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Abstract

I compute correlation functions corresponding to the Λb and the Ωb

baryon with Wilson twisted mass lattice QCD with 2 flavors of sea quarks.
To that end I will derive an expression for the correlation function that
can be evaluated numerically on a computer. In contrast to a recent work
[1, 2], where stochastic timeslice propagators have been used, I will use
the point source method to generate the light quark propagators. I will
discuss the results of my computation and will compare them to the results
of [1, 2]





Zusammenfassung

Ich berechne die Korrelationsfunktionen, die den Baryonen Λb und Ωb

entsprechen, mithilfe der ”twisted Mass lattice QCD”mit 2 flavors von
See-Quarks. Dazu leite ich einen Ausdruck für die Korrelationsfunktion
her, der mit einem Computer numerisch ausgewertet werden kann. Im
Gegensatz zu der früheren Arbeit [1, 2], in der stochastische ”timeslice-
Propagatoren benutzt wurden, benutze ich die ”point source”Methode zur
Erzeugung der Propagatoren der leichten Quarks. Anschliessend werde
ich meine Ergebnisse vorstellen und sie mit den Ergebnissen aus [1, 2]
vergleichen
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1 INTRODUCTION

1 Introduction

A baryon is a bound system consisting of three valence quarks. A fascinating
feature of baryons and also mesons is that their masses are far larger than the
sum of the masses of their individual components. For example the up and
down quarks contribute less than 5% to the mass of the proton. The remaining
95% arise from the interaction of quarks and gluons inside the proton. These
interactions are described by Quantum Chromo Dynamics(QCD).
In this work lattice QCD is used to compute the masses of so called bottom- or b-
baryons, consisting of a bottom quark and two lighter quarks, in this case of the
flavors up, down and strange. To make computations feasible the bottom quark
will be considered static. Calculations on the same subject were done before in
[1, 2] using so called stochastic timeslice propagators. A more recent study [3]
showed that in computations for mesons, the so called point source method was
performing far better than the timeslice method regarding the statistical errors
of the computation. To find out whether this is also true for static baryons,
I will perform computations using the point source method and compare my
results with those obtained in [1, 2]
This work was done in close collaboration with another bachelor student, who
focused on different aspects of the same problem. Therefore, some aspects of it,
especially the derivation of the baryon creation operators used in the following,
can be found in his thesis [4] in more detail.
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2 QCD AND LATTICE QCD

2 QCD and lattice QCD

2.1 Quantum Chromo Dynamics

The fields used in Quantum Chromo Dynamics (QCD) are the fermionic quark
fields ψcA, interacting with each other via bosonic gluons Aµ, the gauge fields
of QCD. In the following, capital letters A,B,C denote the spin indices, small
letters a, b, c the colour indices and µ, ν the spacetime indices. The gluon field
Aµ is actually of the form Aµ = Aaµ

σa

2 , where σa are the generators of the SU(3)
Lie-Algebra.

QCD can be defined by the action:

SQCD
[
ψ, ψ̄, Aµ

]
=

∫
d4x LQCD

[
ψ, ψ̄, Aµ

]
(2.1)

where

LQCD
[
ψ, ψ̄, Aµ

]
=
∑
f

Lf
[
ψ, ψ̄, Aµ

]
+ LG [Aµ] (2.2)

According to the gauge principle, the action SQCD is constructed to be invariant
under local transformations G(x) ∈ SU(3). The Lagrangian LQCD consists of
the individual Lagrangians Lf of every fermionic field in the system (cf. [5]):

Lf
[
ψ, ψ̄, Aµ

]
= ψ̄f (iγµDµ +mf )ψf (2.3)

Dµ = (∂µ − igAµ) (2.4)

As the strong interaction between quarks is described by Aµ, (2.3) and (2.4) are
not only dependent on the fermionic fields but on the gauge field as well. The
last term in (2.2) describes the dynamics of the gauge field itself and is given
by (cf. [5]):

