. the integration of
degree n polynomials is exact).

« Error estimates AI are only useful, if derivatives f("2) and f(*1) are bounded
(not the case, if f has singularities).

« For a derivation of these error estimates see e.g. Ref. [3].

e Trapezoidal rule (n =1): xg =a, z1 = b,

[ = /abdxf(a;) ~ (;foJr;fl)h (138)
ar = g [wl= o=y = Xy = om) (139)
(h= (b a)/n)

o Simpson’s rule (n = 2): zo = a, #1 = a + h, &2 = a + 2h = b, i.e. equidistant points,
I - /abdazf(:c) ~ (;fo+§f1+?1)f2>h (140)
Al = ... = —g;f@)(g) = O (141)

(coefficients 1/3, 4/3 and 1/3 can be obtained in a straightforward way from (135)).
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e There are further common “integration rules”, e.g. Simpson’s 3/8 rule or Boole’s rule.

e Examples (see Ref. [3]):

1 T

1
L = do—— = T 142
! /0 1522 1 (142)

x [; = +0.7853 ... (analytically).
x Iy = 40.7500. .., AI} = +0.0353. .. (Trapezoidal rule).
« Iy = +40.7833..., AI} = 40.0020. .. (Simpson’s rule).

1
I, = /da:ex = e—1. (143)
0

x Iy = +1.7182... (analytically).
x Iy =+41.8591..., Al = —0.1408. .. (Trapezoidal rule).
x Iy =+1.7188..., Al = —0.0005... (Simpson’s rule).

e Iterated trapezoidal rule:

— Split the interval [a, b] into N sub-intervals of the same size and apply the trapezoidal
rule for each sub-interval:

b
I = /dﬂff($) ~ (;f0+f1+f2+u-+fN1+;fN>h = Ty (144)
Al = NxOKR®)) = O(1/N?). (145)
(h=(b—a)/N).

— Iteratively increase the number of sub-intervals by a factor of 2 in each step, i.e.
N — 2N, until the approximation of [ is sufficiently accurate (error is reduced by a
factor of around 4 in each step).
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e Iterated Simpson’s rule:

— Approximate I according to

b 4 1
I = / dr f(x) =~ =Tony — =Tn.
a 3 3

— Naive expectation: AT = O(1/N?).
— Closer inspection shows that A is much smaller:

4 1
“Toy — =T
32N 3N

(146)

1 4 2 4 2 4 1
= <3f0 + gfl + gfz + §f3 +...+ §f2N—2 + §f2N—1 + 3f2N)h

(147)

(h = (b—a)/2N), which is the iterated Simpson’s rule, i.e. AI = O(1/N*%).

; i
I{ qQurée 8 D

1 fom } < + Fa-Y c"\
a as kb ax7l = > o
ALh -%5hf,  -244,

e Algorithm:
(1) Compute Tn (eq. (144)).

(2) Compute Ton (eq. ), reuse even samples fo, f1, fa, ...
, fan (evaluating f(z) might be expensive).

Samples” f07 f27 f47 e

, fn from step (1) as “even

— Approzimate I according to (4/3)Ton — (1/3)Tn, to reduce the error from O(1/N?)

to O(1/N*%).

— If the approximation of I is sufficiently accurate:
— End of algorithm.
FElse:

— N — 2N.
Go to (1).

8.1.2 Gaussian integration

e Due to limited time not discussed.
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8.2

Numerical integration in D > 2 dimensions

Goal: Compute the definite integral
I = / dPz f(x), (148)
R

where x = (21, 22,...,2p) and R C RP is the domain of integration.
More difficult than in 1 dimension, because:

— Number of samples f; = f(x;) can be very large (N samples in 1 dimension — NP
samples in D dimensions).

— R might be “complicated”.

'—I-{ C‘\urﬁ 8 E

C»_\ "cowpt’gm.fﬁcf !

a 2 X (R, “ &
=
"’5iw:pfe ! \/

8.2.1 Nested 1-dimensional integration

D = 3 in the following (generalization to arbitrary D obvious).
Notation: x = (z,vy, 2).
Determine z; (minimal x in R) and z2 (maximal = in R).

Determine y;(z) (minimal y in R U S(z), where S(x) is a plane parallel to the y-z plane
containing x) and yo(x) (maximal y in RU S(x)).

Determine z1(x,y) (minimal z in RU S(x,y), where S(x,y) is a straight line parallel to
the z axis containing = and y) and z2(z,y) (maximal z in RU S(z,y)).

I can be written as nested integrals in 1 dimension,

y2(x 22(x,y)
[ st / dz / dy [ de (o). (149)
R y1(z z1(z,y)

=I(z,y)

=I(z)
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e Nested integrals might be more complicated, if R is not convex. e.g.

y2(z) y2(z) ya ()
/ dy ... — dy...+/ dy ...
y1(z) y1(z) ys(x)

?JIC‘U!’G_ g:}.:_

e Step 1:

(150)

Compute samples of I(z,y) (typically N? samples) using e.g. techniques from section

e Step 2:

Compute samples of I(x) (typically N samples) using e.g. techniques from section

e Step 3:
Compute I using e.g. techniques from section [8.1

8.2.2 Monte Carlo integration

e Statistical approximation of I using random numbers; similar to an experimental measure-

ment the result has an error bar.
e Select N points x1,X2,...,xy € R randomly and uniformly.

N -1

- /

~ ~ (=AY
1= [aeie = v evi ()T

=AT

where V(R) is the volume of R, {(f — (f))?) = (f?) — (f)? and

o7

(151)

(152)

(153)



e Error Al: probability for I € [I — AI, T+ Al] is ~ 68%.

e Major disadvantage: slow convergence, i.e. Al « 1/v/N (“to reduce the error by a factor
of around 2 you need 4 times as many samples”).

e Advantages:

— Very large D possible, e.g. D = 103 or D = 10° (quite efficient, if f(x) is “smooth”;
very inefficient, if f(x) has strongly localized peaks).

— “Complicated domains” R possible, if R can be defined by a function

1 fxeR
g9(x) = {0 otherwise (154)

 Define “simple domain” R O R, e.g. a D-dimensional box.

?!C‘\ufe, 8-@

J

z

ﬁ?

4

= D$ X X).
I = /R 4P (x)g(x) (155)

* Right hand side of (155]) can be evaluated in a straightforward way using Monte
Carlo integration.

8.2.3 When to use which method?

e For very precise computations (many digits of accuracy)
— nested 1-dimensional integration
(convergence of Monte Carlo integration too slow, AI o< 1/V'N).

e Complicated domain easy for Monte Carlo integration, more difficult for nested 1-dimensional
integration.

e Nested 1-dimensional integration requires smooth integrands, otherwise error estimates
useless.

e Monte Carlo integration requires integrands, which are not strongly peaked, otherwise
huge statistical errors.

e Complicated domain, integrand, which is not strongly peaked, limited accuracy o.k.
— Monte Carlo integration.
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e Simple domain, integrand smooth
— mnested 1-dimensional integration.

e Strongly oscillating or discontinuous integrand
— Monte Carlo integration.
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9 Eigenvalues and eigenvectors

9.1

Problem definition, general remarks

Eigenvalue problem: find eigenvalues A; and eigenvectors v; # 0, j = 1,..., N fulfilling
AVJ' = )\jvj (156)

(A: N x N matrix).

Eigenvalues are roots of the characteristic polynomial det(A — A;), i.e. solutions of
det (A - Aj) — 0. (157)

The characteristic polynomial is a degree-NN polynomial, i.e.

— N roots (= eigenvalues) A\; (might be complex, not necessarily different),

— N eigenvectors v; (might be complex, not necessarily linearly independent).
Properties of eigenvalues and eigenvectors for specific classes of matrices:
— A real, symmetric (AT = A):
Aj real, v; can be chosen real.

— A complex, hermitian (AT = A):
Aj real.

— A not symmetric/not hermitian:
Aj and v; typically complex.

— A normal (AAT = AtA):

* A; pairwise distinct:
v, orthogonal.

* \; degenerate:
can be chosen orthogonal (e.g. using Gram-Schmidt orthogonalization).

Generalized eigenvalue problem: find eigenvalues )\; and eigenvectors v; # 0,
j=1,...,N fulfilling

AVj = )\jBVj (158)

(A, B: N x N matrices).

— Can be rewritten into a standard eigenvalue problem:
B 'Av; = \vj. (159)

— If A symmetric and B symmetric and positive definite, use the following method:

* Choelesky decomposition (“square root of a matrix”; see e.g. Ref. [1]): B = LLT,
where L is a lower triangular matrix.
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* Then

Av; = MNLL'v, (160)
LAY Lty = Ly, (161)
Tv N——~

— A/ —v’ =v’

J J
which is a standard eigenvalue problem with a symmetric matrix A’ (B~!4 in
(159) is typically not symmetric).
x Computing L~! and solving LTVj = v/ simple, because L is a lower triangular

matrix (see e.g. section [7.3 and section [7.4.2)).

