Numerische Methoden der Physik
 WiSe 2023-2024 - Prof. Marc Wagner
 Michael Eichberg: eichberg@itp.uni-frankfurt.de
 LASSE MÜLLER: lmueller@itp.uni-frankfurt.de

Exercise sheet 12

To be handed in on 17.01.2024 and discussed on 19.01.2024 and 22.01.2024.

Exercise 1 [Equivalence between the standard error and the jackknife error] (4 pts.)
For a set of measurements $f^{(1)}, \ldots f^{(S)}$, the mean value f and error σ can be estimated via

$$
f=\frac{1}{S} \sum_{s=1}^{S} f^{(s)}, \quad \sigma=\left(\frac{1}{S(S-1)} \sum_{s=1}^{S}\left(f^{(s)}-f\right)^{2}\right)^{1 / 2}
$$

In the jackknife method, the $f^{(s)}$ are combined to reduced samples

$$
a^{(s)}=\frac{1}{S-1} \sum_{r \neq s} f-f^{(r)}
$$

with jackknife mean and jackknife error

$$
a=\frac{1}{S} \sum_{s=1}^{S} a^{(s)}, \quad \sigma^{\text {red. }}=\left(\frac{S-1}{S} \sum_{s=1}^{S}\left(a^{(s)}-a\right)^{2}\right)^{1 / 2}
$$

Show that, in this particular case, the jackknife method is equivalent to the standard method, i.e.

$$
f=a \quad \text { and } \quad \sigma=\sigma^{\mathrm{red}}
$$

Explain, why in other cases, the equation for f and σ cannot be applied and the jackknife method is mandatory. Discuss in this context briefly the computation of $\ln (f)$ (mean value and error), as well as a χ^{2}-minimization fit to data points (mean values and errors of the fit parameters).

Exercise 2 [Minimization of a paraboloid]
$(6+4+6=16$ pts. $)$
(i) Implement the golden section search to minimize a 1-dimensional function $f(x)$ for a given starting interval $\left[a^{(0)}, c^{(0)}\right]$ with $c^{(0)}>a^{(0)}$. Choose the intermediate point b as given in the script, by fixing $w=(3-\sqrt{5}) / 2$. Terminate the procedure, if the condition

$$
c-a<\tau
$$

with $\tau=10^{-5}$, is fulfilled, or $N=100$ iterations have passed. Test your implementation by minimizing the parabola

$$
f(x)=x^{2}+1,
$$

with $a^{(0)}=-1$ and $c^{(0)}=1$. Present the evolution of a and c in one common plot and discuss your observations.
(ii) Repeat task (i), but instead of fixing $w=(3-\sqrt{5}) / 2$, use $b^{(0)}=-0.1$ to compute $y^{(0)}$ and determine $(a, b, c) \rightarrow\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ with the criteria from the lecture. How has the evolution of a and c changed?
(iii) Now, consider the $D=2$ dimensional paraboloid

$$
g(x, y)=\frac{x^{2}+y^{2}+2 x y}{2 h_{1}^{2}}+\frac{x^{2}+y^{2}-2 x y}{2 h_{2}^{2}}
$$

with $h_{1}=100$ and $h_{2}=0.01$.
Minimize g, by repeating 1-dimensional minimizations along straight lines parametrized by

$$
\boldsymbol{s}_{2 i}(t)=\boldsymbol{r}_{2 i}+t \boldsymbol{p}_{1} \quad \text { and } \quad \boldsymbol{s}_{2 i+1}(t)=\boldsymbol{r}_{2 i+1}+t \boldsymbol{p}_{2}
$$

with $\boldsymbol{p}_{1}=(1,0), \boldsymbol{p}_{2}=(0,1)$ and $i=0,1, \ldots$
Start the first minimization at $\boldsymbol{r}_{0}=(0,1)^{t}$. For this, find a way to algorithmically select two points $\boldsymbol{a}_{0}, \boldsymbol{c}_{0}$ on $\boldsymbol{s}_{0}(t)$, such that the minimum $\boldsymbol{x}_{0}^{\min }$ of $\left.g(x, y)\right|_{(x, y) \in s_{0}}$ is in between.
Repeat the process to find the minima $\boldsymbol{x}_{i}^{\min }$ of $\left.g(x, y)\right|_{(x, y) \in s_{i}}$ with $\boldsymbol{r}_{i}=$ $\boldsymbol{x}_{i-1}^{\min }$, until you find the minimum of g within machine precision. How many iterations do you need?

Are \boldsymbol{p}_{1} and \boldsymbol{p}_{2} as given above efficient choices for search directions? What is the ideal search direction \boldsymbol{p}_{2} for step 2 ?

