Numerische Methoden der Physik
 WiSe 2023-2024 - Prof. Marc Wagner
 Michael Eichberg: eichberg@itp.uni-frankfurt.de
 LASSE MÜLLER: lmueller@itp.uni-frankfurt.de

Exercise sheet 8

To be handed in on 06.12.2023 and discussed on 08.12.2023 and 11.12.2023.

Exercise 1 [Condition number and preconditioning]
(2+6=8 pts.)
(i) Construct a 2×2 and a 3×3 symmetric and positive definite matrix with large condition number

$$
\operatorname{cond}(A)=\frac{\max _{j}\left(\lambda_{j}\right)}{\min _{j}\left(\lambda_{j}\right)}>10^{5}
$$

with eigenvalues λ_{j}.
(ii) Consider the sparse, symmetric and positive definite $N \times N$ matrix

$$
A_{i j}=\left\{\begin{array}{cl}
\frac{1}{i+j-1} & \text { if } i=j \text { or }(i \bmod 100=0 \text { and } j \bmod 100=0) \tag{1}\\
0 & \text { else }
\end{array}\right.
$$

Construct a Matrix $\tilde{A} \approx A$, such that $\operatorname{cond}\left(\tilde{A}^{-1} A\right) \approx 1$. Solve the system of linear equations,

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \quad \text { with } \mathbf{b}=(1,1, \ldots, 1)^{T} \tag{2}
\end{equation*}
$$

once directly and once with preconditioning. Compare the performance difference with and without preconditioning for $N=101,501,1001$, i.e. count the number of iterations to reach a given precision.

Exercise 2 [Integration in 1D]
($5+5+2=12 \mathrm{pts}$.
Consider the integral

$$
I^{(k)}=\int_{0}^{\pi} d x \frac{\sin (k x)}{k x} \cos (x)
$$

with $i=0,1,2 \ldots$
(i) Compute $I^{(k)}$ using the iterated trapezoidal rule with step size $h_{n}=\pi / n$, $n=2^{10}, 2^{11}, \ldots, 2^{30}$ for $k=0,1,10,50$. Create a double logarithmic plot of $I_{\text {trpz. }}^{(k)}\left(h_{n}\right)$ and describe what you observe.
(ii) Repeat task (i) using the iterated Simpson rule. How does the result $I_{\text {Simps. }}^{(k)}\left(h_{n}\right)$ compare to $I_{\text {trpz. }}^{(k)}\left(h_{n}\right)$?
(iii) What problem occurs for large k, when numerically computing $I^{(k)}$?