9.2 Basic principle of numerical methods for eigenvalue problems
e Iterative procedure: apply similarity transformations

A —
— (Pl)_lAPI —
- () ') 'APP, —

- (P)' . (PR)T(P)TTARP,. .. P, = QTTAQ (162)
=Q-1 =Q

such that Q~TAQ is diagonal.

e In practice: stop iteration, as soon as Q~*AQ is “almost a diagonal matrix” (e.g. absolute
values of off-diagonal elements < ¢ = 1079).

e Matrix Q7 1AQ = diag(\i, Ao, ..., An):

— Eigenvalues A;.

— Eigenvectors e;.
o Matrix A:
— Eigenvalues \;, because
det(A —A;) = det(Q~Y)det (A - Aj) det(Q) = det (Q—l (A - Aj)Q) -
— det (Q*lAQ . Aj), (163)

i.e. A and Q7 'AQ have the same characteristic polynomial and, consequently, the
same eigenvalues \;.

— Eigenvectors Qe;, i.e. the columns of ) are the eigenvectors, because
Q7'AQe; = e (164)
- A(Qej) = Xj(Qey). (165)

e Summary:
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(1) Tteratively apply similarity transformations, until Q=1 AQ is diagonal.
(2) Eigenvalues are the diagonal elements of Q~tAQ.

(3) If eigenvectors are needed, Q = P P,...P, has to be computed; eigenvectors are
columns of Q.

9.3 Jacobi method

e A must be real and symmetric:

— A is normal.
— Aj real, v; can be chosen real and orthogonal.

— Eigenvectors form an orthogonal matrix,

(vi)”

@ = (viveonw) o @t =@ = ™ (166)
(vi)"

which diagonalizes A, i.e.

QTAQ = diag(\;,\2,...,\N). (167)

e Advantages and disadvantages:

(+) Simple.
(—) Somewhat slower than other methods, e.g. the QR method (see e.g. Ref. [1]).

e Pj: rotation in p-q plane,
A = A = (P)TAP, (168)

such that A;yq = Ag,p =0.

1
1

+c +s
P = . , (169)

—S +c

1
1

where ¢ = cos(p) and s = sin(¢p).

;cl = ((PJ)T)k,m A (Pj)n,i- (170)
—_———

:(Pj)m,k
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*

Ay, = (P))mpAmn(Pj)np = App + 2 Agq — 2csAp 4.
Al = Agq+ 52 Apy + 254y,

Apg = Agp = (c® = 5*) Apg + sc(App — Ag)-

k#p,q: A;ﬁp = ;,k = cApp — sApq

k#pq Ay, = A, = cArg+ sAkp.

k,l 75 D, q: A;c,l = AkJ.

— Choose ¢ such that A}, , = A, , =0, i.e.

*

*

*

*

*

-2 _ Agg — App (171)
2sc 24,4
and after defining 0 = (A, , — App)/24,,4 and using (¢? — s%)/2sc = (1/t —t)/2
+20t—1 = 0
1/2
St = —91(9%1) , (172)

where t = tan(y); numerical tests have shown that it is advantageous to choose the
smaller [t], i.e.

sign(0)
0]+ (6% + 1)1/
implying || < 7/4.

(173)

e Using the above equations can be implemented in the following equivalent, more
convenient form:
N A;a,p = App —tApg.
N Aiz,q = Agq +tApg
A=A =0
—k#p,q A;@p = A;’k = Ay p — s(Akq + TALp), where 7 = tan(¢/2) = s/(1 +c¢).
—k#p,q A, = AL = Akg + 5(Akp — TAgg)
-k, l#p,q A;CJ = Ap,.

e Convergence of the Jacobi method:

— Applying the Jacobi rotation (168) results in A;Lq = A;’p = 0, but other off-diagonal
elements might become larger.

— Is convergence guaranteed?

— Define “deviation from diagonal matrix”: S =), #(Ak,l)z.

— One can show: S" = S—2(A,,)?, i.e. S will approach 0, if “large off-diagonal elements
Ap 4 are rotated to 07”.

e How to choose p and ¢?

— Jacobi 1846: “rotate the largest off-diagonal elements |4, 4| = |A4,p| to 0”.

— Jacobi’s strategy is numerically too expensive (finding the largest off-diagonal ele-
ments is O(N?), while a Jacobi rotation is only O(NV)).
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— Nowadays: cyclic Jacobi method, pick off-diagonal elements in a fixed order, e.g. Ag 1,
Ao, oy AoN—1, A12, A13, ...y A N—1, A3, ..

e Eigenvectors, if needed, are columns of Q = P Ps... Py
— Initialize Q = 1.
— After each Jacobi rotation (168): Q@ — Q' = QP;:

* Q;c,p = Qkp — $Q,q-
* Q;@q = CQk,q + SQk,p-
* 1#p,q Q= Q-

9.4 Example: molecule oscillations inside a crystal

e N point masses, nearest neighbors coupled by springs (a simple model to study molecule
oscillations inside a 1-dimensional crystal):

N 1 N-1 1
L = Z imxg - Z ik(x] - l’j+1)2. (174)
=1 i=1
7';: o = C:j . A
wA Lm Laa L L
— W@ Nt BB e s - ) — _>

e Since the Langrangian is quadratic in #; and x;, the EOMs are linear,

miy = +k(x2 — 1) (175)
mxs = —|—]€(1‘3 — QZQ) + k(ml — 332) (176)
<o (177)

i.e. can be written in matrix form,

M% = —Kx (178)

m
m .

M = " (mass matrix) (179)

+k -k
I T T N .
K = ko o4ok (stiffness matrix), (180)
where x = (21, 22,...,ZN).
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EOM:s reformulated using dimensionless quantities:

d? .

——%x = —-Kx 181

i (181)
+1 -1

. -1 42 -1

K = -1 +2 ... |’ (182)

where t = \/k/mt, X = (x1,29,...,2x)/L and L is a length scale, e.g. from the initial

conditions.

The ansatz

x = vt (183)

reduces the system of second order ODEs (181) to an eigenvalue problem,

—aiv; = —Kv;. (184)

Since K is real and symmetric, the Jacobi method can be used to solve the eigenvalue
problem.

Computation for N = 10:

— C code to compute eigenvalues and eigenvectors of K: see appendix

initial matrix

+1.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
-1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
+0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
+0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00 +0.00
+0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00 +0.00
+0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00 +0.00
+0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00 +0.00
+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00 +0.00
+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +2.00 -1.00
+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -1.00 +1.00
S = 1.80000e+01.

3k 3k >k 3k ok >k ok >k %k k

sweep 1 ...

+0.16 -0.11 -0.22 +0.09 +0.11 -0.05 -0.04 +0.03 +0.01 +0.02

65



-0.11 +3.63
-0.22 -0.11

+0.09 +0.33
+0.11  +0.09
-0.05 -0.13
-0.04 -0.06

+0.03 +0.04
+0.01 +0.04
+0.02  +0.02

S = 2.91374e+00.

stk ok sk ok ok ok ok ok
sweep 2 ...
+0.03 -0.04
-0.04 +3.89
-0.05 -0.03
+0.01  +0.03
-0.00 +0.02
+0.01  +0.05
+0.01  +0.01
-0.02 -0.04
+0.01  +0.02
-0.01 -0.02

S = 2.53839%e-01.

k% 3k 3k 5k %k %k Xk Xk Xk

sweep 3 ...

S = 2.12206e-02.

kKK 3k %k k k kK Kk

sweep 4 ...

S = 7.26279e-06.

FoK KKK KKK KK

sweep 5 ...

S = 2.26242e-10.

>k %k 3k 3k 5k %k %k %k Xk k

sweep 6 ...

.11
.48
.08
.36
.14
.15
.02
.12
.01

.05
.03
.13
.03
.06
.04
.10
.01
.01
.08

.33
.08
.40
.08
.40
.07
.14
.03
.07

.01
.03
.03
.58
.01
.05
.26
.01
.05
.09

.09
.36
.08
.63
.01
.38
.31
.14
.23

.00
.02
.06
.01
.39
.08
.01
.04
.05
.00

.13
+0.
+0.
+0.
+3.
.05
+0.
+0.
+0.

14
40
01
23

34
20
03

.01
.05
.04
.05
.08
.62
.02
.00
.00
.01
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.06
.15
.07
.38
.05
.72
.17
.50
.27

.01
.01
.10
.26
.01
.02
.37
.01
.03
.00

.04
.02
.14
.31
.34
.17
.86
.09
.04

.02
.04
.01
.01
.04
.00
.01
.18
.00
.00

.04
.12
.03
.14
.20
.50
.09
.89
.00

.01
.02
.01
.05
.05
.00
.03
.00
.00
.00

.02
.01
.07
.23
.03
.27
.04
.00
.99

.01
.02
.08
.09
.00
.01
.00
.00
.00
.82



S = 1.12777e-32.