LG [Aµ] =
1

2
Tr (FµνFµν) (2.5)

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] (2.6)

2.2 Path Integral Formalism

The fundamental observables calculated in this work are so called correlation
functions and are of the following structure:

〈Ω|T{O1(x1, t1)...On(xn, tn)}|Ω〉
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2.3 MASS DETERMINATION

Here T denotes the time ordering operator, which orders the field operators On
in descending order of their time argument tn. Correlation functions can be
formulated as a path integral, which is derived in great detail in [5]:

〈Ω|T{O1...On}|Ω〉 =
1

Z

∫
DψDψ̄DAµO1...One−SE [ψ,ψ̄,Aµ] (2.7)

Z =

∫
DψDψ̄DAµe

−SE [ψ,ψ̄,Aµ] (2.8)

Note that on the right-hand side of (2.7), O,Ψ, Ψ̄, Aµ are no longer field oper-
ators but classical fields. The integration DψDψ̄DAµ denotes an integration
over all possible configurations of these fields:

DψDψ̄DAµ :=
∏

α,β,µ,x

Dψα(x)Dψ̄β(x)DAµ(x)

Path integrals of the following type can be solved analytically using the grass-
mann properties of the fermionic fields ψ, ψ̄, as described in [5]:

1

Z

∫
DψDψ̄ ψαψ̄βe

−ψ̄λKλδψδ = K−1
αβ (2.9)

As the fermionic quark action in QCD is of the form ψ̄λKλδψ̄δ, the fermionic
two point correlation function is also described by the following expression:

〈Ω|ψ(x1)ψ̄(x2)(|Ω〉 =
1

Z

∫
DψDψ̄ ψ(x1)ψ̄(x2)e−

∫
dx4dy4ψ̄(x)K(x,y)ψ(y)

= K−1(x1, x2)

≡ ∆(x1, x2)

(2.10)

Where

K(x1, x2) = (γµDµ +m) δ(x1 − x2) (2.11)

This two point function is called propagator (cf. [5]) and is abbreviated by ∆.

2.3 Mass determination

Consider the following correlation function with an arbitrary field operator O

〈Ω|O†(t)O(0)|Ω〉

Where the time evolution of O is described by:

O(t) = e−HtO(0)eHt (2.12)
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2.3 MASS DETERMINATION

By inserting a complete set of energy-eigenstates on both sides of O(t), one can
bring the correlation function to the following form:

〈Ω|O†(t)O(0)|Ω〉 =
∑
n

〈Ω|eHtO†e−Ht|n〉〈n|O|Ω〉

=
∑
n

〈Ω|O†|n〉〈n|O|Ω〉e−(En−EΩ)t

=
∑
n

|〈n|O|Ω〉|2e−(En−EΩ)t

(2.13)

Note that if |n〉 and O|Ω〉 do not have the same quantum numbers, 〈n|O|Ω〉 will
vanish.
If there is a finite gap between the energy states, the exponential will strongly
suppress the n > 1 terms in the sum for larger t and, assuming (E0 < E1 <
E2 ...), for t→∞:

lim
t→∞
〈Ω|O†(t)O(0)|Ω〉 = |〈Ω|O|0〉|2e−(E0−EΩ)t = C · e−∆Et (2.14)

∆E is the energy difference between the vacuum and and the lightest state |0〉
with the same quantum numbers as the trial state O|Ω〉. Therefore |0〉 is a
single particle state with the mass ∆E. By calculating (2.12) and analyzing its
time evolution, one can thus extract the mass of a particle. In practice, one can
only evaluate (2.12) for finite times. Therefore the so called effective mass is
used in this work:

meff(t) = ln

(
C(t)

C(t+ 1)

)
(2.15)

where

m = lim
t→∞

meff(t) (2.16)
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2.4 LATTICE QCD

2.4 Lattice QCD

Because (2.7) cannot be solved analytically, numerical methods are used to
perform path integrals. In order to do so, one has to discretize the continuous
spacetime by a lattice with a finite distance a between neighbouring sites:

1. xµ → anµ, nµ ∈ Z

2. ψ(x)→ ψ(n)

3.

