Numerische Methoden der Physik

WiSe 2023-2024 – Prof. Marc Wagner

MICHAEL EICHBERG: eichberg@itp.uni-frankfurt.de LASSE MÜLLER: lmueller@itp.uni-frankfurt.de

Exercise sheet 8

To be handed in on 06.12.2023 and discussed on 08.12.2023 and 11.12.2023.

Exercise 1 [Condition number and preconditioning] (2+6=8 pts.)

(i) Construct a 2×2 and a 3×3 symmetric and positive definite matrix with large condition number

$$\operatorname{cond}(A) = \frac{\max_{j}(\lambda_{j})}{\min_{j}(\lambda_{j})} > 10^{5},$$

with eigenvalues λ_i .

(ii) Consider the sparse, symmetric and positive definite $N \times N$ matrix

$$A_{ij} = \begin{cases} \frac{1}{i+j-1} & \text{if } i = j \text{ or } (i \mod 100 = 0 \text{ and } j \mod 100 = 0) \\ 0 & \text{else} \end{cases}$$
 (1)

Construct a Matrix $\tilde{A} \approx A$, such that $\operatorname{cond}(\tilde{A}^{-1}A) \approx 1$. Solve the system of linear equations,

$$A\mathbf{x} = \mathbf{b}$$
 with $\mathbf{b} = (1, 1, ..., 1)^T$ (2)

once directly and once with preconditioning. Compare the performance difference with and without preconditioning for N=101,501,1001, i.e. count the number of iterations to reach a given precision.

Exercise 2 [Integration in 1D] (5+5+2=12 pts.)

Consider the integral

$$I^{(k)} = \int_0^{\pi} dx \, \frac{\sin(kx)}{kx} \cos(x),$$

with $i = 0, 1, 2 \dots$

- (i) Compute $I^{(k)}$ using the iterated trapezoidal rule with step size $h_n = \pi/n$, $n = 2^{10}, 2^{11}, \dots, 2^{30}$ for k = 0, 1, 10, 50. Create a double logarithmic plot of $I_{\text{trpz.}}^{(k)}(h_n)$ and describe what you observe.
- (ii) Repeat task (i) using the iterated Simpson rule. How does the result $I_{\text{Simps.}}^{(k)}(h_n)$ compare to $I_{\text{trpz.}}^{(k)}(h_n)$?
- (iii) What problem occurs for large k, when numerically computing $I^{(k)}$?