KKK KoKk kK

lambda_00 = +0.000000.

v_00 = ( +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 , +0.32 ).
lambda_01 = +3.902113.

v_01 = ( -0.07 , +0.20 , -0.32 , +0.40 , -0.44 , +0.44 , -0.40 , +0.32 , -0.20 , +0.07 ).
lambda_02 = +0.097887.

v_02 =(-0.44 , -0.40 , -0.32 , -0.20 , -0.07 , +0.07 , +0.20 , +0.32 , +0.40 , +0.44 ).
lambda_03 = +2.618034.

v_03 = ( +0.26 , -0.43 , -0.00 , +0.43 , -0.26 , -0.26 , +0.43 , +0.00 , -0.43 , +0.26 ).
lambda_04 = +1.381966.

v_04 = ( +0.36 , -0.14 , -0.45 , -0.14 , +0.36 , +0.36 , -0.14 , -0.45 , -0.14 , +0.36 ).
lambda_05 = +3.618034.

v_05 = (+0.14 , -0.36 , +0.45 , -0.36 , +0.14 , +0.14 , -0.36 , +0.45 , -0.36 , +0.14 ).
lambda_06 = +0.381966.

v_06 = ( +0.43 , +0.26 , +0.00 , -0.26 , -0.43 , -0.43 , -0.26 , -0.00 , +0.26 , +0.43 ).
lambda_07 = +3.175571.

v_07 = ( -0.20 , +0.44 , -0.32 , -0.07 , +0.40 , -0.40 , +0.07 , +0.32 , -0.44 , +0.20 ).
lambda_08 = +2.000000.

v_08 = ( +0.32 , -0.32 , -0.32 , +0.32 , +0.32 , -0.32 , -0.32 , +0.32 , +0.32 , -0.32 ).
lambda_09 = +0.824429.

v_09 = ( -0.40 , -0.07 , +0.32 , +0.44 , +0.20 , -0.20 , -0.44 , -0.32 , +0.07 , +0.40 ).

— General solution:

ple

= Z Vi1 (Aj COS((I}jf) + Bj Sin(d}jf)),

N
(185)

j=1

Vv
normal modes

where (D]z =Aj_1.
— Solve EOMs for initial conditions: z1(t = 0) = L, z;(t = 0) =0 for j = 2,..., N,
@(t=0)=0forj=1,...,N.

*

N

x(t=0) = Y v;uBjw, = 0 — B; = 0, (186)
j=1

because eigenvectors v; are orthogonal and, thus, linearly independent.
N

)A((f = 0) = Z Vj_lAj = (1, o,... ,O) — Aj = Uj-1,1 (187)
j=1
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(first index of vj_1; is eigenvector index, second index is component index),
where v;vy = d; 1 has been used.

x Solution:
N
X = Zijlvjfljl COS((:JJ'I?) (188)
7j=1

(see Figure from which e.g. the speed of sound can be read off).

N =10

05 [

x/L
o

-0.5 |

x
@

. . . . .
0 2 4 6 8 10 12
(om)"2 ¢

Figure 10: “Molecule oscillations in a 1-dimensional crystal” (N = 10 molecules).

e Can be generalized in a straightforward way to study small oscillations of any system of
N point masses (after first order Taylor expansion, EOMs are of the form Mx = —Kx).
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10 Interpolation, extrapolation, approximation

e Problem definition:
— Starting point: f; = f(z;), j = 0,..., N (“data points”) for zp < z1 < ... < zp,
where f(z) is not known.
— Goals:
« Determine g(z) ~ f(x) approximately for zmyin < = < Zpax.
~ f(y) for fixed y # xo,x1,...,ZN.

z)
* Determine g(y)
<zyorzyg<y<zxTnN

— 20 < Zmin < Tmax
— interpolation
otherwise
— extrapolation.

—g(zj)=fj=f(z;),j=0,....N
— interpolation

— otherwise (i.e. g(z;) = f; = f(z;))
— approximation.

e Basic principle: approximate f(z) using a specific ansatz for g(z), e.g. simple (typically
polynomials) or physically motivated.

e Physics motivation:

— fj: experimental measurements (e.g. f; = V(r) [a potential] or f; = (do/dQ2)(Q2) [a
differential cross section], ...).

— f;: are results from a time consuming numerical computation or simulation.

— Approximation g(x) ~ f(z) often needed, e.g. for a subsequent analytical calculation.

10.1 Polynomial interpolation

e Find a degree-N polynomial g(z), which interpolates f;, j =0,..., N, ie. g(z;) = f;.
e Unique solution (easy to show).

e g(x) can be obtained e.g. using Lagrange polynomials (see section [8.1.1]):

o) = ] ——2 (189)

X — X
kTR

g(z) = Y fili(x). (190)
j=0

e Polynomial interpolation for N 24 not recommended:

— For large N polynomials exhibit strong oscillations.
— Even though g(z;) = f;, g(x) and f(z) are quite different.
— Examples for N = 3 and N =9 are shown in Figure
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polynomial interpolation, N = 3 polynomial interpolation, N = 9

T T T T
14 14+
12 - 12
1F 1F
0.8 0.8
0.6 0.6
04 04
02 f | 02 L
g(x) (interpolating polynomial, degree N = 3) s g(x) (interpolating polynomial, degree N = 3) s
o ) ) N+1=4 d§1a points —— o ) N+1 =10 de‘na points p——
-1 0 1 2 3 4 -1 0 1 2 3 4

Figure 11: Polynomial interpolation of N + 1 data points f; for N = 3 and N = 9. While
the data points are consistent with a constant, i.e. f(z) = const, the interpolating degree-N
polynomials g(z) are oscillating.

10.2 Cubic spline interpolation
e Connect N degree-3 polynomials y;(x), j =0,...,N —1,
g(x) = yj(x) foraz; <ax<wjq, (191)

such that

— yj(x;) = fj and y;(z4+1) = fj+1 (two polynomials y;(z) and y;11(x) are connected
at data point (41, fj+1)),

— yi(zj41) = Y (zj41) and yi(zj41) = yiq(zj41) (the piecewise defined function
g(z) is C? continuous).

—

ﬂzjwc, A0 . A
\ ’F! 1/ an_d;,wua.f-jf
. : , o
|
| | |
‘ i
! ]
>
X XA X, Xq X

70



e Advantage (compared to polynomial interpolation discussed in section [10.1]): only degree-
3 polynomials, i.e. polynomial degree is small, even though the number of data points
(N + 1) might be large; thus, no unnecessary oscillations.

e Construction of a spline:

— To interpolate data points f;, j = 0,..., N, degree-1 polynomials are sufficient:

yi(x) = [iA@)+ firB), (192)
where

N Tj+1 —
Alz) = 7%11_% (193)
B(x) = %T—J% (194)

are the Lagrange polynomials ((189) for N = 1.
— If the second derivatives f;' = f”(z;), j =0,..., N are given (in addition to the data

points f;),
yi(z) = [jA@)+ fiB@) + f{C(x) + fi1D(2), (195)
where
1 3 2
Cw) = 2(4@)* - A@)) (@1 - o) (196)
1
D@) = £(BG)-B@)(wsm — ) (197)
— Determine fj’-’ ,7=0,...,N such that the resulting spline g(x) is C? continuous:

* Impose y)_y(z) = yj(x;),j=1,...,N - 1.
« Insert (195)):

ri— i1 Titr1 — Tj-1 Titr1 — X5
J J " J+ J " J+ J gl _
———fi+t 3 i — =

6
_ fim—fi i S (198)
Tjt1 — Ty Tj —Tj-1
* To determine f}, j =1,...,N — 1, one has to solve this system of N — 1 linear

equations (use one of the methods discussed in section .

« f and f can be set to arbitrary values (a common choice is f = f§ = 0, the
so-called “natural spline”).

e Figure shows a cubic spline interpolating the data points already used in Figure
right (N = 9 example); in contrast to the degree-9 polynomial from Figure the cubic
spline does not exhibit any unnecessary oscillations.

e Splines and related topics form a huge field of research (CAGD = Computer Aided Geo-
metric Design):

— Goal: Describe and parameterize curves and surfaces in a mathematical way.

— Useful e.g. in engineering [ships, cars, etc.], scientific or medical visualization, ani-
mated movies, computer games, ...
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cubic spline interpolation, N = 9

LR R

0.8 [
06 [
04 |

02+ g(x) (natural cubic spline)
g(x) (interpolating polynomial, degree N = 9) --------
N+1=10 da‘la points —

I
-1 0 1 2 3 4

Figure 12: Cubic spline interpolation of N + 1 = 10 data points f;.

10.3 Method of least squares

Data points f; often exhibit statistical fluctuations (e.g. f; can be experimental measure-
ments, results of Monte Carlo integrations or simulations, ...).

g(z) should not reflect these statistical fluctuations, i.e. in such cases approximation more
suited than interpolation.

Select an ansatz g(z;a) (a = (ag,...,ap) are parameters, which will be determined such
that g(x;a) approximates the data points in an optimal way).

— E.g. a low degree polynomial, g(z;a) = ag + a12 + asx? ...