∫
d4x→ a4

∑
n

However, discretizing Aµ breaks the gauge invariance of the action. Therefore
one uses so called links:

U(x, y) = exp

(
ig

∫ y

x

dzµ Aµ(z)

)
(2.17)

The following notation is common:

Uµ(n) ≡ U(n, n+ µ̂) (2.18)

With links, covariant derivatives on a lattice can be defined by (cf. [5]):

∇µψ(n) = 1
a

(
U†µ(n)ψ(n+ µ̂)− ψ(n)

)
(2.19)

∇∗µψ(n) = − 1
a

(
U†−µ(n)ψ(n− µ̂)− ψ(n)

)
(2.20)

In the continuum limit a → 0 the lattice action should converge to the contin-
uum action (2.2). This condition leaves some amount of freedom as several such
lattice actions can be constructed, which converge to SQCD.

A straight forward lattice action for fermions could be:

Sf
[
ψ, ψ̄, U

]
= a4

∑
n

·ψ̄f (n)

(
1

2
γµ(∇µ +∇∗µ) +m

)
ψf (n) (2.21)

However, with this action additional fermionic flavors not present in the physical
action arise. This is known as the fermion doubling problem. To get rid of these
additional flavors an additional term, which vanishes for a→ 0, is added. This
leads to the so called Wilson fermionic action.

S
(W )
F

[
ψ, ψ̄, U

]
= a4

∑
n

ψ̄(n)(DW +m)ψ(n) (2.22)

DW = 1
2γµ(∇µ +∇∗µ) + ar

2 ∇µ∇
∗
µ (2.23)
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2.5 WILSON TWISTED MASS FERMIONS

In this work, a variant of this action, the Wilson twisted mass action is used (cf.
subsection 2.5).Further details on the doubling problem can be found in [5].

As Uµ replaces Aµ on the lattice, a discretization of the gauge action (2.5) is
needed in terms of link variables. A common choice for the gauge action is (cf.
[5]):

SG [U ] =
∑
n

2

g2
Tr

[
1− 1

2

(
Uµν(n) + U†µν(n)

)]
(2.24)

where Uµ,ν are so called Plaquettes:

Uµν(n) = Uµ(n)Uν(n+ µ̂)U†µ(n+ ν̂)U†ν (n) (2.25)

Note that because of the definition of Uµ in (2.17), in the continuum limit a→ 0
the action SG [U ] converges to the continuum gauge action defined by (2.5).

2.5 Wilson Twisted Mass Fermions

The following fermion action is the so called Wilson twisted mass action

SF [χ, χ̄, U ] = a4
∑
n

χ̄(DW +m+ iµγ5τ3)χ (2.26)

where χ = (χu, χd), µ is the so-called twisted mass and τ3 is the 3rd pauli matrix
in (u,d) flavor space. This action converges in the continuum limit a→ 0, and
after a coordinate transformation, the so called twist rotation

ψ = exp
(
i
ω

2
γ5τ3

)
χ, ψ̄ = χ̄ exp

(
i
ω

2
γ5τ3

)
(2.27)

to the fermionic continuum action Sf corresponding to (2.3).

