Numerische Methoden der Physik

WiSe 2023-2024 – Prof. Marc Wagner

MICHAEL EICHBERG: eichberg@itp.uni-frankfurt.de LASSE MÜLLER: lmueller@itp.uni-frankfurt.de

Exercise sheet 2

To be handed in on the 25.10.23 and discussed on 27.10.23 and 30.10.23

Exercise 1 [Golden ratio]

(3+2+5=10 pts.)

(i) It is well known, that the golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$ is the limit of the ratio of consecutive Fibonacci numbers F(n-1) and F(n). Write a short program to calculate

$$\delta(n) \equiv \frac{F(n)}{F(n-1)} - \varphi$$

and plot $\delta(n)$ as function of n. How does the plot change using single and double precision? What happens for large n?

(ii) Prove that, for any value of n,

$$\phi_{\pm}^{n+1} = \phi_{\pm}^{n-1} - \phi_{\pm}^{n} ,$$

where

$$\phi_{\pm} = \frac{-1 \pm \sqrt{5}}{2} \ .$$

- (iii) Implement a short program to calculate the first 20 powers of ϕ_+
 - (a) both using the iterative formula given above
 - (b) and raising ϕ_{\pm} directly to the given power.

Repeat both strategies in single and double precision. Can you explain what happens?

Exercise 2 [Third order Runge-Kutta method]

(10 pts.)

Consider the differential equation $\dot{y}(t) = f(t,y)$, with f being at least 2-times differentiable. The Runge-Kutta method is a numerical procedure to iteratively obtain an approximate solution for y(t). Show that for a given time t the third-order Runge-Kutta expression for the new time $t + \tau$ for small τ

$$y(t+\tau) = y(t) + \frac{1}{6} (k_1 + 4k_2 + k_3) \quad \text{with} \quad \begin{cases} k_1 = f(t, y) \tau \\ k_2 = f\left(t + \frac{\tau}{2}, y + \frac{1}{2} k_1\right) \tau \\ k_3 = f(t+\tau, y - k_1 + 2 k_2) \tau \end{cases}$$

is equivalent to the Taylor expansion

$$y(t+\tau) = y(t) + \tau \frac{dy}{dt} + \frac{\tau^2}{2} \frac{d^2y}{dt^2} + \frac{\tau^3}{6} \frac{d^3y}{dt^3} + \mathcal{O}(\tau^4)$$
.

Produced with the ExerciseHandler

Use the Taylor expansion of a function g of two variables (u,v) around a given point (a,b)

$$g(u,v) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(u-a)^n (v-b)^m}{n! \, m!} \left(\frac{\partial^{n+m} g}{\partial u^n \partial v^m}\right)_{(u,v)=(a,b)}$$

and consider to use the simplified notation

$$y(t) \equiv y$$
, $f(t,y) \equiv f$, $\frac{\partial f}{\partial t} \equiv f_t$ and $\frac{\partial f}{\partial y} \equiv f_y$.

For example,

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{dy}{dt} \equiv f_t + f_y f .$$