— ... or g(z;a) = ag/x (if f; describe a Coulomb-like potential) ...
— ... or g(z;a) = (ap/z) exp(—aix) (if f; describe a potential with a limited range) ...
Determine a by minimizing

N

¢a) = O (glesim) — f) (199)

=0
with respect to a.

— (g9(zj;a) — fj)* squared difference of approximating function and data points
(— “method of least squares”).

— Minimization equivalent to solving
v@G@) = o. (200)

g(x;a) linear in a;,
M

glza) = Y ajg(x) (201)
j=0
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(e.g. gj(x) = a7, if g(z;a) is a degree-M polynomial):

— Insert in :
N M M
Gla) = Y. (Zakgk(%‘) - fj) <Zazgz(%‘) - fj) =
=0 “k=0 =0

N

= 2 (lﬁzoflj,kak - fj) (ﬁ;Ay‘,zaz - fj>7 (202)

J=

where
go(zo)  g1(x0) gm (o)

4 90(:331) 91(:961) ngﬂfl) ' (203)
go(zn) gi(zn) .. gm(zN)

— ([200)):

9 i(ZA kQp — f> = 0

aam = 7 J

— ATAa = A'f (204)

i.e. one has to solve a system of linear equations to determine the parameters a (e.g.
by using methods from section .

e g(z;a) not linear in a;:

— (|200)) is system of non-linear equations.
— Solving such systems is difficult (see section [5.5)).

— Typically a good estimate of the parameters a is needed to solve the system of non-
linear equations, e.g. by using the Newton-Raphson method.

e Figure|l3|shows the least squares approximation of data points already used in Figure
right (N = 9 example) and Figure [12| using degree-0, degree-1 and degree-2 polynomials;
in contrast to Figure [11] and Figure [T2] there are no oscillations.

10.4 x? minimizing fits
e (Quite often, data points have errors, which have been ignored so far.
e Notation: o; is error of data point f; (i.e. “value f; £ 0, at ;7).

e When approximating data points using an ansatz g(z;a) (as e.g. in section , data
points with small errors should impose stronger constraints on the parameters a than data
points with large errors.
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least squares approximation with degree-0, degree-1 and degree-2 polynomials, N = 9

06

04 |

g(x) (approximating polynomial, degree 0)
g(x) (approximating polynomial, degree 1) s

02 g(x) (approximating polynomial, degree 2) s
g(x) (natural cubic spling) -------
. [N+1 = 10 data points s=e==e
0
o 0 p 2 . !

Figure 13: Least squares approximation with degree-0, degree-1 and degree-2 polynomials of
N + 1 = 10 data points f;.

e Replace (199)) by

2o i (9(%;: - fj>2 (205)

§=0
to fit g(z;;a) to the data points f; with errors o; in an optimal way (“if o; is small, g(z;;a)
must be close to f; ... otherwise x? would be large”).

e Resulting, i.e. minimal x? indicates the quality of the fit:

— “Good fit”
— each term in (205]) should be of order 1
— reduced x? = x?/dof = x2/(N — M) =~ 1.

— x?/dof > 1
— ansatz g(z;;a) not consistent with data points.

— x?/dof < 1
— errors are either overestimated or data points are correlated.

e For details see textbooks on data analysis.
e Simple and common example: x? minimizing fit of a constant a.

— Ansatz: g(z;a) = a.

— Minimizing
N a f 2
e )
¢S =
3=0

is equivalent to solving

d N o
— 32 = 9 _JJ 2
0 X ]Z:% ChER (207)
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i.e.
N N
1/(0;)?
o« = ) = fio= Y wify, (208)
j=0 Zk:O 1/(U/€)2 §=0
=wj
where w; is the “weight of data point f;” (0 < wj; <1, Z;V:o wj =1).

— An example is shown in Figure

least squares fit of a constant, N = 3 x2 minimizing fit of a constant (ledof =0.97),N=3
14 1.4
12 | 12
] ' ] I

1F 1 i 4 1F T '
08 l J 08 | l
06 I 1 06 |
04 1 0.4
0.2 1 02

0 0

1 0 1 2 3 4 1 0 1 2 3 4

Figure 14: Comparison of a least squares fit (left) and a x? minimizing fit (right) of a constant
to N + 1 = 4 data points f;.

e Error estimates for fit parameters a:

— Jackknife method.
— Resampling.

— Due to limited time not discussed.
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11

Function minimization, optimization

11.1 Problem definition, general remarks

f(x): real valued function (x = (z1,...,zp)).

Problem: find a local or the global minimum of f(x), i.e. a value x minimizing f(x) locally
or globally.

Function maximization is equivalent to function minimization, because maximum of f(x)
is minimum of — f(x).

Algorithms for function minimization should be

— fast (i.e. the number of evaluations of f(x) should be reduced to a minimum),

— able to find the global minimum.

Finding the global minimum is extremely difficult, in particular in D > 2 dimensions;
typical strategies are

— repeated function minimization starting at different x,

— minimize function, add a random perturbation to the (possibly local) minimum, min-
imize again, add another random perturbation, minimize again, ...

Notation, classification of function values x of f(x) (i.e. 1 dimension):

Figure A A

df}ouai-’-ﬂ

A, B, C: local maxima.

D: global maximum (f/(x) # 0 possible on the boundary of the domain).

— FE, F: local minima.
— G: global minimum (f’(z) = 0 inside the domain).

— a, b, ¢: enclose minimum (see section |11.2)).
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e Root finding versus function minimization:

— At first glance problems seem to be very similar: f(x) = 0 versus Vf(x) = 0.
— There are, however, significant differences:
* Root finding:

f1(x), fa(x), ... are independent functions.
Function minimization:

(VHi1(x), (Vf)2(x), ... are related via f(x).
* Root finding:

Not obvious, “which direction one has to follow”, to find f;(x) = 0 for all j.

Function minimization:

“Simply follow the negative gradient” to find a minimum, i.e. V f(x) = 0.
* Root finding:

Very hard, if number of dimensions D is large.

Function minimization:

Comparatively simple, even if number of dimensions D is large.

e Since function minimization is easier than root finding, one could be tempted to reformulate

root finding f(x) = 0 as function minimization:

— Roots of f(x) are global minima of F'(x) = ijzl(fj (x))%.

— Do not do that, i.e. do not try to find roots of f(x) by searching minima of F(x).

— Function minimization algorithms typically find local minima of F'(x), which do not

correspond to roots of f(x).

I'.@JUVE.- A4 B

11.2 Golden section search in D = 1 dimension

e Similar to bisection for root finding.

e Starting point: minimum localized inside interval [a,c] via f(a) > f(b) < f(c), where

a < b < ¢ (minimum can be left or right of b).
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e Evaluate f(y):

-b<y<c
« If f(y) > f(b) (case 1):
— Replace (a,b,c) by (a/,V', ) = (a,b,y), i.e. minimum now localized inside
interval [a, y].

[a,
x If f(y) < f(b) (case 2):

— Replace (a,b,c) by (a’,V,c) = (b,y,c), i.e. minimum now localized inside
interval [b, c|.

?IIQ‘U."@. AA'D

(_C{-.Se’i f 2 E"_a:ff;} ,/1|~ _‘p

—a<y<b:
x Analogous to b < y < c.

— Iterate this step, until ¢ — a is sufficiently small.
e How to choose y, to reduce the size of the interval [a, c] as quickly as possible?

— Define relative sizes of subintervals:
x w=(b—a)/(c—a).
x 1—w=(c—b)/(c—a).
s 2= (y—b)/(c—a).
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— Relative size of “new interval” [d/, ¢/]:
* Case 1: w + z.
* Case 2: 1 —w.

— Determine z (and thereby y) via w4+ 2z =1 —w
—z=1—-2w=(1—w)— w, i.e. z is chosen such that the reduction of the size of

[a, b] is in both cases the same (“no bad case”).
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x Case l: w' =2, —d =w+ 2z
w/l=w/(d —d)=2z/(w+2).
x Case 2: W' =2, —d=1-w
w/l=w/(d —d)=2z2/1—-w).
* Inserting z = 1 — 2w yields w? — 3w + 1 = 0 in both cases.
* Solutions:
- w=(3++/5)/2=2.618... (excluded, because > 1).
- w=(3—-+/5)/2=0.381... (allowed),
- “Golden section”: (14 +/5)/2.

— w = (3 —+/5)/2 is a stable fixed point (can be shown), i.e. even when starting with
w # (3 —+/5)/2, w will be closer to (3 — /5)/2 after every step.

— Consequently,
d—d = <1 _3 _2\/§> (c—a), (209)
—_—
0.618...

i.e. linear convergence (slightly slower than root finding with bisection [see sec-

tion [5.2]).

e Accuracy:
— For z =~ zpin
1
Lmin
f (.%') ~ f min T %

((Zmin, fmin) is the minimum).

(.%' — xmin)z. (210)

— When represented as floating point numbers f(z) and fu, are different, only if
(f"(2min) /2) (T = Tmin)*
fmin
where e = O(1077) for float and ¢ = O(10716) for double (¢ is the relative precision
discussed in section [2.2)).