χ, χ̄ are called the twisted basis and ψ̄, ψ physical basis. At maximal twist,corresponding
to ω = π

2 , a computation with the twisted mass action yields discretization er-
rors, wich are only O(a2).
The twisted mass action (2.26) is only defined for flavor doublets. In order to
use the twisted mass formalism for strange quarks as well, a partially quenched
setup is used as in [3]. In this setup, valence strange quarks correspond to a
mass degenerate twisted mass doublet:

s→ s =

(
s+

s−

)
(2.28)

Either s+ or s− is chosen to represent the strange quark. Note that s+ and s−
are only identical in the continuum limit. This method only provides strange
valence quarks, strange sea quarks are neglected in this work.
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3 CORRELATION FUNCTION

3 Correlation function

3.1 baryon creation operators

The baryons investigated in this thesis are mainly Ωb and Λb. The operators
used here to create the corresponding trial states are derived in detail in [4].
These operators are of the following general structure:

O = εabcQa
(
(ψb1)TCΓ(ψc2)

)
(3.1)

Q is the static bottom quark field, ψ1, ψ2 are the two light quark fields and
C = γ0γ2 is the charge conjugation matrix. Γ is a matrix in Dirac space which
ensures that O|Ω〉 has the desired quantum numbers of the baryons. As a static
quark spin is not involved in any interactions, the spin structure of the bottom
quark will not be considered

QaA ≡ Qa

Q̄aA ≡ Q†
a

For the same reason it is appropriate to label the baryons with the total angular
momentum j of the two light quarks. The individual quantum numbers as well
as the corresponding Γ matrices are shown in table 1:

state Γ ψ1ψ2 P Iz j
Λb γ5 ud− du + 0 0
Ωb γj ss + 0 1

bss γ0 γ0 ss − 0 0

Table 1: quantum numbers of investigated states, according to [4]

The last operator in the list corresponds to a state not yet observed experimen-
tally. It will be denoted by bss γ0 in this work.

3.2 the correlation function

With the structure of the operators O known, one can evaluate (2.12):

C(t) = 〈Ω|O†(t)O(0)|Ω〉 (3.2)

The (...)
†

operation leads to the following operator O†(t):

O† = εabc[Qa
(
(ψb1)TCΓ(ψc2

)
]†

= εabc[(ψc2)†(CΓ)†(ψb1)†
T
Qa†]

= εabc[(ψ̄c2)γ0(CΓ)†γ0(ψ̄b1)
T
Q̄a]

= ±εabc[(ψ̄c2)(CΓ)†(ψ̄b1)
T
Q̄a]

(3.3)
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3.2 THE CORRELATION FUNCTION

The sign in the last step depends on Γ. A list of signs for the individual O† is
found in table 2:

Γ sign
γ0 +
γ1 +
γ2 −
γ3 +
γ5 +

Table 2: signs of investigated O†

This leads to the following correlation function:

C(t)

= ±εabcεdef
〈

¯(ψc2)C(CΓ)CB
¯(ψb1)

T

BQ̄
aQd(ψe1)TE(CΓ)EF (ψf2 )F

〉
= ±εabcεdef

〈
QdQ̄a(CΓ)CB(ψe1)TE

¯(ψb1)
T

B(CΓ)EF (ψf2 )F ¯(ψc2)C

〉
= ±εabcεdef

〈
(∆ad

Q )(CΓ)CB(∆be
1 )BE(CΓ)EF (∆cf

2 )FC

〉
U

= ±εabcεdef
〈

(∆ad
Q )TrSpin(CΓ∆be

1 CΓ∆cf
2 )

〉
U

(3.4)

I made the following abbreviation:〈
...
〉

=̂ 1
Z

∫
DQDQ̄Dψ1Dψ̄1Dψ2Dψ̄2DUe

−SQCD

In the third step I used (2.10) to formally integrate over all fermion fields.
Therefore at the end of (3.4), the integral is no longer performed over all fields,
but only over U .

