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Abstract

In this thesis, the energy levels of different bottomonium bounded states were computed numerically within the
confines of different corrections stemming from the static quark potential derived from non-relativistic QCD as
presented in [2].
These different corrections were then compared with each other as well as with previously obtained results from
Michael Eichberg and Marc Wagner in [11].
Furthermore, a method was introduced for obtaining the asymptotic solutions of a differential equation with
poles around zero.
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Introduction

The bottom quark is the second heaviest quark and the heaviest expected to pair with its antiparticle to form
a flavorless meson, in this case bottomonium. The only heavier quark, i.e. the top quark, decays so rapidly
that the associated quarkonium, toponium also referred to as the theta meson, is not presumed to exist. The
first state of bottomonium to be discovered was Υ(1S) with a total angular momentum of 1 and a parity as
well as a charge parity of −1 in Fermilab in 1977. Since then, many more states of bottomonium have been
observed in nature, or more precisely, in colliders. This has led to a plethora of experimental values, making
bottomonium ideal for testing new developments in non-perturbative approximations in QCD especially since
its properties as a meson can only be approached from a non-perturbative standpoint. Additionally, the large
mass of bottomonium allows for a non-relativistic consideration and thus facilitates its use to gauge the potential
of developed non-relativistic QCD models. Non-relativistic QCD, abbreviated NRQCD, is an effective field
theory derived from regular QCD. More precisely, it is obtained when integrating out energy scales above
the mass m while a further simplification, the so-called potential NRQCD and abbreviated pNRQCD, further
integrates out all energy scales above mv. See [3] and the introduction of [7] for a more detailed review.

On account of these theories, Antonio Pineda and Antonio Vairo derived the full static quark potentials up
to order 1/m2 in [2]. In this thesis, their result will be used to compute energy levels of different states of
bottomonium. This is accomplished by appealing to hte well established method of solving the Schrödinger
equation associated with this potential. Here two main approaches come to mind. On the one hand, a perturbative
approach is possible. This was pursued by Michael Eichberg and Marc Wagner in [11]. In this thesis, however,
another approach will be taken. Instead of considering parts of the static quark potential as perturbations of
some main part, the entire static quark potential with its associated Schrödinger equation will be considered.
This Schrödinger equation is a differential equation which is numerically solvable. In order to accomplish
this, the first chapter is devoted to introducing the static quark potential and to conducting some preliminary
simplifications such as for example locating a suitable spin basis. The second chapter will then present the full
derivation of the differential equation, corresponding to the problem at hand. In order to solve this differential
equation numerically, the asymptotic behavior of the solution will be required which will be addressed in the
third chapter. Here a wide variety of different techniques will be necessary to arrive at a satisfactory description
of the asymptotic behavior. At last, it is possible to numerically compute the energy levels of different states of
bottomonium. As a conclusion, these differ by around 0.8% from the experimental values.

Convention: Throughout this thesis, natural units with ℏ = 1 and c = 1 will be used.

Notation:

Symbol Definition Description

[A,B]− AB −BA Commutator
[A,B]+ AB +BA Anticommutator

er r/|r| Normalization of the vector r

iv
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Chapter 1

Background

The main goal of this chapter is to introduce the static quark potential which forms the backbone of the
Schrödinger equation, eventually leading to the energy values of the different states of bottomonium. After
having introduced the required potential, two other instrumental principles, the singlet and triplet states of
two-particle systems and angular momentum coupling with the accompanying Clebsch-Gordon coefficients,
will be revisited. Together this will yield a very convenient basis of the Hilbert space. This basis will be used in
the subsequent chapter to both simplify the Schrödinger equation accompanying the aforementioned potential
as well as provide an insight in the reasoning behind the upcoming simplifications.

1.1 Potentials

In 2000, Antonio Pineda and Antonio Vairo (see [2]) deduced the following static quark potential in its present
form which governs the behavior of a heavy quark-antiquark pair. In their work, the partaking quark and
antiquark are not required to possess the same mass. In this thesis, only bottomonium (bb̄) will be considered,
and thus the quark and antiquark will always have the same mass. This simplifies the potential leading to the
following form:

Static Quark Potentials (see [2])

Consider a (heavy) quark Q of mass m together with its antiquark Q such that their center of mass
lies at the origin. Assume the following notational conventions:

Q Q QQ

position r/2 −r/2
momentum p

spin S1 S2 S = S1 + S2

angular momentum L
total angular momentum J = S+ L

The effective potential V (r,p,L,S1,S2,S) resulting from the strong interaction between a quark
and its antiquark spaced r apart can be written as

V (r,p,L,S1,S2,S) = V (0)(r) +
1

m
V (1)(r) +

1

m2
V (2)(r,p,L,S1,S2,S) +O

(
1

m3

)
when expanded in the quark mass m. Here

V (0)(r) =
−e
r

+ σr, (0th Order)

V (1)(r) =
−8e2

9r2
+

2σ

π
ln(r), (1st Order)

V (2)(r,p,L,S1,S2,S) = VSD(r,L,S1,S2,S) + VSI(r,p,L). (2nd Order)

1
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The spin dependent part VSD(r,L,S1,S2,S) of the second-order correction is
VSD(r,L,S1,S2,S) = VLS(r)LS+ VS12(r)S12(r) + VS2(r)(S1S2)

with the mixed spin term S12(r) = (S1er)(S2er)− S1S2
3 .

The spin independent part VSI(r,p,L) of the second-order correction is
VSI(r,p, L) = Vr(r) + 2L2VL(r) + [p2, Vp(r)]+.

It is important to note that the static quark potential shown above is only accurate up to some unknown
additive offset. This is not relevant for the concluding discussions since such an offset can easily be
deduced by matching a theoretically computed energy state with its experimental analogon.

Although the constants as well as the potentials VLS, VS12 , VS2 , Vr(r), VL(r), and Vp(r) do not play an
immediate role, it is fitting to write out their full forms. See Appendix A for a derivation.

Explicit Forms for the Radial Potentials (due to [1], [6], [10])

VLS(r) =
5e

2r3
+
σ

2r

VS12(r) =
3e

r3

VS2(r) =
2eδ(r)

r2

Vr(r)=

(
3

4
+ ds

)
δ(r)

r2

VL(r) =
e

4r3
− σ

12r

Vp(r) = −CFαsµ

2π
− e

2r

The potentials VS2(r) and Vr(r) are only shown for completeness. They will not be used throughout this
thesis.

mb = 4.977 GeV
αs = 0.2815

CF = 4/3

σ = 0.282159 GeV2

µ = 1.5879557
π

a
(see [1, p. 37])

e = CFαs (see [1, p. 97])

The string tension σ was determined by comparing certain computed energies with their experimental
counterparts. The details of this will be discussed in chapter 4.

At this point, it is appropriate to discuss the zero order term of the static quark potential. This term is
ubiquitous in the context of quark confinement and bears the name Cornell potential. Recall that the strong
force increases in magnitude with an increase of distance of the participating particles. This is similar to a string
being pulled taut. It turns out that this behavior is approximately linear for large distances and again similar
to the tension of string. In accordance with this analagon, the proportionality constant σ is also referred to as
the string tension. This linear behavior can further be deduced from the zero order term −e/r + σr of the
static quark potential. A closer analysis of the behavior of the strong interaction at short distances allows for the
recreation of the 1/r term. The term string breaking now stems from the fact that as the distance between the
quark-antiquark pair increases, so does the required energy to keep it at this distance. At some point, the energy
will suffice to create another quark-antiquark pair which interacts with the already present one to form two new
mesons leading to a more favorable state. Of course, if string breaking is considered, the associated potential is
more complicated than the simple linear relationship mentioned before. In this thesis, however, string breaking
will not be examined, though perhaps it will be returned to in the future. Instead only string tension will play a
role.

The first order term is in the same spirit of the zeorth order one and simply expands on it by including higher
order terms. It should be noted that up until this point, the spin of the quark and antiquark are of no relevance.
This changes with the second order term which neatly separates into a spin dependent and an independent part.
It is now the main task of this thesis to study and gauge the influence of this term. In order to do this, the concept
of a singlet and triplet state will be useful which will make up the contents of the next section.
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1.2 Hilbert Space and Basis of Spin Component

This section will review the standard methodology of incorperating spin dynamics into otherwise normal Hilbert
space and thus giving the differential equation of the previous section firm footing inside an augmented Hilbert
space.