— Consequently, the accuracy of golden section search (and many other minimization
algorithms), characterized by & — Ty in (211)), is limited,

> e (211)

2fmin 12
Lmin,numerically — ZLmin 2 7) \/E ~ \/E (212)

f” ($min

11.3 Function minimization using quadratic interpolation in D = 1 dimension

e Due to limited time not discussed.

11.4 Function minimization using derivatives in D = 1 dimension

e Due to limited time not discussed.
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11.5 Function minimization in D > 2 dimensions by repeated minimization
in 1 dimension

e Problem in D > 2 dimensions: localizing a minimum not as easy as in D = 1 dimension,
where three points a, b, ¢ with f(a) > f(b) < f(c) are sufficient.

e Algorithm for function minimization in D > 2 dimensions by repeated minimization in 1
dimension (has already been used for the conjugate gradient method; see section [7.7.1)):

— Guess minimum Xg, e.g. Xo = 0 (can be far away from any minimum).
- n=0.
(1) Select direction py, (details below).
— Minimize f(x, + anppn) with respect to ay,.
— Xp41 = Xpn + apPn-
— If xp41 is sufficiently close to a minimum (e.g. |Xp+1 — Xn| < €):
— Xnp+1 48 approximate minimum.
End of algorithm.
FElse:
- n=n+1.
Go to (1).

e Efficiency of the algorithm strongly depends, on how the directions p,, are chosen.

— Simple example:
* D = 2 dimensions.
% f(x1,29): a paraboloid, which is “wide in (+1,+1)/v/2 direction and narrow in
(—1,+1)/V/2 direction 7,

2 2 2 2
e+ Yy  + 2z ¥4+ y°— 22
flz,22) = Y Y Y Y (213)

2a? 202
with a > b.
Directions for minimization p,: e, e2, €1, €2, ...
— Many minimizations in 1 dimension required, algorithm quite inefficient.
* Directions for minimization p,: (+1,+1)/v2, (—1,+1)/v/2.
— Only two minimizations in 1 dimension required, algorithm very efficient.
See also Ref. [1], Figure 10.7.1.

*

*
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* It might seem to be a good strategy to select p,, = V f(x;,), i.e. to minimize along
the direction of steepest descent.
— Many minimizations in 1 dimension required, almost as inefficient as selecting
e}, ea, e, ey, ...
* See also Ref. [I], Figure 10.8.1.
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e Efficient way to select directions p, are “conjugate directions”:

— Basic idea:
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* Select p,, such that minimization with respect to previous directions pj,
j =0,...,n—1is preserved (then p, and p;j, j = 0,...,n — 1 are conjugate
directions).
* Minimum found within D minimizations in 1 dimension.
— Mathematical details:
% x1 is minimum of f(x) along direction pog, i.e. poV f(x1) = 0.
* Select conjugate direction p; such that gradient of f(x) in pg direction vanishes
along direction pq, i.e. poV f(x1 + Ap1) = 0 for all \.
- In general not possible.
- Tt is possible, if f(x) is quadratic, i.e. describes a paraboloid,

Fx) = c—bx+ %XAX. (214)
- Then

Vf(x) = —b+ Ax. (215)
- poV f(x1) = 0 becomes

p()( bt Ax1> = 0. (216)
- The condition for conjugate directions poV f(x1 + Ap1) = 0 becomes

Po( —b+ A(x1 + )\Pl)) = podip1 = 0, (217)

i.e. po and p; are conjugate, if

poAp1 = 0. (218)

- If f(x) is not quadratic, select “approximate conjugate direction” via Taylor
expansion of f(x),

D
fx) = f(Xl)"‘;ajf(X) e, i~ T15)
> ~
1 D
+3 > 0;01f(x) e (75 — 215) (@) — T14) + -0, (219)

J,k=1

=A,p
i.e. use A from in .

- Then minimum found approximately within D minimizations in 1 dimension.

- In practice: Repeat minimization in 1 dimension, until x, is approximate
minimum; converges typically fast, in particular, if f(x) is similar to a
paraboloid.

- If f(x) is quite different from a paraboloid, other methods might be more
efficient.

— For more details see Ref. [1], section 10.7 and section 10.8.

11.6 Downbhill simplex method (D > 2 dimensions)

e Downhill simplex method: simple algorithm for function minimization in D > 2 dimen-
sions, however, not very efficient.
— Suited for rather simple optimization problems.
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e Simplex:

Defined by D + 1 points p;.
* D = 2: triangle.
x D = 3: tetrahedron.

Exclusively consider non-degenerate simplexes, i.e. p1 — po, P2 — P1, ---, PD — Po are
linearly independent.

e Basic principle: simplex moves “downhill”, deforms according to the “terrain” defined by
f(x), stops at a local minimum.

e Initial simplex:

Po: estimate of minimum, i.e. an input parameter.

Pj = Po+Aje;, where )\ is a typical length scale in j direction, i.e. an input parameter.

e Sketch of deformation steps (for D = 2):

(1)

Relabel points p; such that f(pg) < f(p1) < ... < f(pPp)-
Step 1: reflection (“move the point, where f is largest”).
P2 — Py
If £(p}) < f(o):
% Step 2: expansion (“expand the simplex to take larger steps”).
Py = P3.
« Replace p2 by the better of the two points pf and pf.
* Goto (1).

If f(p3) < f(p1):
* Replace p2 by pj.
x Goto (1).

Step 3: contraction (“contract the simplex in a valley floor to ooze down the valley”).
"

p — py', where p is the better of the two points ps and p).

If f(pg) < f(p2):
« Replace p2 by p}'.
x Goto (1).
Step 4: multiple contraction (“contract the simplex in all directions to pass through
the eye of a needle”).
p1 — p}" and py’ — p5”’
Goto (1).

For details see Ref. [I], section 10.5.
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e Stopping criteria:

— Less obvious than in D = 1 dimension.

— E.g. if [pp — po| < € (where f(pp) > f(pj), 7 =0,...,D —1 and f(po) < f(pj)
j=1,...,D) ...

— ... or if deformation of simplex is almost negligible.

— As a cross-check one should start the downhill simplex method again at the found
minimum with a large initial simplex.

11.7 Simulated annealing

e Previously discussed methods typically find a local minimum inside a given interval (golden
section search) or close to, where the minimization is started (“conjugate directions”,
downbhill simplex method).

e How to find the global minimum of a function f(x)?

— Repeated function minimization starting at different x.

x If only a small number of different minima is found, the global minimum might
be among them.

* Quite often, however, there is a very large number of minima and f(x) is “com-
plicated” (i.e. no idea, where the global minimum is).

— A promising method to find the global minimum is simulated annealing.
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11.7.1 Discrete minimization

Instead of a continuous domain parameterized by x an extremely large number of discrete
configurations S = {s1, s2,...,sn} and a function f(s), where s € S.

E.g. N ~ 10 i.e. impossible to evaluate f(s) for all s € S.

Goal: Find that s; minimizing f(s).

Basic idea is realized in nature:

— Cooling of a liquid, e.g. steel (annealing = Ausgliihen).

— Fast cooling: not enough time for atoms/molecules to form a uniform crystalline
structure corresponding to the energetic minimum; the resulting steel is fragile.

— Slow cooling: atoms/molecules will form a uniform crystal, which is very stable.
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e Application of this idea to the minimization of f(s):

— Move step by step through the space of configurations, s — s 5 @)

where 5™ and s+ are similar.
— Steps 5™ — s**+D where f(s(™) > f(s*+D) (“downhill”), are preferred ...

— ... but also steps s — s("t1) where f(s(™) < f(s"*t1) (“uphill”), are allowed
(“quite often one has to overcome a couple of mountains to reach the global mini-
mum”).

—

— Slowly decrease the probability to perform uphill steps during the simulated anneal-
ing.
* Similar to annealing of steel.

* At the beginning, when the steel is hot, the structure of atoms/molecules readily
changes, because the energy of a configuration is less important.

* Later, when the temperature is getting lower and lower, atoms/molecules freeze
in a crystalline configuration with small energy.
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e Simulated annealing algorithm:

— Start at arbitrary s € S and large temperature T

—n=0.

(1) Randomly select ") € S, where “s"t1) ~ 57 e a similar configuration (see

example below).

= If f(s1Y) < f(s™):

— Either accept sV with probability e~
...or replace st by s (i.e. “keep previous configuration”) with inverse prob-
ability 1 — e~ () =f(s")/T

— Do nothing (*“accept s(nt1) 7).

D) f(sN/T

— Slowly reduce T' (typically not after every step, but after a fixred number of steps).
— Go to (1).

e Example: traveling salesperson problem.

N cities on a 2 dimensional map, i.e. (z,y;), j=1,...,N.
Problem: find the shortest loop connecting all cities.

Configurations: S is the set of all permutations of (1,2,...,N) (i.e. N! different
configurations, typically a huge number).