〈
...
〉
U

=̂
1

Z

∫
DUe−S

eff
QCD

Seff
QCD = SG −

∑
f

ln(det(Kf ))

where Kf is the Dirac matrix defined by (2.11).
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3.3 MONTE CARLO SIMULATION

The assumption of a static bottom quark allows the use of the so called heavy
quark effective theory, leading to the following static quark propagator:

∆ab
Q (x, x̃) = δ(3)(x− x̃) · Uab(x, x̃) exp(−mQ·) (3.5)

where mQ denotes the bottom quark mass and Uab is a Schwinger integral de-
fined in (2.17).
Because in this work only mass differences between b-baryons and the b-meson
are considered, exp(−mQt) will be omitted. This results in the following ex-
pression for the correlation function:

C(t)

= εabcεdef
〈
Uad(x̃, t, x̃, 0)TrSpin(CΓ∆be

1 (x̃, t, x̃, 0)CΓ∆cf
2 (x̃, t, x̃, 0))

〉
(3.6)

3.3 Monte Carlo simulation

The path integral in (3.6) is now of the following form:∫
DU (...)

e−S
eff
QCD[U ]

Z
(3.7)

where

Z =

∫
DUe−S

eff
QCD[U ] (3.8)

Because the dimensionality of
∫
DU is rather large

DU =
∏
n,µ

DUµ(n)

its computation requires specific methods. Note that (3.8) is of the same form
as a partition function in thermodynamics, but with exp(−Seff

QCD[U ]) instead of
the normal Boltzmann factor. In that analogy the path integral (3.7) can be
considered a weighted average over an infinite set of gauge configurations:∫

DU (...)
e−S

eff
QCD[U ]

Z
→
〈
...
〉

(3.9)

where the gauge configurations are distributed by

ρ[U ] =
e−S

eff
QCD[U ]

Z
(3.10)

This mathematical structure is suited for Monte-Carlo algorithms based on im-
portance sampling. A finite number of gauge configurations are generated ac-
cording to ρ and are used to average over the integrand of (3.6). This yields the
exact correlation function within statistical errors that scale with 1√

N
, where N

is the number of configurations used.
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4 FERMIONIC PROPAGATORS

4 Fermionic propagators

The inversions (2.11) leading to the light quark propagators are the most time
consuming part in the computation of the correlation function (3.6). In gen-
eral an exact computation of the full quark propagator is hardly feasible. The
methods discussed in the following section are used to circumvent this problem.

4.1 Point Sources

A point source ξ[a,A, y]bB(x) is defined as:

ξ[b, B, y]aA(x) = δ(4)(y − x) · δab δAB (4.1)

Solving

Dab
AB(x, y)Φ[c, C, y]bB(x) = ξ[c, C, y]aA(x) (4.2)

with respect to Φ for every [c, C, y] would yield the full propagator:

∆bc
BC(x, y) = Φ[c, C, y]bB(x) (4.3)

However, the two propagators involved in (3.6) all have the same argument
x̃ = (x̃, 0) at one end. Thus it is sufficient in this case to solve (4.2) for every
[c, C] only at the point x̃:

∆bc
BC(x, x̃) = Φ[c, C, x̃]bB(x) (4.4)

This is called a point-to-all propagator.

4.2 Timeslice Sources

A set of stochastic timeslice sources ξa,nA (x) indexed by n at time t0 is defined
by:

ξa,nA (x1) = δ(t1 − t0)δab δ
A
BZ

n(x1) (4.5)

where Zn(x) satisfy the relation:〈
Zn(x)Zm†(y)

〉
= δ(3)(x− y)δmn (4.6)

Here
〈
...
〉

denotes the average over an infinite number of samples. Used in
combination with :

Dab
AB(x0, t0, x1, t1)Φb,nB (x1, t1) = ξaA(x0, t0) (4.7)

Φb,nB (x1, t1) = (Dba
BA)−1(x1, t1, x0, t0)ξaA(x0, t0) (4.8)

this averaging property can be used to evaluate the propagator stochastically:
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4.3 COMPARISON

〈
Φa,nA (x1, t1)ξb,mB

†
(x2, t0)

〉
= (Dac

AC)−1(x1, t1, x3, t0) (4.9)〈
ξc,nC (x3, t0)ξb,mB

†
(x2, t0)

〉
= (Dab

AB)−1(x1, t1, x2, t0) (4.10)

As you can see in (4.10), the propagator calculated is the propagator from any
spatial argument x2 to any spacetime point (x1, t1). That is why (4.10) is called
timeslice propagator.