In the conventional situation of a one-particle fermonic system, it is possible to artificially introduce a spin
nature by augmenting the conventional (no spin) Hilbert space. For simplicity, assume further that the fermion
has a spin of 1/2. Let the conventional Hilbert space without spin effects be denoted by H and add to it the two
possible spin configurations |↑⟩ and |↓⟩. This is accomplished by considering the Hilbert space

HS := H⊗C (C|↑⟩ ⊕ C|↓⟩) ≃ H|↑⟩+H|↓⟩ ≃ H2.

Following convention |↑⟩ and |↓⟩ should be the eigenstates of the spin operator in the z−direction with an
eigenvalue ±1/2, respectively. Interpreting the first component of H2 as the spin-up component and the second
as the spin-down component, the spin operators take on the following form

Sx =
1

2
σx =

1

2

(
0 1
1 0

)
, Sy =

1

2
σy =

1

2

(
0 −i
i 0

)
, Sz =

1

2
σz =

1

2

(
1 0
0 −1

)
including the Pauli matrices σx, σy, and σz . As expected, the (squared) magnitude of the spin is

S2 =
1

4
(σ2x + σ2y + σ2z) =

3

4
1 =

1

2

(
1

2
+ 1

)
1.

To introduce a spin dynamic into a two particle system, it now suffices to „glue” (tensor) the Hilbert spaces
of the two one-particle systems with spin effects together. In the present case of a quark and its antiquark, the
partaking particles are non-identical, and thus the spin statistics theorem does not weigh in, and furthermore
the one-particle Hilbert spaces of the quark and antiquark do not differ. All in all, while denoting the individual
one-particle Hilbert space HS with spin and H without spin, the Hilbert space of the two particle system can
be chosen as the tensor product of the one-particle Hilbert spaces (with spin)

H(2) = HS ⊗C HS ≃ H|↑⟩ ⊗ |↑⟩+H|↑⟩ ⊗ |↓⟩+H|↓⟩ ⊗ |↑⟩+H|↓⟩ ⊗ |↓⟩ ≃ H4.

In accordance with this definition, the spin operators of the individual particles are
S1 := S⊗ id : H(2) → H(2) and S2 := id⊗S : H(2) → H(2),

respectively. This allows for the definition of the total spin as S = S1 + S2 = S⊗ id+ id⊗S.
One choice of a spin basis is now immediately evident, namely

|↑⟩ ⊗ |↑⟩, |↑⟩ ⊗ |↓⟩, |↓⟩ ⊗ |↑⟩, and |↓⟩ ⊗ |↓⟩.
The issue with this choice of basis is, however, that it is only an eigenstate of S1 and S2 but not of the total spin
S which occurs predominately in the static quark potential as will become more obvious in the next chapter.

To address this, consider the so-called singlet and triplet basis consisting of a singlet state and of three triplet
states. The spin configuration

|↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩√
2

is the singlet state and is also a simultaneous eigenstate of Sz and S2 with
Sz

( |↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩
√
2

)
= 0 ·

( |↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩
√
2

)
, S

2
( |↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩

√
2

)
= 0 ·

( |↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩
√
2

)
.

The remaining spin configurations

|↑⟩ ⊗ |↑⟩, |↓⟩ ⊗ |↓⟩, and
|↑⟩ ⊗ |↓⟩+ |↓⟩ ⊗ |↑⟩√

2

are called the triplet states and are simultaneous eigenstates of Sz and S2 with
Sz(|↑⟩ ⊗ |↑⟩) = |↑⟩ ⊗ |↑⟩,
Sz(|↓⟩ ⊗ |↓⟩) = −|↓⟩ ⊗ |↓⟩,

Sz

( |↑⟩ ⊗ |↓⟩ + |↓⟩ ⊗ |↑⟩
√

2

)
= 0 ·

( |↑⟩ ⊗ |↓⟩ + |↓⟩ ⊗ |↑⟩
√
2

)
,

S
2
(|↑⟩ ⊗ |↑⟩) = 2|↑⟩ ⊗ |↑⟩,

S
2
(|↓⟩ ⊗ |↓⟩) = 2|↓⟩ ⊗ |↓⟩,

S
2
( |↑⟩ ⊗ |↓⟩ + |↓⟩ ⊗ |↑⟩

√
2

)
= 2

( |↑⟩ ⊗ |↓⟩ + |↓⟩ ⊗ |↑⟩
√
2

)
.

It is now possible to write any element ψ ∈ H(2) in four components as

ψ =


ψ|↑⟩⊗|↓⟩−|↓⟩⊗|↑⟩
ψ|↑⟩⊗|↓⟩+|↓⟩⊗|↑⟩

ψ|↑⟩⊗|↑⟩
ψ|↓⟩⊗|↓⟩
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=ψ|↑⟩⊗|↓⟩−|↓⟩⊗|↑⟩

(
|↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩√

2

)
+ ψ|↑⟩⊗|↓⟩+|↓⟩⊗|↑⟩

(
|↑⟩ ⊗ |↓⟩+ |↓⟩ ⊗ |↑⟩√

2

)
+ ψ|↑⟩⊗|↑⟩|↑⟩ ⊗ |↑⟩+ ψ|↓⟩⊗|↓⟩|↓⟩ ⊗ |↓⟩.

Now, S1,S2, and S can be defined in this basis for the spin component of the elements in H(2).

Spin Operators in Basis of Singlet and Triplet States

The spins of the individual particles take on the following form if expressed in terms of the singlet and
triplet basis:

S1,x =
1

2


0 0 −1/

√
2 1/

√
2

0 0 1/
√
2 1/

√
2

−1/
√
2 1/

√
2 0 0

1/
√
2 1/

√
2 0 0



S1,y =
1

2


0 0 −i/

√
2 −i/

√
2

0 0 i/
√
2 −i/

√
2

i/
√
2 −i/

√
2 0 0

i/
√
2 i/

√
2 0 0



S1,z =
1

2


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1



S2,x =
1

2


0 0 1/

√
2 −1/

√
2

0 0 1/
√
2 1/

√
2

1/
√
2 1/

√
2 0 0

−1/
√
2 1/

√
2 0 0



S2,y =
1

2


0 0 i/

√
2 i/

√
2

0 0 i/
√
2 −i/

√
2

−i/
√
2 −i/

√
2 0 0

−i/
√
2 i/

√
2 0 0



S2,z =
1

2


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1


Then the combined spin of both particles can be written as

Sx =
1

2


0 0 0 0

0 0
√
2

√
2

0
√
2 0 0

0
√
2 0 0

 Sy =
1

2


0 0 0 0

0 0 i
√
2 −i

√
2

0 −i
√
2 0 0

0 i
√
2 0 0

 Sz =
1

2


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

 .

Furthermore, S2 is

S2 =


0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 .

As expected and required, Sz and S2 are both diagonal.

1.3 Basis of Momentum Component

In the present problem of a quark-antiquark pair, there are two angular momenta, namely the spin and the
conventional angular momentum. For reasons that will quickly become apparent in the following chapter, it is
of paramount importance to locate eigenstates of the total momenta operators J2 and Jz . This is accomplished
by using the Clebsch-Gordon coefficients which are quickly reviewed in this section.

The total angular momentum operator in the present situation is composed of the total spin of both particles
and of the combined conventional momentum. Since both the quark and antiquark can only possess a spin
of 1/2, the total spin can only be 0 or 1 with the z-coordinate behaving accordingly. The range of the total
conventional momentum knows no bounds, however.

On a very general level, consider two angular momenta operators L1 and L2 which commute together with
their sum J = L1 + L2. It is possible to express the sought after simultaneous eigenstates

|j, jz; l1; l2⟩ =
∑

|l1−l2|≤j≤|l1+l2|
l1,z+l2,z=jz

Γj,jz ;l1,l1,z ;l2,l2,z |l1, l1,z; l2, l2,z⟩

of J2,Jz,L
2
1, and L2

2 in terms of the simultaneous eigenstates |l1, l1,z; l2, l2,z⟩ of L1,L1,z,L2, and L2,z . The
occurring coefficients Γj,jz ;l1,l1,z ;l2,l2,z are called the Clebsch-Gordan coefficients and are independent of the
precise implementation of J,L1, and L2.
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Now, it is possible to specialize the very general above form to the present specific situation with L1 = S
and L2 = L. For this, it is essential to determine the simultaneous eigenstates of L2 and Lz as well as S2 and
Sz . Returning to the explicit construction of the underlying Hilbert space

H(2) = (H|↑⟩ ⊗ |↑⟩)⊕ (H|↓⟩ ⊗ |↓⟩)⊕
(
H|↑⟩ ⊗ |↓⟩+ |↓⟩ ⊗ |↑⟩√

2

)
⊕
(
H|↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩√

2

)
,

observe that the spin part is captured in the singlet and triplet states while the conventional angular momentum
part resides solely in H. Therefore, it is possible to locate their respective eigenstates individually before
combining them to the final result.