The function f(s) is the length of the loop:

1/2

N
fls5) = > ((ﬂfpj(k) - f'«“pj(kq))Q + (ypj(k) - ypj(k1))2> (220)

k=1

o, Y0) = (N, yn); configurations s; are permutations p;).
J J

— Simulated annealing:

x Selecting a similar next configuration:

- Reverse a randomly chosen subsequence, e.g.

s = —17-3-9-6-14—...
- st = _17T-6-9-3—-14—...
- Randomly move a randomly chosen subsequence, e.g.
s = —5-3-90-1-16—14—-21—...
- st = _5-16-14-3-9—-1-21—...

- There are many other possibilities.
* Reducing the temperature:
- Select initial 7" larger than typical |f(s™+D) — f(s(™)].
- Reduce T by 10% after 100 x N iterations or after 10x N “successful updates”.
- Stop simulated annealing, when the algorithm freezes, i.e. the configuration

does not change anymore.
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— Possible variant of the traveling salesperson problem:

N
fls5) = fls)+A> (Mp(k) - :U'p(k—l))2a (221)
=1

where p; = +1, if city j is “east of the river”, and p; = —1, if city j is “west of the
river”.

* A > 0: crossing the river is expensive/takes times/etc., i.e. the salesperson wants
to avoid it.

x A < 0: the salesperson likes to cross the river (he might be a smuggler, etc.).
« See Ref. [1], Figure 10.12.1.

11.7.2 Continuous minimization

e Simulated annealing can also be applied to minimize functions f(x) with a continuous
domain.

e Selecting a “similar next configuration” x(*t1) might be more difficult than for a discrete
set of configurations:

— Typical problem: too few downhill steps x(™ — x(+1),
— See Ref. [1], section 10.12.2.
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A C Code: trajectories for the HO with the RK method

// solve system of ODEs

// \vec{\dot{y}}(t) = \vec{f}(\vec{y}(t),t) ,
// initial conditions

// \vec{y}(t=0) = \vec{y}_0 ,

// HO, potential

// V(x) = m \omega~2 x°2 / 2

[/ kkkkkkkkokk

#tdefine __EULER__

// #define __RK_2ND__
// #define __RK_3RD__
// #define __RK_4TH__

[/ Fkkokkkokkokk

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

[/ Rkkkkkkkkk

const int N = 2; // number of components of \vec{y} and \vec{f}

const double omega = 1.0; // frequency

const int num_steps = 10000; // number of steps
const double tau = 0.1; // step size

[/ kkskkskskskkkk
double y[N] [num_steps+1]; // discretized trajectories
double y_O[N] = { 1.0, 0.0 }; // initial conditions
[/ kkskkskskskskkk
int main(int argc, char *xargv)
{

int i1, i2;

[/ Hxxxk

// initialize trajectories with initial conditions

for(il = 0; il < N; il++)
y[i1]1[0] = y_0[i1];

[/ *kkkk
// Euler/RK steps

for(il = 1; il <= num_steps; il++)
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#ifdef

#endif

#ifdef

#endif

#ifdef

#endif

#ifdef

// 1D HO:
// y(t) = (x(t) , \dot{x}(t)) ,

// \dot{y}(t) = £(y(t),t) = (\dot{x}(t) , F/m) ,

//  where force F = -m \omega~2 x(t)
__EULER__

// k1 = £(y(t),t) * tau

double ki[N];

k1[0] = y[1]1[i1-1] * tau;
k1[1] = -pow(omega, 2.0) * y[0][i1-1]

// kkkkk

for(i2 = 0; i2 < N; i2++)
y[i2]1 [i1] = y[i2][i1-1] + k1[i2];

__RK_2ND__
// k1 = f£(y(£),t) * tau

double ki[N];

k1[0] = y[1][i1-1] * tau;
k1[1] = -pow(omega, 2.0) * y[0][i1-1]
// Fkkxx

* tau;

* tau;

// k2 = £(y(t)+(1/2)xkl , t+(1/2)*tau) * tau

double k2[N];

k2[0] = (y[11[i1-1] + 0.5%k1[1])  * tau;
k2[1] = -pow(omega, 2.0) * (y[0][i1-1] + 0.5%k1[0])
[/ k¥kkxkk

for(i2 = 0; i2 < N; i2++)
y[i2]1 [i1] = y[i2][i1-1] + k2[i2];

__RK_3RD__

__RK_4TH__

90
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#endif
}

/] *kkkk
// output

for(il = 0; il <= num_steps; il++)

{
double t = il * tau;
printf ("%9.61f %9.61f %9.61f\n", t, y[0]1[i1], y[0][i1l-cos(t));
}
// *kkkk

return EXIT_SUCCESS;
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B C Code: trajectories for the anharmonic oscillator with the
RK method with adaptive step size

// solve system of ODEs

// \vec{\dot{y}}(t) = \vec{f}(\vec{y}(t),t) ,
// initial conditions

// \vec{y}(t=0) = \vec{y}_O0 ,

// anharmonic oscillator, potential

// V(x) = m \alpha x"n ,

// adaptive stepsize

[/ kEkkkokkkokk

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

[/ kEkkkokkkokk

// physics parameters and functions
[/ Fkkokkkokkokk

// anharmonic oscillator, V(x) = m \alpha x"n,
/oy =&, W)
// £ = (v, -\alpha n x"n-1)

const int N = 2; // number of components of \vec{y} and \vec{f}

// const int n = 2;

// const double alpha = 0.5;
const int n = 20;

const double alpha = 1.0;

double y_O[N] = { 1.0 , 0.0 }; // initial conditions
// function computing f(y(t),t) * tau

void f_times_tau(double *y_t, double t, double *f_times_tau_, double tau)
{
if (N !'= 2)
{
fprintf (stderr, "Error: N != 2!\n");
exit (EXIT_FAILURE);
}

f_times_tau_[0]
f_times_tau_[1]
}

y_t[1] * tau;
-alpha * ((double)n) * pow(y_t[0], ((double) (n-1))) * tau;

[/ kkkokkkokkokk

// RK parameters
[/ kEkokkokkkokk

// #define __EULER__
#define __RK_2ND__
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// #define __RK_3RD_
// #define __RK_4TH__

#ifdef __EULER__
const int order = 1;
#endif

#ifdef __RK_2ND__
const int order = 2;
#endif

#ifdef __RK_3RD__
const int order = 3;
#endif

#ifdef __RK_4TH__
const int order = 4;

#endif

// maximum number of steps
const int num_steps_max = 10000;

// compute trajectory for O <= t <= t_max
const double t_max = 10.0;

// maximum tolerable error
const double delta_abs_max = 0.001;

double tau = 1.0; // initial step size
[/ kEkokkkkkokk

double t[num_steps_max+1]; // discretized time
double y[num_steps_max+1][N]; // discretized trajectories

[/ Fxxkkkkkkk

#ifdef __EULER__

#endif
#ifdef __RK_2ND__
// RK step (2nd order), step size tau
void RK_step(double *y_t, double t, double *y_t_plus_tau, double tau)
{
int iil;
[/ *kkkk

// k1 = £(y(t),t) * tau

double k1[N];
f_times_tau(y_t, t, k1, tau);
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[/ *kkkk
// k2 = £(y(£)+(1/2)*k1 , t+(1/2)*tau) * tau
double y_[N];

for(il = 0; il < N; il++)
y_[i1] = y_t[i1] + 0.5%k1[i1];

double k2[N];
f_times_tau(y_, t + 0.5%tau, k2, tau);

// *kkkk
for(il = 0; il < N; il++)
y_t_plus_taul[il] = y_t[i1] + k2[i1];
#endif

#ifdef __RK_3RD__

#endif

#ifdef __RK_4TH__

#endif
[/ kEkokkkkkokk
int main(int argc, char *xargv)
{
double di;
int i1, i2;
/] *kkkk
// initialize trajectories with initial conditions

t[0] = 0.0;

for(il = 0; il < N; il++)
y[0][i1] = y_0[i1];

[/ *kkkk

// RK steps

for(il = 0; il < num_steps_max; il++)
{

if (t[i1] >= t_max)
break;
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[/ k¥kkxk

double y_taul[N], y_tmp[N], y_2_x_tau_over_2[N];

// y&)  -=>\tau y_{\tau}(t+\taw)
RK_step(y[i1], t[i1], y_tau, tau);

// y()  -->\tau/2 --> \tau_2 y_{2 * \tau / 2}(t+\tauw)
RK_step(y[i1], t[i1], y_tmp, O.5%tau);

RK_step(y_tmp, t[i1]+0.5%tau, y_2_x_tau_over_2, 0.5%tau);

