Numerische Methoden der Physik
 WiSe 2023-2024 - Prof. Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de
LASSE MÜLLER: lmueller@itp.uni-frankfurt.de

Exercise sheet 2

To be handed in on the 25.10.23 and discussed on 27.10.23 and 30.10.23

Exercise 1 [Golden ratio]

(i) It is well known, that the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ is the limit of the ratio of consecutive Fibonacci numbers $F(n-1)$ and $F(n)$. Write a short program to calculate

$$
\delta(n) \equiv \frac{F(n)}{F(n-1)}-\varphi
$$

and plot $\delta(n)$ as function of n. How does the plot change using single and double precision? What happens for large n ?
(ii) Prove that, for any value of n,

$$
\phi_{ \pm}^{n+1}=\phi_{ \pm}^{n-1}-\phi_{ \pm}^{n}
$$

where

$$
\phi_{ \pm}=\frac{-1 \pm \sqrt{5}}{2}
$$

(iii) Implement a short program to calculate the first 20 powers of $\phi_{ \pm}$
(a) both using the iterative formula given above
(b) and raising $\phi_{ \pm}$directly to the given power.

Repeat both strategies in single and double precision. Can you explain what happens?

Exercise 2 [Third order Runge-Kutta method]
(10 pts.)
Consider the differential equation $\dot{y}(t)=f(t, y)$, with f being at least 2-times differentiable. The Runge-Kutta method is a numerical procedure to iteratively obtain an approximate solution for $y(t)$. Show that for a given time t the thirdorder Runge-Kutta expression for the new time $t+\tau$ for small τ
$y(t+\tau)=y(t)+\frac{1}{6}\left(k_{1}+4 k_{2}+k_{3}\right) \quad$ with $\quad\left\{\begin{array}{l}k_{1}=f(t, y) \tau \\ k_{2}=f\left(t+\frac{\tau}{2}, y+\frac{1}{2} k_{1}\right) \tau \\ k_{3}=f\left(t+\tau, y-k_{1}+2 k_{2}\right) \tau\end{array}\right.$
is equivalent to the Taylor expansion

$$
y(t+\tau)=y(t)+\tau \frac{d y}{d t}+\frac{\tau^{2}}{2} \frac{d^{2} y}{d t^{2}}+\frac{\tau^{3}}{6} \frac{d^{3} y}{d t^{3}}+\mathcal{O}\left(\tau^{4}\right)
$$

Use the Taylor expansion of a function g of two variables (u, v) around a given point (a, b)

$$
g(u, v)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(u-a)^{n}(v-b)^{m}}{n!m!}\left(\frac{\partial^{n+m} g}{\partial u^{n} \partial v^{m}}\right)_{(u, v)=(a, b)}
$$

and consider to use the simplified notation

$$
y(t) \equiv y, \quad f(t, y) \equiv f, \quad \frac{\partial f}{\partial t} \equiv f_{t} \quad \text { and } \quad \frac{\partial f}{\partial y} \equiv f_{y}
$$

For example,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \equiv f_{t}+f_{y} f
$$