The eigenstates of the conventional momenta are the spherical harmonicals Y m
l (θ, φ) with

L2Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ) and LzY
m
l (θ, φ) = mY m

l (θ, φ).

Do note, however, that L2 and Lz only effect the θ and φ part of an element of the Hilbert space.
The eigenstates of the spin operator S2 and Sz are immediately clear due to the definition of the singlet and

triplet basis

S2


1
0
0
0

 = 0(0 + 1) ·


1
0
0
0

 , Sz


1
0
0
0

 = 0 ·


1
0
0
0

 ,

S2


0
1
0
0

 = 1(1 + 1) ·


0
1
0
0

 , Sz


0
1
0
0

 = 0 ·


0
1
0
0

 , S2


0
0
1
0

 = 1(1 + 1) ·


0
0
1
0

 , Sz


0
0
1
0

 = 1 ·


0
0
1
0

 , S2


0
0
0
1

 = 1(1 + 1) ·


0
0
0
1

 , Sz


0
0
0
1

 = −1 ·


0
0
0
1

 .

Combining these eigenstates leads to the following expression for the simultaneous eigenstates

|0, 0; l,m⟩ =


Y m
l (θ, φ)

0
0
0

 ,

|1,−1; l,m⟩ =


0
0
0

Y m
l (θ, φ)

 , |1, 0; l,m⟩ =


0

Y m
l (θ, φ)

0
0

 , |1, 1; l,m⟩ =


0
0

Y m
l (θ, φ)

0


of L2,Lz,S

2, and Sz . The resulting states |s, sz; l,m⟩ then satisfy
S2|s, sz; l,m⟩ = s(s+ 1)|s, sz; l,m⟩, Sz|s, sz; l,m⟩ = sz|s, sz; l,m⟩,
L2|s, sz; l,m⟩ = l(l + 1)|s, sz; l,m⟩, Lz|s, sz; l,m⟩ = m|s, sz; l,m⟩.

Using the Clebsch-Gordon coefficients, it is now possible to write down the simultaneous eigenstates of
J2,Jz,S

2, and L2. As an example, consider
|1, 0; 1; 2⟩ = Γ1,0;1,1;2,−1|1, 1; 2,−1⟩+ Γ1,0;1,0;2,0|1, 0; 2, 0⟩+ Γ1,0;1,−1;2,1|1,−1; 2, 1⟩

=

√
3

10
|1, 1; 2,−1⟩ −

√
2

5
|1, 0; 2, 0⟩+

√
3

10
|1,−1; 2, 1⟩

=

(
0,−

√
2

5
Y 0
2 (θ, φ),

√
3

10
Y −1
2 (θ, φ),

√
3

10
Y 1
2 (θ, φ)

)
.

In the next chapter, this basis of the Hilbert space will be used to dramatically simplify the Schrödinger
equation.
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Chapter 2

Differential Equations

In the previous chapter, the static quark potential V (r,p,L,S1,S2,S) was introduced. This naturally leads to
a Hamilton operator

H =
p2

2µ
+ V (r,p,L,S1,S2,S),

where µ = m/2 denotes the reduced mass of the two-particle system. The main aim of this thesis is to solve
the differential equations

H|ψ⟩ = H


ψ|↑⟩⊗|↓⟩−|↓⟩⊗|↑⟩
ψ|↑⟩⊗|↓⟩+|↓⟩⊗|↑⟩

ψ|↑⟩⊗|↑⟩
ψ|↓⟩⊗|↓⟩

 = E


ψ|↑⟩⊗|↓⟩−|↓⟩⊗|↑⟩
ψ|↑⟩⊗|↓⟩+|↓⟩⊗|↑⟩

ψ|↑⟩⊗|↑⟩
ψ|↓⟩⊗|↓⟩

 = E|ψ⟩

for E to determine the energies of the different bottomonium states.
It is imperative for this chapter to simplify the above equation as far as possible to lessen the load on the

numerical calculation. More specifically, all dependencies on φ and θ in terms of spherical coordinates will
be eliminated. This simplification process is undertaken in three steps. First, |ψ⟩ will be expressed in terms
of the basis found at the end of the previous chapter. This results in the φ and θ part of the wave function
residing entirely in the basis elements |j, jz; s; l⟩ while the entire dependence on the radius r will remain in the
coefficients. Secondly, the effect of H on the basis elements |j, jz, s, l⟩ is studied. Here (and also in the first
step) it will be explained how knowledge regarding the parity and C (charge) parity of the partaking meson can
be used to reduce the complexity of the problem further. Lastly, H will be applied to |ψ⟩ and then decomposed
again into the states |j, jz; s; l⟩ after which equating coefficients with E|ψ⟩ yields the sought after differential
equations.

2.1 Reexpressing |ψ⟩

The first task at hand is to determine a closed form for the parity and the C parity of the states |j, jz; s; l⟩. Sadly,
this is not as simple as considering the sign change under the r 7→ −r (for regular parity). This is due to the fact
that quarks possess a certain intrinsic parity which needs to be taken into account. For the sake of completeness
the full derivation is repeated here:

First, consider the regular parity of |j, jz; s; l⟩. Since this state is entirely composed of spherical harmonics
associated to a conventional angular momentum of l, the parity of the state coincides with that of the aforemen-
tioned spherical harmonic, i.e. (−1)l. Now, all that remains is to consider the intrinsic parity of the system.
This is the product of the intrinsic parity of the quark and its antiquark. Using the Dirac equation, it is possible
to compute the intrinsic parity of the quark as 1 and that of the antiquark as −1 (see [8, Chapter 3.8]). Taking
the product of all these “parities” results in a total parity of

(−1)l · 1 · (−1) = (−1)l+1.

Secondly, consider the C parity. Since charge conjugation transforms a particle into its antiparticle, the
quark and antiquark swap places leading to a baseline factor of (−1)l+1, entirely analogously to the case of
regular parity. Contrary to the case of regular parity, the quark is also transformed into an antiquark and vice
versa. This effectively means that in the singlet and triplet states the two particles are exchanged. Now, recall

6
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that the singlet state (S = 0) is antisymmetrical, leading to a factor of (−1) while the triplet states (S = 1) are
symmetrical, thus resulting in a factor of 1. In total, the spin part contributes a factor of (−1)s+1 under charge
conjugation. Combining these two factors yields a total C parity of

(−1)l+1(−1)s+1 = (−1)l+s.

P− and C−parity of |j, jz; s; l⟩

The state |j, jz; s; p⟩ has a parity of (−1)l+1 and a C parity of (−1)l+s.

If the state |ψ⟩ describes a particle with a total angular momentum of j as well as a parity and C parity of
P and C, respectively, then the state can be written as

|ψ⟩ =
J∑

jz=−J

∑
|s−l|≤j≤|s+l|
(−1)l+1=P

(−1)l+s=C

Aj,jz ;s;l(r)|j, jz; s; l⟩. (2.1)

Do notice the dependence of the coefficients on the magnitude r, i.e. the distance between the quark and the
antiquark.

2.2 An Analysis of the Hamiltonian

The task of this section is the simplification of the Hamiltonian and the analysis of its effect on |j, jz; s; l⟩.
This is accomplished by separating the Hamiltonian into two parts H = HD +HND where the |j, jz; s; l⟩ are
eigenstates of HD and the dynamic, i.e. the more complicated behavior, of the Hamiltonian resides in HND.

Writing out the Hamiltonian in its fullest amounts

H =
p2

2µ
+ V (r,p,L,S1,S2,S)

=
p2

2µ
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) + 2L2VL(r) + [p2, Vp(r)]+ + VLS(r)LS+ VS12(r)S12(r) + VS2(r)(S1S2)

)
.