// kkkkk

// estimate error

double delta_abs = fabs(y_2_x_tau_over_2[0] - y_tau[0]);

for(i2 = 1; i2 < N; i2++)
{
dl = fabs(y_2_x_tau_over_2[i2] - y_tauli2]);

if (d1l > delta_abs)
delta_abs = di;
delta_abs /= pow(2.0, (double)order) - 1.0;
// Fkkxx
// adjust step size (do not change by more than factor 5.0).
dl = 0.9 * pow(delta_abs_max / delta_abs, 1.0 / (((double)order)+1.0));

if(dl < 0.2)
dl = 0.2;

if(d1 > 5.0)
dl = 5.0;

double tau_new = dl * tau;
// kkkkk

if(delta_abs <= delta_abs_max)
{
// accept RK step

for(i2 = 0; i2 < N; i2++)
y[i1+1][12] = y_2_x_tau_over_2[i2];

t[i1+1] = t[i1] + tau;

tau = tau_new;
}
else

{
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// repeat RK step with smaller step size

tau = tau_new;

il--;

int num_steps = il;
/] *kkkk
// output

for(il = 0; il <= num_steps; il++)

{

printf ("%9.61f %9.61f\n", t[ill, y[i1]1[01);

}

[/ *kkkk

return EXIT_SUCCESS;
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C C Code: energy eigenvalues and wave functions of the infinite
potential well with the shooting method

// compute energy eigenvalues and wave functions of the infinite potential well,
// -\psi’’ = E \psi ,
// with boundary conditions \psi(x=0) = \psi(x=1) = 0

[/ xkkokskokokkokk

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

[/ xkkokskokokkokk

// physics parameters and functions
[/ kkkkkkokokokk

// 'y = (\psi , \phi , E)
// £ = (\phi , -E \psi , 0)

const int N = 3; // number of components of \vec{y} and \vec{f}
double y_O[N] = { 0.0 , 1.0 , 0.0 }; // Anfangsbedingungen y(t=0).
// function computing f(y(t),t) * tau

void f_times_tau(double *y_t, double t, double *f_times_tau_, double tau)
{
if (N !'= 3)
{
fprintf (stderr, "Error: N != 3!\n");
exit (EXIT_FAILURE);
}

f_times_tau_[0] = y_t[1] * tau;
f_times_tau_[1] -y_t[2] * y_t[0] * tau;
f_times_tau_[2] 0.0;

}

[/ kkkokskkokkokk

// RK parameters
[/ kEkokkkkkokk

// #define __EULER__
// #define __RK_2ND__
// #define RK_3RD__

#define __RK_4TH__
#ifdef __EULER__
const int order = 1;
#endif

#ifdef __RK_2ND__

const int order = 2;
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#endif

#ifdef __RK_3RD__
const int order = 3;
#endif

#ifdef __RK_4TH__
const int order = 4;
#endif

// number of steps
const int num_steps = 1000;

// compute trajectory (= wave function) from t = t_0 to T = t_1
const double t_0 0.0;
const double t_1 1.0;

double tau = (t_1 - t_0) / (double)num_steps; // step size

double h = 0.000001; // finite difference for numerical derivative
double dE_min = 0.0000001; // Newton-Raphson accuracy

[/ Fkkokkkokkokk

#ifdef __EULER__

#endif
#ifdef __RK_2ND__
// RK step (2nd order), step size tau
void RK_step(double *y_t, double t, double *y_t_plus_tau, double tau)
{
int ii;
[/ *¥kkkk

// k1 = £(y(t),t) * tau

double k1[N];
f_times_tau(y_t, t, k1, tau);

// Fkxxk
// k2 = £(y(t)+(1/2)*k1 , t+(1/2)*tau) * tau
double y_[N];

for(il = 0; il < N; il++)
y_[i1] = y_t[i1] + 0.5%k1[i1];

double k2[N];
f_times_tau(y_, t + 0.5%tau, k2, tau);
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[/ *kkkk
for(il = 0; il < N; il++)
y_t_plus_taulil] = y_t[i1] + k2[i1];
#endif

#ifdef __RK_3RD__

#endif

#ifdef __RK_4TH__

#endif
[/ kkkkkokkkokk
// RK computation of the trajectory (= wave function)

double t[num_steps+1]; // discretized time
double y[num_steps+1] [N]; // discretized trajectories

double RK(bool output = false)
{

double di;

int i1, 1i2;

[/ *kkkk

// RK steps

for(il = 0; il < num_steps; il++)

{
// y(&) -=>  y(t+\taw)
RK_step(y[il], t[i1], y[i1+1], taw);
t[i1+1] = t[i1] + tau;
}
[/ *kkkk

if (output == true)

{
// output
for(il = 0; il <= num_steps; il++)
' printf("%9.61f %9.61f %9.61f %9.61f\n", t[i1], y[i1][0], y[i1][1], yl[i1l[2]);
N }
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[/ Fxxxk

return y[num_steps] [0];

}

[/ xkkokskokokkokk

int main(int argc, char *xargv)
{

int i1;

// Fkxxk

// initialize trajectories with initial conditions
t[0] = t_0;

for(il = 0; il < N; il++)
y[0]1[i1] = y_0[i1];

/] xEkkkokkkkk
[/ kEkkkkkkkk
[/ kEkkkkkkokk

// crude graphical determination of energy eigenvalues

/] xEkkkokkkkk
[/ kEkkkkkkkk
[/ xEkkkkkkokk

/*
double E_min
double E_max = 100.0;

]
o
o

double E_step = 5.0;
for(double E = E_min; E <= E_max; E += E_step)
{
// set intial condition (energy)

y[01[N-1] = E;

// RK computation of the trajectory (= wave function)
double psi_1 = RK(false);

printf("%+.5e %+.5e.\n", E, psi_1);
*/
[/ kEkkkkkkkk
/] xEkkkokkkokk
[/ Fxxrkokokkkk
/] xkkkkokkkkk
[/ Fxxrkokokkkk

[/ kEkkkkkkokk

// shooting method
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//
//

//
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//
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//
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//
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//

double E = 90.0;

ok ok ok ok okok
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/*

intial condition (energy)
double E = 10.0;

double E 40.0;

intf (stderr, "E_num = %+10.61f .\n", E);
le(1)

// change initial condition (energy)
y[0][N-1] = E;

// BK computation of the trajectory (= wave function)
double psi_1_E = RK(false);

// kkkkk

// numerical derivative (d/dh) psi(x=1)
y[0] [N-1] = E-h;

double psi_1_E_mi_h = RK(false);
y[01 [N-1] = E+h;
double psi_1_E_pl_h = RK(false);

double dpsi_1_E = (psi_1_E_pl_h - psi_1_E_mi_h) / (2.0 * h);
[/ kkkkx

// Newton-Raphson step

double dE = psi_1_E / dpsi_1_E;

if (fabs(dE) < dE_min)

break;
E = E - dE;
// kkkkk
// fprintf(stderr, "E_num = %+10.61f , E_ana = %+10.61f ,
// E, M_PI*M_PI, psi_1_E);
// fprintf(stderr, "E_num = %+10.61f , E_ana = %+10.61f ,
// E, 4.0xM_PI*M_PI, psi_1_E);
fprintf(stderr, "E_num = %+10.61f , E_ana = %+10.61f |,

E, 9.0%M_PI*M_PI, psi_1_E);

output
true);

*/

% %k 3k 3k 5k %k %k Xk Xk Xk
>k %k 3k 3k 5k %k %k %k %k k
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/] kEkkkkkkkk

return EXIT_SUCCESS;
}
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D C Code: Gauss elimination with backward substitution, dif-
ferent pivoting strategies

// solve
// Ax =D
// using Gauss elimination with backward substitution and different pivoting strategies

[/ xkkokskokokkokk

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

[/ kEkkkokkkokk

// #define __PARTIAL_PIVOTING__
#define __SCALED_PARTIAL_PIVOTING__

[/ xkkokskokokkokk

// size of A, b and x
// const int N = 4;
const int N = 100;

// matrix A (elements will be modified during computation)
double A[N][N];

// vector (elements will be modified during computation)
double b[N];

// solution
double x[N];

// permutation of rows due to pivoting
int p[N];

[/ Fxxkokkkkkk
// generates a uniformly distributed random number in [min,max]
double DRand(double min, double max)
{
return min + (max-min) * ( (rand() + 0.5) / (RAND_MAX + 1.0) );
}
[/ Fxxkokokkkkk
// print A | b
void Print()

{

int i1, i2;
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for(il = 0; il < N; il++)

{
for(i2 = 0; i2 < N; i2++)
fprintf (stdout, "%+5.21f ", A[p[i1]][i2]);
fprintf(stdout, "| %+5.21f\n", blpl[illl);
}

fprintf (stdout, "\n");
}

[/ xkkokskokokkokk

int main(int argc, char *xargv)
{

double d1, d2, d3;

int i1, i2, i3;

srand (0) ;
// srand((unsigned int)time(NULL));

[/ *kkkk
// generate random matrix A and vector b, elements in [-1.0,+1.0]

for(il = 0; il < N; il++)

{
for(i2 = 0; i2 < N; i2++)
A[i1][i2] = DRand(-1.0, +1.0);
b[i1] = DRand(-1.0, +1.0);
}