4.3 Comparison

As the correlation function (3.6) is independent of x̃, the correlation function
can be averaged over all spatial points x̃ using timeslice propagators:

C̃(t) =
∑
x̃

C[x̃](t) (4.11)

With (4.11), all the statistical information stored in a single configuration is
used, whereas the point source method evaluates the gauge configuration only
at a single spatial point. Therefore the gauge noise in (3.6), the error due to the
fluctuations of the gauge configurations, can be greatly reduced with timeslice
propagators compared to point propagators.
On the other hand, the average in (4.10) can only be performed on a finite num-
ber of samples in practice. Therefore timeslice propagators contain a stochastic
noise while the point source method yields exact propagators.
So all in all, by using the timeslice method one accepts additional noise in the
propagators compared to the point source method to reduce the gauge noise in
the correlation function. It is investigated in section 6 whether this trade-off is
beneficial or not.
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5 SIMULATION DETAILS

5 Simulation Details

All computations leading to the results in section 6 were performed on the ”CSC
Fuchs” cluster in Frankfurt.

5.1 Lattice Setup

The 24 gauge configurations used in this work were generated by the ETM
Collaboration on a lattice with the dimensions T = 48, Lx = Ly = Lz = 24 and
Nf = 2 flavors of sea quarks. For fermions the wilson twisted mass action was
used with twisted masses µu/d = 0.004 for up and down quarks, corresponding to
a pion mass of mπ = 336MeV and µs = 0.022 for strange quarks, corresponding
roughly to physical mass. The maximal twist was κ = 0.160856. The gauge
action used is the tree-level Symanzik-action described in [6]. the lattice spacing
was a = 0.079fm, which corresponds to β = 3.9 used in the generation of gauge
configurations.

5.2 Smearing

Smearing is an expression for techniques which improve the numerical behavior
of the trial state. In this work, the static propagators were smeared with the
HYP2-technique to decrease the self energy of the static quark. To get a better
overlap of the trial state with the low lying energy eigenstates, spatial links
were APE-smeared with the parameters NAPE = 40, αAPE = 0.5 and Gaussian
smearing was used on the light quark fields with NG = 90 and κG = 0.5. Further
details on smearing can be found in [7].
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6 NUMERICAL RESULTS

6 Numerical results

As mentioned before, this work was done in close collaboration with another
bachelor student, who focused on different aspects of the same problem. There-
fore some of the results presented here can also be found in his thesis [4]. The
states investigated were those listed in table 1, the correlation functions of the
corresponding operators are plotted in figure 1:
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Figure 1: real and imaginary part of the two point correlation function for Λb,
Ωb and bss γ0

Note that in all cases, the imaginary part of the correlation function vanishes
within statistical fluctuations. This is expected, as it is shown analytically in
[1] that the correlation functions computed in this work are real valued. Thus,
in the further analysis the imaginary part of the correlation functions will not
be considered.

The plots in figure 2 show the masses extracted with (2.15). Fits on the effective
masses of Λb and Ωb once for (2 < t < 4) and once for (4 < t < 7) are depicted
as well.
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6 NUMERICAL RESULTS
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Figure 2: effective mass plot for Λb and Ωb with mass fit for smaller (left) and
greater (right) time regimes

Fluctuations of meff are large on both states and a precise identification of a
plateau seems not possible. Especially the extracted mass of Λb is changing
considerably during time evolution. Possibly the suppression of exited states
required in (2.14) is not as strong for Λb as for Ωb, as it involves lighter quarks.