Here the expansion of V is capped at the second order.
Recall that the main goal of this chapter is to isolate the dependence of |ψ⟩ on φ and θ. Therefore, it will be

useful to write p2 = p2
r +

L2

r2
with the radial momentum p2

r = −∂2r − 2
r∂r, µ being the reduced massm/2, and

lastly the product LS can be reexpressed as (J2−L2−S2)/2. All these considerations lead to the Hamiltonian

H =
1

m

(
p2
r +

L2

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) + 2L2

(
VL(r) +

Vp(r)

r2

)
+
[
p2
r , Vp(r)

]
+
+ VLS(r)

J2 − L2 − S2

2
+ VS12(r)S12(r) + VS2(r)(S1S2)

)
.

Now, three terms remain to be simplified further. Two, the anti-commutator[
p2
r , Vp(r)

]
+
= (p2

rVp(r))− 2(∂rVp(r))∂r + 2Vp(r)p
2
r

together with

S1S2 =
DT
4

=
diag(−3, 1, 1, 1)

4
,

where DT (diagonal term) is the diagonal matrix DT with the diagonal entries −3, 1, 1, and 1, which are fairly
straightforward, while the last,

S12(r) = (S1r)(S2r)−
S1S2

3
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=
r2
√
2π

3


0 0 0 0

0 −
√

2
5Y

0
2 (θ, φ) −

√
3
10Y

1
2 (θ, φ) −

√
3
10Y

−1
2 (θ, φ)

0
√

3
10Y

−1
2 (θ, φ)

√
1
10Y

0
2 (θ, φ)

√
3
5Y

−2
2 (θ, φ)

0
√

3
10Y

1
2 (θ, φ)

√
3
5Y

2
2 (θ, φ)

√
1
10Y

0
2 (θ, φ)


=

√
2π

3
CT ,

with the matrix CT (coupling term), leads to the entire spin based “coupling” dynamic of this Hamiltonian.
As it currently stands, the Hamiltonian has the following form

H =
1

m

(
p2
r +

L2

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) + (p2

rVp(r))
)

+
1

m2

(
2L2

(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)p

2
r + VLS(r)

J2 − L2 − S2

2
+ VS12(r)

√
2π

3
CT + VS2(r)

DT
4

)
.

A closer examination of the above Hamiltonian will reveal that the states |j, jz; s; l⟩ are eigenstates of every
termwith the sole exception of the CT term. This is the motivation for splitting the Hamiltonian H into a
diagonal part

HD =
1

m

(
p2
r +

L2

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8α2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) + (p2

rVp(r))
)

+
1

m2

(
2L2

(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)p

2
r + VLS(r)

J2 − L2 − S2

2
+ VS2(r)

DT
4

)
and a non-diagonal component

HND =
VS12(r)

m2

√
2π

3
CT .

At this point, it should be noted that a general state in the Hilbert space would exhibit an r dependent
coefficient on which pr and ∂r will act.

2.3 Conservation Laws

To further simplify the problem, conservation laws are of great importance. Specifically, it will be shown that
the following conservation laws hold.

Conservation Laws

The total angular momentum J2 as well as its z-component Jz and the total spin S2 are conserved, i.e.
they commute with H.
In particular, the state H|j, jz; s; l⟩ decomposes into other |j, jz; s; l′⟩ with the same total angular
momentum quantum numbers j and jz as well as the same total spin quantum number s.
Furthermore, the parity and C parity remain unchanged.

It is now time to justify the above conservation laws. First of all, the operator S2 trivially commutes with
HD and it is straightforward to find the same for HND. Moreover, it is also essentially trivial that Jz and J2

commute with HD since HD can be written as a linear combination of the commuting operators J2,Jz,S
2, and

Sz . It is a bit more tricky to prove that both Jz and J2 commute with HND. This is done by recalling that

L2 = −
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
, Lx =

1

i

(
− sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

)
,

Ly =
1

i

(
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
, Lz =

1

i

∂

∂φ
.

(see for instance [4, (27.123) and (28.24)]) together with the explicit forms of S2,Sx,Sy, and Sz from the
previous chapter compute the commutators [Jz,HND] and [J2,HND].

Physically, it is clear that the Hamiltonian should preserve parity andC parity. To verify this mathematically,
it suffices to consider the action of the non-diagonal component HND on the states |j, jz; s; l⟩. Observe that the
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components of the state |j, jz; s; l⟩ ∈ H4 consist solely of spherical harmonics with a total angular momentum
of l. This implies that the components of CT |j, jz; s; l⟩ are superpositions of the products

Y m
l (θ, φ)Y n

2 (θ, φ)

with varying n and m. Using the contraction property of spherical harmonics, this product can be reexpressed
as

Y m
l (θ, φ)Y n

2 (θ, φ) =

√
(2l + 1) · (2 · 2 + 1)

4π

∞∑
c=0

c∑
γ=−c

(−1)γ
√
2c+ 1

(
l 2 c
m n −γ

)(
l 2 c
0 0 0

)
Y γ
c (θ, φ),

where the terms resembling 2×3 matrices are Wigner 3j-symbols. A special property of the Wigner-3j-symbol
is that (

l 2 c
0 0 0

)
is only non-zero if l + 2 + c is even. This implies that c and l have the same parity (as integers), and thus the
product Y m

l (θ, φ)Y n
2 (θ, φ) is a superposition of spherical harmonics with a total angular momentum of the

same parity as l. This also shows that the total angular momenta of all the spherical harmonics appearing in the
product CT |j, jz; s; l⟩ have the same parity as l, and therefore the parity and C parity of this state are the same
as those of |j, jz; s; l⟩ (compare the formula for parity and C parity).

2.4 Hamiltonian Acting on |ψ⟩

After having split the Hamiltonian H = HD + HND, it is time to “solve” the time-independent Schrödinger
equation H|ψ⟩ = E|ψ⟩ for a state |ψ⟩ describing a particle of total momentum J , of parity P , and of charge
parity C. In particular, the time-independent Schrödinger equation means that for all j(1), j(1)z , s(1), and l(1)

⟨j(1), j(1)z ; s(1); l(1)E|ψ⟩ = ⟨j(1), j(1)z ; s(1); l(1)|H|ψ⟩
⇔

J∑
j
(2)
z =−J

∑
|s(2)−l(2)|≤J≤|s(2)+l(2)|

(−1)l
(2)+1=P (2)

(−1)l
(2)+s(2)=C(2)

A
J,j

(1)
z ;s(1);l(1)

(r)δj(1)Jδj(1)z j
(2)
z
δs(1)s(2)δl(1)l(2)

=

J∑
j
(2)
z =−J

∑
|s(2)−l(2)|≤J≤|s(2)+l(2)|

(−1)l
(2)+1=P

(−1)l
(2)+s(2)=C

⟨j(1), j(1)z ; s(1); l(1)|H|J, j(2)z ; s(2); l(2)⟩A
J,j

(2)
z ;s(2);l(2)

(r),

where the representation of |ψ⟩ in equation (2.1) was used. Due to the conservation laws from the previous
section, the matrix element ⟨j(1), j(1)z ; s(1); l(1)|H|j, jz; s; l⟩ is zero unless j(1) = J , j(1)z = j

(2)
z , and s(1) = s(2).

If the matrix element is zero, the above equality is trivially satisfied and nothing more needs to be done. Therefore,
assume the equalities and let jz = j

(1)
z = j

(2)
z , s = s(1) = s(2), and l = l(1) (not necessarily l(2)). The resulting

equation is

AJ,jz ;s;l(r)δll(2) =
∑

|s−l(2)|≤J≤|s+l(2)|
(−1)l

(2)+1=P

(−1)l
(2)+s=C

⟨J, jz; s; l|H|J, jz; s; l(2)⟩AJ,jz ;s(2);l(2)
(r)

= ⟨J, jz; s; l|HD|J, jz; s; l⟩AJ,jz ;s;l(r) +
∑

|s−l(2)|≤J≤|s+l(2)|
(−1)l

(2)+1=P

(−1)l
(2)+s=C

AJ,jz ;s(2);l(2)
(r)⟨J, jz; s; l|HND|J, jz; s; l(2)⟩.



