Numerische Methoden der Physik
 WiSe 2023-2024 - Prof. Marc Wagner

Michael Eichberg: eichberg@itp.uni-frankfurt.de
LASSE MÜLLER: lmueller@itp.uni-frankfurt.de

Exercise sheet 3

To be handed in on 01.11.23 and discussed on 03.11.23 and 06.11.23.

Exercise 1 [Pendulum motion]

Consider the so-called simple pendulum (mass m and length l), with gravitational force, $\vec{F}=-m g \vec{e}_{z}$. The angle ϕ describes the angular displacement of the pendulum from the neutral position $\phi=0$. Consider in the following an initial displacement $\phi(t=0)=\phi_{0}$ and vanishing velocity $\dot{\phi}(t=0)=0$.
(i) Derive the equation of motion of the pendulum.
(ii) Solve analytically the equation of motion assuming $\phi_{0} \ll 1$.
(iii) Implement the $4^{\text {th }}$ order Runge-Kutta method discussed in the lecture, to solve the equation of motion obtained in task (i). Discuss in detail the usual preparatory steps to solve a second order ordinary differential equation with Runge-Kutta methods? What would you do if you had to solve a higher order ordinary differential equation?
(iv) Test your code for small-angles. Study several small values for ϕ_{0} and compare the numerical solution to the previously calculated analytical solution.
(v) Use your program to solve the equation of motion for initial conditions $\phi_{0} \in\left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}\right\}$. Calculate the motion $\phi(t)$ for at least a complete period of the pendulum. Compare again your analytical solution with the numerical one. Can you explain the discrepancy?
(vi) Set $\phi_{0}=\frac{\pi}{2}$ and design and implement a way to calculate the period of the pendulum. Provide an error estimate for your result.