// initialize permutation of rows

for(il = 0; il < N; il++)
plil] = i1;

Print();
[/ Fxxxk
// copy matrix A und vektor b (needed at the end to investigate roundoff errors)

double A_org[N][N];
double b_org[N];

for(il = 0; il < N; il++)

{
for(i2 = 0; i2 < N; i2++)
A_orgli1]l[i2] = A[i1][i2];
b_orglil] = b[ill;
}
[/ *kkkk
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// elimination
#ifdef __SCALED_PARTIAL_PIVOTING__
// store maximum of each row of A, before elements are modified
double A_ij_max[N];
for(il = 0; il < N; il++)
{
A_ij_max[i1] = fabs(A[i1][0]1);
for(i2 = 1; i2 < N; i2++)
{

if (fabs(A[11]1[i2]) > A_ij_max[i1])
A_ij_max[i1] = fabs(A[i1][i2]);

#endif
for(il = 0; il < N-1; ii1++4)
// N-1 elimination steps
{
// determine "optimal row" according to pivoting strategy
int index = il;
#ifdef __PARTIAL_PIVOTING__
for(i2 = il1+1; i2 < N; i2++)
{
if (fabs(A[p[i2]1[i1]) > fabs(A[p[i1l]1[il1l))
index = i2;
#endif
#ifdef __SCALED_PARTIAL_PIVOTING__
dl = fabs(A[p[i1]11[i1]) / A_ij_max[p[i1l]l;
for(i2 = i1+1; i2 < N; i2++)

{
d2

fabs(A[p[i2]1[i1]1) / A_ij_max[p[i2]]1;
if(d2 > d1)
index = i2;
#endif
i2 = p[ill;
pli1] = plindex];

plindex] = i2;

[/ ®xx
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for(i2 = il+1l; i2 < N; i2++)
// for all remaining rows ...

{
di = A[p[i2]]1[i1] / Alp[i1]][i1];
Alp[i2]]1[i1] = 0.0;

for(i3 = il+1; i3 < N; i3++)
Alpl[i2]]1[i3] -= d1 * A[p[i1]11[i3];

bl[pli2]] -= d1 * b[pl[illl;
}

Print();
}

/] *kkkk
// backward substitution
for(il = N-1; i1 >= 0; i1--)
// Fr alle Komponenten von x ...
{
x[i11] = blplill];

for(i2 = il+1; i2 < N; i2++)
x[i1] -= Alpl[i1]11[i2] * x[i2];

x[i1] /= Alp[i1]][i1];
}

fprintf(stdout, "x = ( ");
for(il = 0; il < N-1; il++4)
{
fprintf (stdout, "%+5.21f ", x[il]);
}
fprintf (stdout, "%+5.21f ).\n\n", x[N-11);
// *kkkk
// check solution, investigate roundoff errors
double b_check[N];
for(il = 0; il < N; il++)
{
b_check[il] = 0.0;
for(i2 = 0; i2 < N; i2++)
b_check[i1] += A_orgli1] [i2] * x[i2];
}

fprintf (stdout, "b_check = ( ");

for(il = 0; il < N-1; il++)
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fprintf (stdout, "%+5.21f ", b_check[il]);
fprintf (stdout, "%+5.21f ).\n\n", b_check[N-1]);
fprintf(stdout, "b_check - b = ( ");
// discrepancy between original b and reconstructed b for each element

for(il = 0; il < N-1; il++)
fprintf (stdout, "%+.le ", b_check[il] - b_orgl[ill);

fprintf (stdout, "%+.le ).\n\n", b_check[N-1] - b_org[N-1]);
// norm of the discrepancy
double norm = 0.0;

for(il = 0; il < N; il++)
norm += pow(b_check[il] - b_org[il]l, 2.0);

norm = sqrt(norm) ;
fprintf (stdout, "|b_check - b| = %+.5e.\n", norm);
[/ *kkkk

return EXIT_SUCCESS;
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E C Code: eigenvalues and eigenvectors of a 10 x 10 stiffness
matrix with the Jacobi method

// compute all eigenvalues lambda and eigenvectors v of a real symmetrix matrix A,
// A v = lambda v ,
// using the Jacobi method

[/ xkkokskokokkokk

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

[/ xkkokskokokkokk
const int N = 10; // size of A

// real symmetric matrix; will be overwritten; diagonal elements will correspond to eigenvalues
double A[N]I[NI;

// matrix of eigenvectors (product of Jacobi rotations); columns will correspond to eigenvectors
double V[N]I[N];

const double epsilon = 1.0e-20; // stop iterations, if S < epsilion

[/ xkkokskokokokokk

int main(int argc, char *xargv)
{

FILE *filel;

int i1, i2, i3;

char string1[1000];

/] *kkkk
// initialize matrix A

for(il = 0; il < N; il++)
{
for(i2 = 0; i2 < N; i2++)
A[i1][i2] = 0.0;
}

for(il = 0; il < N-1; il++)
{

A[i1 1[i1 ] += 1.0;
A[i1 1[i1+1] -= 1.0;
A[i1+#1]1[i1 ] -= 1.0;
A[i1+1] [i1+1] += 1.0;

}

// /%

for(il = 0; il < N; il++)

{
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for(i2 = 0; i2 < N; i2++)
fprintf (stderr, "J+4.21f "o A[i1][i2]);

fprintf (stderr, "\n");
}
// */

// initialize eigenvector matrix

for(il = 0; il < N; il++)

{
for(i2 = 0; i2 < N; i2++)
{
if (i1l == 1i2)
V[i1][i2] = 1.0;
else
V[i1][i2] = 0.0;
}
}
/] *kkkk

// Jacobi method
int ctr = 0;
while(1)

{

// deviation from diagonal matrix

double S

0.0;

for(il = 0; il < N; il++)

{
for(i2 = 0; i2 < i1l; i2++)
S += pow(A[i1][i2], 2.0);
}
S x= 2.0;

fprintf (stderr, "S = J%.5e.\n", S);

if (S <= epsilon)
break;

[/ wx*kk

ctr++;
fprintf (stderr, "sweep %4d ...\n", ctr);

// sweep over all off-diagonal elements ...

for(il = 0; il < N; i1++)
{
for(i2 = 0; i2 < il; i2++)
{
if (fabs(A[i1]1[i2]) < epsilon / (double) (N*N))
// avoid divison by "almost 0.0"
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continue;

// theta

double theta = 0.5 * (A[i2][i2] - A[i1][i1]) / A[i1][i2];

//t
double t

]
e

if (theta < 0.0)

t = -t;
// ¢, s

double ¢ = 1
double s =t * c;
// tau

double tau = s / (1.0 + ¢);
// Jacobi rotation

// matrix A

.0 / (fabs(theta) + sqrt(pow(theta, 2.0) + 1.0));

.0 / sqrt(pow(t, 2.0) + 1.0);

double A_pp = A[i1][i1] - t * A[i1][i2];
double A_qq = A[i2][i2] + t * A[i1][i2];

double A_rp[N], A_rq[N];

for(i3 = 0; i3 < N; i3++)
{
if (i3 !'= i1 && i3 !'= i2)
{
A_rp[i3]
A_rq[i3]
}
}

Ali1]1[i2]
A[i2][i1]
A[i1][i1]
Ali2][i2]

won n
= = O O

for(i3 = 0; i3 < N; i3++)
{
if (i3 != il && i3 !'= i2)
{
A[i3][i1] = A_rp[i3];

A[i1]1[i3] = A_rp[i3];

A[i3][12] = A_rql[i3];

A[i2] [13] = A_rql[i3];
}

}
// eigenvector matrix
double V_rp[N], V_rq[N];

for(i3 = 0; i3 < N; i3++)
{

A[i3][i1] - s * (A[i3][i2] + tau * A[i3][i1]);
A[i3]1[i2] + s = (A[i3]1[i1] - tau * A[i3]1[i2]);
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V[i31[i1] - s * (V[i3]1[i2] + tau = V[i3][i1l);

V_rp[i3]

V_rql[i3] = V[i3]1[i2] + s * (V[i3]1[i1] - tau * V[i3][i2]);
}
for(i3 = 0; i3 < N; i3++)
{
V[i3] [i1] = V_rp[i3];
V[i3] [i2] = V_rq[i3];
}
}
}
/] /*
for(il = 0; i1l < N; il++)
{
for(i2 = 0; i2 < N; i2++)
fprintf (stderr, "%+4.21f ", A[i1]1[i2]);
fprintf (stderr, "\n");
}
/] */
}
/] *kkkk

for(il = 0; il < N; il++)

{
fprintf(stderr, "\nlambda_%02d = %+10.61f.\n", i1, A[i1][i1]);
fprintf (stderr, "v_j%02d = ( ", il);

for(i2 = 0; i2 < N; i2++)

{
fprintf (stderr, "+5.21f", V[i2][i1]);
if(i2 < N-1)
fprintf(stderr, " , ");
else
fprintf (stderr, " ).\n");
}
}
/] *kkkk

return EXIT_SUCCESS;
}
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