()

10 Chapter 2.

Now, it is possible to substitute the full forms for the diagonal and non-diagonal part of Hamiltonian to obtain
EAJ,0;s;l(r) =

(
1

m

(
−∂2r −

2

r
∂r +

l(l + 1)

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) +

(
−∂2rVp(r)−

2

r
∂rVp(r)

))
+

1

m2

(
2l(l + 1)

(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)

(
−∂2r −

2

r
∂r

)
+ VLS(r)

J(J + 1)− l(l + 1)− s(s+ 1)

2
+ VS2(r)

δ1s − 3δ0s
4

))
AJ,0;s;l(r)

+
∑

|s−l′|≤J≤|s+l′|
(−1)l

′+1=P

(−1)l
′+s=C

AJ,0;s;l′(r)
VS12(r)

m2

√
2π

3
⟨J, 0; s; l|CT |J, 0; s; l′⟩

for all s and l with |l − s| ≤ J ≤ |l + s|, (−1)l+1 = P and (−1)l+s = C. Here jz was set to zero since the
differential equation does not depend on it.

With a few considerations regarding the relationship between the parity and l as well as s, this implies the
following.

Differential Equations General

Let J denote the total angular momentum, P the parity, and C the charge parity. Then four cases arise:
(i) If J ≥ 1, PC = 1, and (−1)J = P , then

E

(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
=

(
1

m

(
−∂2r −

2

r
∂r +

1

r2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

))
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) +

(
−∂2rVp(r)−

2

r
∂rVp(r)

))
+

1

m2

(
2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)

(
−∂2r −

2

r
∂r

)
+ VLS(r)

(
J − 1 0
0 −(J + 1)

)
+
VS2(r)

4

)
+
VS12(r)

m2

√
2π

3

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1;J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
.

(ii) If PC = 1 but (−1)J ̸= P , then

EAJ,0;1;J(r) =

(
1

m

(
−∂2r −

2

r
∂r +

J(J + 1)

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) +

(
−∂2rVp(r)−

2

r
∂rVp(r)

))
+

1

m2

(
2J(J + 1)

(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)

(
−∂2r −

2

r
∂r

)
+ VLS(r) +

VS2(r)

4

))
AJ,0;1;J(r)

+AJ,0;1;J(r)
VS12(r)

m2

√
2π

3
⟨J, 0; 1;J |CT |J, 0; 1;J⟩.

(iii) If PC = −1, then
EAJ,0;0;J(r) =

(
1

m

(
−∂2r −

2

r
∂r +

J(J + 1)

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) +

(
−∂2rVp(r)−

2

r
∂rVp(r)

))
+

1

m2

(
2J(J + 1)

(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)

(
−∂2r −

2

r
∂r

)
− VS2(r)

3

4

))
AJ,0;0;J(r).

(iv) If J = 0, P = 1, and C = 1, then

EA0,0;1;1(r) =

(
1

m

(
−∂2r −

2

r
∂r +

2

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
Vr(r) +

(
−∂2rVp(r)−

2

r
∂rVp(r)

))
+

1

m2

(
4

(
VL(r) +

Vp(r)

r2

)
− 2(∂rVp(r))∂r + 2Vp(r)

(
−∂2r −

2

r
∂r

)
− 2VLS(r) +

VS2(r)

4

))
A0,0;1;1(r)

+A0,0;1;1(r)
VS12(r)

m2

√
2π

3
⟨0, 0; 1; 1|CT |0, 0; 1; 1⟩.

Here it was also used that ⟨J, 0; 0;J |CT |J, 0; 0;J⟩ = 0.
The unknown still present in the established differential equation are the matrix

elements ⟨J, 0; s; l|CT |J, 0; s; l′⟩. These are computed with Mathematica, but it is important to be aware
of the fact that the scalar product is only taken with respect to θ and φ which means that for the two general
states 

f1(θ, φ)
f2(θ, φ)
f3(θ, φ)
f4(θ, φ)

 ,


g1(θ, φ)
g2(θ, φ)
g3(θ, φ)
g4(θ, φ)


it is defined as 〈

f1(θ, φ)
f2(θ, φ)
f3(θ, φ)
f4(θ, φ)

 ,


g1(θ, φ)
g2(θ, φ)
g3(θ, φ)
g4(θ, φ)


〉

:=

∫ π

−π
dφ

∫ π

0
d θ sin(θ)

4∑
i=1

fi(θ, φ)g
∗
i (θ, φ).

Keeping this in mind, the computation is straightforward and in Appendix B a table of the these matrix elements
can be found.



()

Chapter 3

Asymptotic Behavior of the Differential
Equation

The main aim of this thesis is to study the effects of different corrections to the Schrödinger equation governing
bottomonium. More specifically, this thesis will study the following five cases of the Schrödinger equation
within the static quark potential:

(i) Only the zeroth order in 1/m.
(ii) Only the zeroth and first order in 1/m.
(iii) The zeroth, the first, and the spin-dependent contributions.
(iv) The entire static quark potential but with Vp(r) set to 0.
(v) The complete static quark potential.

To solve any of these differential equations numerically, it is paramount to know the asymptotic behavior of
the differential equation for r → 0 and r → ∞. Of these two situations, the case r → ∞ is easily determined,
namely due to the linear growth of the potential at ∞. This causes an exponential decay in all of the AJ,0;s;l,
and thus AJ,0;s;l must tend to zero as r tends to infinity.

The asymptotic behavior at r = 0 is, however, significantly more challenging to determine and will be
the main focus of this chapter. The approach to solving for this asymptotic behavior is as follows. First,
it is assumed that it is possible to neglect all but the dominating terms in the r dependent coefficients of
∂2rAJ,0;s;l(r), ∂rAJ,0;s;l(r), and AJ,0;s;l(r). This means that if the coefficient is 1/r+ 1/r2, only the 1/r2 term
will be considered. It is important to emphasize that this is an assumption, not a necessity. This will result in
a new differential equation which should ideally capture the asymptotic nature of the complete solution. In the
non-coupled cases, this differential equation will be reducible to either the Bessel equation or the Cauchy-Euler
differential equation. The coupled case requires slightly more dexterity. Here there is not an easy differential
equation that comes to mind to which these coupled equations reduce to under substitution. Instead, the
procedure will be very similar in how the Bessel and Cauch-Euler equations are solved. First, a substitution
reminiscent of the one in the non-coupled case is carried out. Contrary to the non-coupled case this will not
lead to an exact replica of, for example, the Bessel equation but will be close enough to utilize and generalize
the techniques used in the solving of its non-coupled analogon to the coupled case. Once this is complete, the
reduced differential equation, derived after neglecting non-dominating terms, is solved, but, importantly, it is
not apparent that these solutions do in fact satisfy the assumption, i.e. all contributions of non-dominating terms
of the coefficients of the derivatives in the limit r → 0 are in fact negligible. It turns out that not all solutions of
the reduced differential equation satisfy the assumption, and thus the number of asymptotic solutions is reduced
to one for the non-coupled case and two for the coupled one, exactly as expected for a Schrödinger equation.

On a last note, in order to distinguish between the complete solution AJ,0;s;l and the asymptotic solution for
r → 0 the latter will be decorated with r → 0, i.e. Ar→0

J,0;s;l(r).

3.1 Zeroth Order

In the zeroth order, the Schrödinger equation is simply

EAJ,0;s;l(r) =

(
1

m

(
−∂2r −

2

r
∂r +

l(l + 1)

r2

)
+

(
−e
r

+ σr

))
AJ,0;s;l(r).

11
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To solve for the asymptotic behavior of the Schrödinger equation, it is necessary to distinguish between two
cases, namely where l = 0, the so-called base case, and where l ̸= 0.

Base Case (l = 0)

As described in the introduction of this chapter, assume that it is possible to neglect all in the limit r tends 0
non-dominating terms occurring in the coefficients of the derivatives of AJ,0;s;l(r), leading to the differential
equation

0 =

(
1

m

(
−∂2r −

2

r
∂r

)
− e

r

)
Ar→0

J,0;s;0(r).

