Exercise sheet 12

To be handed in on 17.01.2024 and discussed on 19.01.2024 and 22.01.2024.

Exercise 1 [Equivalence between the standard error and the jackknife error] (4 pts.)

For a set of measurements $f^{(1)}, \dots f^{(S)}$, the mean value f and error σ can be estimated via

$$f = \frac{1}{S} \sum_{s=1}^{S} f^{(s)}, \qquad \sigma = \left(\frac{1}{S(S-1)} \sum_{s=1}^{S} (f^{(s)} - f)^2\right)^{1/2}.$$

In the jackknife method, the $f^{(s)}$ are combined to reduced samples

$$a^{(s)} = \frac{1}{S-1} \sum_{r \neq s} f - f^{(r)},$$

with jackknife mean and jackknife error

$$a = \frac{1}{S} \sum_{s=1}^{S} a^{(s)}, \qquad \sigma^{\text{red.}} = \left(\frac{S-1}{S} \sum_{s=1}^{S} (a^{(s)} - a)^2\right)^{1/2}.$$

Show that, in this particular case, the jackknife method is equivalent to the standard method, i.e.

$$f = a$$
 and $\sigma = \sigma^{\text{red.}}$.

Explain, why in other cases, the equation for f and σ cannot be applied and the jackknife method is mandatory. Discuss in this context briefly the computation of $\ln(f)$ (mean value and error), as well as a χ^2 -minimization fit to data points (mean values and errors of the fit parameters).

Exercise 2 [Minimization of a paraboloid] (6 + 4 + 6 = 16 pts.)

(i) Implement the golden section search to minimize a 1-dimensional function f(x) for a given starting interval $[a^{(0)},c^{(0)}]$ with $c^{(0)}>a^{(0)}$. Choose the intermediate point b as given in the script, by fixing $w=(3-\sqrt{5})/2$. Terminate the procedure, if the condition

$$c-a < \tau$$

with $\tau=10^{-5}$, is fulfilled, or N=100 iterations have passed. Test your implementation by minimizing the parabola

$$f(x) = x^2 + 1$$
,

with $a^{(0)}=-1$ and $c^{(0)}=1$. Present the evolution of a and c in one common plot and discuss your observations.

- (ii) Repeat task (i), but instead of fixing $w = (3 \sqrt{5})/2$, use $b^{(0)} = -0.1$ to compute $y^{(0)}$ and determine $(a, b, c) \to (a', b', c')$ with the criteria from the lecture. How has the evolution of a and c changed?
- (iii) Now, consider the D=2 dimensional paraboloid

$$g(x,y) = \frac{x^2 + y^2 + 2xy}{2h_1^2} + \frac{x^2 + y^2 - 2xy}{2h_2^2},$$

with $h_1 = 100$ and $h_2 = 0.01$.

Minimize g, by repeating 1-dimensional minimizations along straight lines parametrized by

$$s_{2i}(t) = r_{2i} + tp_1$$
 and $s_{2i+1}(t) = r_{2i+1} + tp_2$,

with
$$p_1 = (1,0)$$
, $p_2 = (0,1)$ and $i = 0,1,...$

Start the first minimization at $r_0 = (0, 1)^t$. For this, find a way to algorithmically select two points a_0 , c_0 on $s_0(t)$, such that the minimum x_0^{\min} of $g(x, y)|_{(x,y) \in s_0}$ is in between.

Repeat the process to find the minima x_i^{\min} of $g(x,y)|_{(x,y)\in s_i}$ with $r_i = x_{i-1}^{\min}$, until you find the minimum of g within machine precision. How many iterations do you need?

Are p_1 and p_2 as given above efficient choices for search directions? What is the ideal search direction p_2 for step 2?