The main goal of this work was to investigate whether the point source method
is performing better than the timeslice method used in [1, 2] regarding their
statistical errors. Thus in the following, a detailed comparison of the results
of both works is presented. The results in [1, 2] were computed with the same
parameters used in this work. Therefore both computations should yield the
same results within errors. A direct comparison of the correlation functions
computed in this work and in [1, 2] can be found in figure 3:
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Figure 3: comparison of the correlation functions derived in this work and in
[1, 2]

A comparison of the extracted masses can be seen in table 3.

state a ·m in [1, 2] a ·m m−mB in [1, 2] m−mB

Λb 0.5863± 0.0085 0.6069± 0.0415 461(24)MeV 512(103)MeV
Ωb 0.7482± 0.0034 0.7999± 0.0244 865(8)MeV 994(60)MeV

Table 3: comparison of the effective masses m obtained in this work and those
in [1, 2]

Despite the small number of gauge configurations used, it seems as both corre-
lation functions and extracted masses are roughly consistent within errors.
Computations in [1, 2] werde performed with the same amount of inversions per
configuration as in this work. However, the number of samples used in [1, 2] to
calculate the correlation functions were far larger than in this work for every
computed state:

• Λb: N1 = 23 configurations were used in this work, while N2 = 200
samples were used in [1, 2].

• Ωb: N1 = 24 configurations were used in this work where 200 were used
in [1, 2]. Additionally, computations in [1, 2] averaged over s+ and s− in
(2.28), effectively yielding N2 = 400 samples.
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• bss γ0: N1 = 24 configurations were used in this work while 200 samples
were used in [1, 2]. Computations in [1, 2] averaged over s+ and s− in
(2.28), amounting to effectively N2 = 400 samples. Moreover computa-
tions on bss γ0 in this work were done only in positive time directions in
contrast to all other computations both in this work and in [1, 2]. This
yields an additional factor of 2 in the error ratio.

According to the central limit theorem, the error in Monte-Carlo simulations
is ∝ 1√

N
, where N is the number of samples. Therefore, if both methods

would have equal performance regarding their relative errors ∆C1 and ∆C2,
the following would apply:

∆C1

∆C2
=

√
N2

N1
(6.1)

The numerically found ratios are shown in figure 4
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Figure 4: ratio of relative errors of correlation functions derived in this work
and in [1]

As the relative errors of both computations and therefore also fluctuations within
the errors, wich have not been computed yet, increase for larger t, ratios for small
t in table 4 can be considered the most reliable. The favorable method seems
to depend on the investigated state:

• Λb: the point source results here seem to be slightly better than the times-
lice results. At small time separations, the ratio is under the estimated
benchmark (6.1) for equal performance.
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• Ωb: the ratios indicate that the point propagators performed slightly worse
compared to timeslice propagators.

• bss γ0: The fluctuation of ratios is rather high even for small times, making
a reliable statement difficult. However the ratios are always below or close
to the benchmark (6.1), indicating a slightly better performance of the
point source method.

The results are somewhat surprising, as the point propagator performance is the
worst for Ωb and the best for Λb while the point propagators were expected to be
the most efficient method heavier quarks, just like in [2]. This outcome might be
due to the different spin structure of Ωb and ΛB , but reliable conclusions cannot
be made without further investigation, especially of the error of the ratios in
figure 4. In the case of bss γ0, the ratio of errors is not precise enough to make
a strong statement. A computation with a higher number of samples would
reduce the error and therefore the fluctuation within the error as well, maybe
making a more robust statement possible.
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7 Discussion

This first comparison of the two inversion methods shows that none of the two
methods seem to be strongly superior. It is a remarkable outcome that the
state where the point source method yielded smaller errors was Λb and not
Ωb. To make more reliable statements about the performance of the different
methods, calculations with a far higher number of gauge configurations must
be made, as the number of samples used in this work was rather small, yielding
poor statistics. This would also allow a serious comparison of calculated masses
with physically measured masses as can be found in the Particle Data Book [8].
Furthermore, it would be reasonable to calculate correlation functions for far
more trial states than used here, so an evaluation is not restricted to only three
cases and one is able to gain a more comprehensive picture of the quantum
numbers and states where one method is favorable to the other.
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