After substituting

v = 2
√
em

√
r and Ar→0

J,0;s;0(r) =
u(v)

v
,

rearranging results in to the modified Bessel equation
0 = v2∂2vu(v) + v∂vu(v) + (v2 − 1)u(v),

and Ar→0
J,0,s,0(r) can be expressed as a linear superposition of√

1

r
J1(2

√
em

√
r) and

√
1

r
Y1(2

√
em

√
r), (3.1)

where J1(x) and Y1(x) denote the Bessel function of order one as well as of first and second kind, respectively.
Under the assumption AJ,0;s,0(r) should align with Ar→0

J,0;s,0(r) in the limit, r tends to zero. It might be
thought that this can be verified by simply plugging Ar→0

J,0;s,0(r) into the original differential equation and then
ensuring that under the limit r tending to 0 the two sides of the equation equate. Here a bit of caution needs
to be exercised. Specifically, in its present form the original differential equation contains poles at zero in
the coefficients of the derivatives. Replacing AJ,0;s,0(r) with Ar→0

J,0;s,0(r) resembles the swapping of limits
with 1/r. In general this is not possible. To alleviate this problem, it is useful to first multiply the entire
original Schrödinger differential equation by a power of r such that no poles are present in the coefficients of
the derivatives (poles can be present in the coefficient of plain AJ,0;s,0(r)). In this case, it suffices to muliply
with r, leading to the equation

0 =

(
r

m

(
−∂2r −

2

r
∂r

)
+−e+ σr2 − Er

)
Ar→0

J,0,s,0(r)

=

(
σr2 − Er

)
Ar→0

J,0,s,0(r) for r → 0.

Here it is advantageous to multiply with the smallest power of r which alleviates poles because this gives the
best chance of eliminating asymptotic solutionsAr→0

J,0,s,0(r) which cannot lead to a solution of the full differential
equation.

Returning to the specific situation at hand, it is well-known that the Bessel function of the second kind Y1(x)
diverges to −∞ for x tending to infinity and is thus unequal to zero. This remains unchanged when adding the
decorations present in equation (3.1) and even when multiplying with σr2 − Er. Therefore,√

1

r
Y1(2

√
em

√
r)

cannot be an asymptotic solution. Similarly, it can be shown that√
1

r
J1(2

√
em

√
r)

has no such grievances and is thus the rightful aysmptotic solution, i.e.

Ar→0
J,0,s,0(r) = B ·

√
1

r
J1(2

√
em

√
r) for B ∈ C.
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General Case (l ̸= 0)

Again assume that the non-dominating terms in the coefficients of ∂2rAJ,0;s;l, ∂rAJ,0;s;l, and AJ,0;s;l can safely
be neglected, leading to

0 =
1

m

(
− ∂2r −

2

r
∂r +

l(l + 1)

r2

)
Ar→0

J,0;s;l(r)

or
0 = r2∂2rA

r→0
J,0;s;l(r) + 2r∂rA

r→0
J,0;s;l(r)− l(l + 1)Ar→0

J,0;s;l(r).

This is a Cauchy-Euler differential equation whose solution are well-known to be linear combinations of rλ1,2

where λ± are the zeros of
x2 + x− l(l + 1).

This means that λ+ = l and λ− = −l − 1. As before, the assumption, in this case
0 = (−e+ σr2 − Er)Ar→0

J,0;s;l(r),

needs to be verified, and it is immediately clear that only
Ar→0

J,0;s;l(r) = Crl for C ∈ C
is a valid asymptotic solution.

3.2 First Order

The situation for the first order is very similar to that of the zeroth order. Now, the full Schrödinger equation is

EAJ,0;s;l(r) =

(
1

m

(
−∂2r −

2

r
∂r +

l(l + 1)

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

))
AJ,0;s;l(r).

Assuming that it is possible to neglect all terms, which are not dominant as r tends to 0, results in another
Cauchy-Euler equation

0 =
1

m

(
− ∂2r −

2

r
∂r +

(
l(l + 1) +

−8e2

9

)
1

r2

)
Ar→0

J,0;s;l(r)

or

0 = r2∂2rA
r→0
J,0;s;l(r) + 2r∂rA

r→0
J,0;s;l(r)−

(
l(l + 1) +

−8e2

9

)
Ar→0

J,0;s;l(r).

Here it was used that 1/r2 dominates ln(r) for r tending to 0. The solutions are now
Ar→0

J,0;s;l(r) = rλ±

with λ± being the zeros of the polynomial x2 + x− l(l + 1) + 8e2/9, i.e.

λ± =
−1

2
± 1

2

√
1 + 4

(
l(l + 1)− 8e2

9

)
.

This time the postulation works out to be

0 =

(
−e+ σr2 +

2σ

πm
r ln(r)− Er

)
Ar→0

J,0;s;l(r) for r → 0,

and since λ− < 0 this can only be satisfied by

Ar→0
J,0;s;l = B · xλ with λ =

−1

2
+

1

2

√
1 + 4

(
l(l + 1)− 8e2

9

)
and B ∈ C.

3.3 Spin-dependent Contribution

The moment the full static quark potential is considered more fundamentally different, cases arise which need
to be individually studied. Specifically, the following cases are relevant:

(i) Base Case (JPC = 0−+) and S = 0
(ii) Non-Coupled Case
(iii) Coupled Case
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The asymptotic behavior in each of these cases will now be discussed individually in the following subsec-
tions. For all the cases, only the spin-dependent contribution to the static quark potential will be considered.
This is the same as simply presuming the following forms for the radial potentials:

Explicit Forms for Radial Potentials

VLS(r) =
5e

2r3
+
σ

2r

VS12(r) =
3e

r3

VS2(r) = 0

Vr(r) = 0

VL(r) = 0

Vp(r) = 0

Base Case (JPC = 0−+) and S = 0

If s = 0, then all terms of order 1/m2 disappear, and the Schrödinger equation is

0 =

(
1

m

(
−∂2r −

2

r
∂r +

l(l + 1)

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
− E

)
AJ,0;0;l(r).

This is however identical to the first order case in the previous section, and therefore the asymptotic behavior is
yet again

Ar→0
J,0;0;l = B · xλ with λ =

−1

2
+

1

2

√
1 + 4

(
l(l + 1)− 8e2

9

)
and B ∈ C.

Non-Coupled Case excluding JPC = 0−+ and S = 0

For the general non-coupled case, the differential equations are once again no longer Cauchy-Euler differential
equations. They are

0 =

(
1

m

(
−∂2r −

2

r
∂r +

l(l + 1)

r2

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

((
5e

2r3
+
σ

2r

)
J(J + 1)− l(l + 1)− s(s+ 1)

2
+

3e

r3

√
2π

3
⟨J, 0; s; l|CT |J, 0; s; l⟩

)
− E

)
AJ,0;s;l(r).

As before, assume that it is permissible to neglect all but the dominant terms in the coefficients of ∂2rAJ,0;s;l(r),
∂rAJ,0;s;l(r), and AJ,0;s;l(r), resulting in

0 =
−1

m
∂2rA

r→0
J,0;s;l(r)−

2

rm
∂rA

r→0
J,0;s;l(r) +

1

m2

(
5e(J(J + 1)− l(l + 1)− s(s+ 1))

4
+ e

√
2π⟨J, 0; s; l|CT |J, 0; s; l⟩

)
1

r3
Ar→0

J,0;s;l(r)

or
0 =∂2rA

r→0
J,0;s;l(r) +

2

r
∂rA

r→0
J,0;s;l(r)−

1

m

(
5e(J(J + 1)− l(l + 1)− s(s+ 1))

4
+ e

√
2π⟨J, 0; s; l|CT |J, 0; s; l⟩

)
1

r3
Ar→0

J,0;s;l(r).

From now on, the constant appearing in front of AJ,0;s;l(r)/r
3 will be abbreviated with CSDC

NCC (spin-dependent
case, non-couping case). It will now be assumed that CSDC

NCC is unequal to zero which will later be verified
numerically.

If CSDC
NCC is positive, then making the substitution

v = 2
√
CSDC
NCC

√
1

r
and Ar→0

J,0;s;l(r) =
1

2
vu(v)

with subsequent rearranging leads to the Bessel equation
0 = v2∂2vu(v) + v∂vu(v) +

(
v2 − 12

)
u(v),

and thus Ar→0
J,0;s;l(r) has the two linear independent solutions√

CSDC
NCC

√
1

r
J1

(
2
√
CSDC
NCC

√
1

r

)
and

√
CSDC
NCC

√
1

r
Y1

(
2
√
CSDC
NCC

√
1

r

)
.

Similarly, if CSDC
NCC is negative, then the substitution

v = 2
√

−CSDC
NCC

√
1

r
and AJ,0;s;l(r) =

1

2
vu(v)
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does the trick, arriving at to the modified Bessel equation
0 = v2∂2vu(v) + v∂vu(v)−

(
v2 + 12

)
u(v)

with the two linear independent solutions√
−CSDC

NCC

√
1

r
I1

(
2
√
−CSDC

NCC

√
1

r

)
and

√
−CSDC

NCC

√
1

r
K1

(
2
√

−CSDC
NCC

√
1

r

)
of Ar→0

J,0;s;l(r) being composed of the modified Bessel functions of order one and of the first and second type.
Now, it is time to consider the assumption

0 =

(
l(l + 1)

m

1

r
+
(
−e+ σr2

)
+

1

m

(
−8e2

9r
+

2σ

π
r ln(r)

)
+

1

m2

σ

2

J(J + 1)− l(l + 1)− s(s+ 1)

2
− Er

)
AJ,0;s;l(r)

for r → 0.

If CSDC
NCC is negative, then only the solution√

−CSDC
NCC

√
1

r
K1

(
2
√

−CSDC
NCC

√
1

r

)
comes into question. If CSDC

NCC is however positive, then the limit r → 0 is not defined for either of the two
solutions. Thus, neither can be excluded. Interestingly, this is not going to be a problem for the numerical
computation of the energy state as both will lead to the same result. Why this is the case is an open question.

Coupled Case

Solving the coupled case is slightly more elaborate since there is no obvious closed form. First, the differential
equation is
0 =

(
1

m

(
−∂2r −

2

r
∂r +

1

r2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

))
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

((
5e

2r3
+
σ

2r

)(
J − 1 0
0 −(J + 1)

)
+

3e

r3

√
2π

3

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1;J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))
− E

)(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
which under the assumption simplifies to

0 =
−1

m

(
∂2rA

r→0
J,0;1;J−1(r)

∂2rA
r→0
J,0;1;J+1(r)

)
− 2

rm

(
∂rA

r→0
J,0;1;J−1(r)

∂rA
r→0
J,0;1;J+1(r)

)
+

1

m2

(
5e

2

(
J − 1 0
0 −(J + 1)

)
+ e

√
2π

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1;J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))
1

r3

(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J+1(r)

)
or
0 =

(
∂2rA

r→0
J,0;1;J−1(r)

∂2rA
r→0
J,0;1;J+1(r)

)
+

2

r

(
∂rA

r→0
J,0;1;J−1(r)

∂rA
r→0
J,0;1;J+1(r)

)
− 1

m

(
5e

2

(
J − 1 0
0 −(J + 1)

)
+ e

√
2π

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1; J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))
1

r3

(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J+1(r)

)
.

From now on, the matrix in front of 1/r3 will be denoted with CSDC
CC (spin-dependent case, couping case).

Additionally, the matrixCSDC
CC will henceforth be assumed to be invertible, a fact that will be verified numerically

later on.
Taking inspiration from the non-coupled case, the substitution

v =

√
1

r
and

(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J+1(r)

)
= v

(
u−(v)
u+(v)

)
= vu(v)

is now carried out, resulting in
0 =v2∂2vu+ v∂vu− (1− 4CSDC

CC v2)u(v).

This differential equation now lends itself to the Frobenius method, i.e. making the ansatz that the linear
independent solutions of the above equations can be expressed as a power series in v with a multiplicative factor
vλ as

vλ
∞∑
k=0

(
ak
bk

)
vk = vλ

∞∑
k=0

ckv
k,
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where c0 ̸= 0. Substituting this ansatz into the differential equation leads to

0 =

∞∑
k=0

((k + λ)(k + λ− 1)ckv
k+λ +

∞∑
k=0

(k + λ)ckv
k+λ −

∞∑
k=0

ckv
k+λ +

∞∑
k=2

4CSDC
CC ck−2v

k+λ.

In particular, the indicial polynomial is (λ(λ − 1) + λ − 1), yielding to λ = ±1 which implies that c1 = 0.
Furthermore, the recursive relationship is

((k + λ)2 − 1)ck = −4CSDC
CC ck−2 for k ≥ 2.

For λ = 1, this comes to a power series where every coefficient depends solely on c0. However, for λ = −1 the
above equality implies for k = 2 that

((2− 1)2 − 1)c2 = −4CSDC
CC c0

or c0 = 0 since CSDC
CC is assumed to be invertible. This contradicts the above assumption that c0 ̸= 0 and,

therefore, no new solutions arise.
Up until this point, only two linear independent solutions to the above differential equation have been found,

namely those resulting from the above recursive relationship with λ = 1 as well as c0 = (1, 0) or c0 = (0, 1).
Conventional wisdom would dictate that four linear independent solutions exist. Taking inspiration from the
Fuchs theorem regarding the equivalent one-dimensional problem make the ansatz

u(v) = ln(v)

∞∑
k=0

(
ak
bk

)
vk+1 +

∞∑
k=0

(
dk
ek

)
vk+µ

= ln(v)q(v) +

∞∑
k=0

fkv
k+µ,

where f0 ̸= 0, and consequently

q(v) =
∞∑
k=0

(
ak
bk

)
vk+1 = vλ

∞∑
k=0

ckv
k+1

is one of the already solution found solutions. First, notice that the derivatives of ln(v)q(v) are

∂v(ln(v)q(v)) =
q(v)

v
+ ln(v)∂vq(v)

and

∂2v(ln(v)q(v)) =
−q(v)
v2

+
2∂vq(v)

v
+ ln(v)∂2vq(v).

Substituting the above ansatz into the differential equation yields

0 = v2

(
−q(v)
v2

+
2∂vq(v)

v
+ ln(v)∂2vq(v) +

∞∑
k=0

(k + µ)(k + µ− 2)fkv
k+µ−2

)
u

+ v

(
q(v)

v
+ ln(v)∂vq(v) +

∞∑
k=0

(k + µ)fkv
k+µ−1

)

− (1− 4CSDC
CC v2)

(
ln(v)q(v) +

∞∑
k=0

fkv
k+µ

)
=2v∂vq(v) + ln(v)(v2∂2vq(v) + v∂vq(v)− (1− 4CSDC

CC v2)q(v))

+
∞∑
k=0

(k + µ)(k + µ− 1)fkv
k+µ +

∞∑
k=0

(k + µ)fkv
k+µ −

∞∑
k=0

fkv
k+µ +

∞∑
k=2

4CSDC
CC fk−2v

k+µ

=
∞∑
k=0

2(k + 1)ckv
k+1 +

∞∑
k=0

(k + µ)(k + µ− 1)fkv
k+µ +

∞∑
k=0

(k + µ)fkv
k+µ −

∞∑
k=0

fkv
k+µ

+
∞∑
k=2

4CSDC
CC fk−2v

k+µ.

Here it was made use of that q(v) already satisfies the differential equation. Observe that the coefficient 2c0
of v2 in the first power series is per assumption unequal to zero. This implies that it must cancel out another
coefficient of v2 in one of the other power series. In particular, µmust be an integer and no greater than 1. First,
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assume that µ = 1. Comparing coefficients for k = 0 then results in
0 = 2c0 + (12 − 1)f0 = 2c0,

which is a contradiction since c0 ̸= 0. If µ < 1, then the lowest order coefficient is simply
(µ2 − 1)f0,

and µ must be −1. Comparing coefficients again leads to the solution

u(v) = ln(v)

∞∑
k=0

ckv
k+1 +

∞∑
k=0

fkv
k−1

with the recursive relationships

c1 = 0,

ck =
−4CSDC

CC

(k + 1)2 − 1
ck−2 for k ≥ 2,

f0 = −
(CSDC

CC )−1

2
c0,

f1 = 0,

fk =
−4CSDC

CC

(k − 1)2 − 1
fk−2 −

2((k − 2) + 1)

(k − 1)2 − 1
ck−2

for k ≥ 3.
Notice that in the above collection of recursive relations both c0 and f2 are undetermined. Since all the relations
are linear, this results in four linear independent solutions with

(i) c0 = (1, 0) and f2 = (0, 0),
(ii) c0 = (0, 1) and f2 = (0, 0),

(iii) c0 = (0, 0) and f2 = (1, 0),
(iv) c0 = (0, 0) and f2 = (0, 1).

This may seem like a contradiction to the conventional wisdom that the two-dimensional second order
differential equation should in total have four solutions and not four plus two (as originally found). However,
this is easily resolved by noting that c0 = 0 as well as f2 = (1, 0) and f2 = (0, 1) lead to the original solutions
found above.

To summarize, the four linear independent solutions for(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J+1(r)

)
are given by

−1

2

√
1

r
ln(r)

∞∑
k=0

ckr
−(k+1)/2 +

√
1

r

∞∑
k=0

fkr
−(k−1)/2

with the recursive relationships

c1 = 0,

ck =
−4CSDC

CC

(k + 1)2 − 1
ck−2 for k ≥ 2,

f0 = −
(CSDC

CC )−1

2
c0,

f1 = 0,

fk =
−4CSDC

CC

(k − 1)2 − 1
fk−2 −

2((k − 2) + 1)

(k − 1)2 − 1
ck−2

for k ≥ 3
when

(i) c0 = (1, 0) and f2 = (0, 0),
(ii) c0 = (0, 1) and f2 = (0, 0),

(iii) c0 = (0, 0) and f2 = (1, 0),
(iv) c0 = (0, 0) and f2 = (0, 1).

All that remains is to verify the assumption which is

0 =

(
1

m

1

r

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+
(
−e+ σr2

)
+

1

m

(
−8e2

9r
+

2σ

π
ln(r)r

)
+

1

m2

(
σ

2

(
J − 1 0
0 −(J + 1)

))
− Er

)(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J+1(r)

)
for r → 0.

This condition can now be used to numerically find which of the four presented solutions are in fact the
asymptotic ones.
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3.4 Complete Static Quark Potential with Vp(r) = 0

The complete static quark potential with the exception that Vp(r) is set to zero only differs from the case using
a exclusively spin-dependent contribution in the additional term 1

m2 2l(l + 1)VL(r). Specifically, the following
potentials come into play in this case:

Explicit Forms for Potentials (due to [10], [1], [6])

VLS(r) =
5e

2r3
+
σ

2r

VS12(r) =
3e

r3

VS2(r) =0

Vr(r) =0

VL(r) =
e

4r3
− σ

12r
Vp(r) =0

This changes a few constants in comparison with the above case, but the mathematical calculations are
essentially identical. So this section will mainly just present the differences to the asymptotic solutions in the
previous section.

Base Case (JPC = 0−+)

Since l = 0, the additional term is zero, and the base case is again identical to the first order case, i.e.

A0,0;0;0 = Cxλ with λ =
1

2
+

−1

2

√
1− 4

8e2

9
and C ∈ C.

Notice that the case where s = 0 is no longer included here since the additional terms ensure that the 1/m2

term does not disappear.

Non-Coupled Case excluding JPC = 0−+

In comparison to the non-coupled case for exclusively spin-dependent contributions, the present case only
possesses the additional factor

1

m2
2l(l + 1)VL(r) =

1

m2
l(l + 1)

( e

2r3
− σ

6r

)
or with regard to the assumption simply

1

m2
l(l + 1)

e

2r3
.

Adding this factor to the non-coupled case from the previous section amounts to considering the constant

CSSQ
NCC = − 1

m

(
el(l + 1)

2
+

5e(J(J + 1)− l(l + 1)− s(s+ 1))

4
+ e

√
2π⟨J, 0; s; l|CT |J, 0; s; l⟩

)
(simplified static quark potential, non-couping case).

In particular, this means that if CSSQ
NCC is positive, then again both solutions

C

√
1

r
J1

(
2

√
CSSQ
NCC

√
1

r

)
and C

√
1

r
Y1

(
2

√
CSSQ
NCC

√
1

r

)
for C ∈ C

come into question, and for a negative CSSQ
NCC the asymptotic solution is

C

√
1

r
K1

(
2

√
−CSSQ

NCC

√
1

r

)
for C ∈ C.

Coupled Case

The coupled case works very similar to the non-coupled case in comparison with the previous section, namely
the only modification necessary to the previous solution is to alter the matrix CSDC

CC to contain the new term
2l(l + 1)VL(r)/m

2. The new matrix then works out to be
CSSQ
CC = − 1

m

(
e

2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+

5e

2

(
J − 1 0
0 −(J + 1)

)
+ e

√
2π

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1;J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))
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(simplified static quark potential, coupled case).
The solution to the coupled case is now derived analogously to the previous coupled case, and as such four

linear independent solutions(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J−1(r)

)
=

−1

2

√
1

r
ln(r)

∞∑
k=0

ckr
−(k+1)/2 +

√
1

r

∞∑
k=0

fkr
−(k−1)/2

arise from the recursive relationship

c1 = 0,

ck =
−4CSDC

CC

(k + 1)2 − 1
ck−2 for k ≥ 2,

f0 = −
(CSDC

CC )−1

2
c0,

f1 = 0,

fk =
−4CSDC

CC

(k − 1)2 − 1
fk−2 −

2((k − 2) + 1)

(k − 1)2 − 1
ck−2

for k ≥ 3
with each corresponding to one of the following starting data

(i) c0 = (1, 0) and f2 = (0, 0),
(ii) c0 = (0, 1) and f2 = (0, 0),

(iii) c0 = (0, 0) and f2 = (1, 0),
(iv) c0 = (0, 0) and f2 = (0, 1).

The additional term in comparison with the purely spin-dependent case in the previous section further
changes the asymptotic condition to
0 =

(
1

m

1

r

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+
(
−e+ σr2

)
+

1

m

(
−8e2

9r
+

2σ

π
ln(r)r

)
+

1

m2

(
−σr
6

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+
σ

2

(
J − 1 0
0 −(J + 1)

))
− Er

)(
Ar→0

J,0;1;J−1(r)

Ar→0
J,0;1;J+1(r)

)
for r → 0.

As before, this will be applied to numerically find the relevant asymptotic solutions.

3.5 Complete Static Quark Potential

The complete static quark potential is substantially different from the two previous cases since it contains two
additional derivatives obtained from a non-zero Vp(r). Specifically, this section will use the following potentials.

Explicit Forms for Potentials (due to [10], [1], [6])

VLS(r) =
5e

2r3
+
σ

2r

VS12(r) =
3e

r3

VS2(r) =0

Vr(r) =0

VL(r) =
e

4r3
− σ

12r

Vp(r) =− CFαsµ

2π
− e

2r

Base Case (JPC = 0−+)

In the base case, the Schrödinger equation is

0 =

(
1

m

(
−∂2r −

2

r
∂r

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
−−e
r3

− 2

r

e

2r2

)
+

1

m2

(
−2
( e

2r2

)
∂r + 2

(
−CFαsµ

2π
− e

2r

)(
−∂2r −

2

r
∂r

))
− E

)
A0,0;0;0(r)

and after grouping like terms
0 =

(
−1

m
+
CFαsµ

πm2
+

e

rm2

)
∂2rAJ,0;s;l(r) +

(
−2

mr
+

−e
r2m2

+
CFαsµ

2πm2

4

r
+

2e

r2m2

)
∂rAJ,0;s;l(r) +

((
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
− E

)
A0,0;0;0(r).

Next, assume that all but the dominant terms around r = 0 can be ignored. This leaves just

0 =
e

rm2
∂2rA

r→0
J,0;s;l(r) +

e

r2m2
∂rA

r→0
J,0;s;l(r) +

1

m

−8e2

9r2
Ar→0

0,0;0;0(r)

or

0 =r∂2rA
r→0
0,0;0;0(r) + ∂rA

r→0
J,0;s;l(r) +

−8me2

9e
Ar→0

0,0;0;0(r).
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For notational unity, let CBC
SQP = −8me2

9e (static quark potential, base case). In order to solve this differential
equation, it is useful to first substitute

v = 2
√

−CBC
SQP r Ar→0

0,0;0;0(r) =
u(v)

v2
.

Under this transformation, the differential equation becomes
0 =v2∂2vu+ v∂vu− v2u(v),

which is the modified Bessel equation. Thus, Ar→0
0,0;0;0(r) can be written as a linear superposition of

I0

(
2
√
−CBC

SQP r
)

and K0

(
2
√

−CBC
SQP r

)
.

Once again, the assumption, in this case

0 =

(
−r2

m
+
CFαsµr

2

πm2

)
∂2rA

r→0
J,0;s;l(r) +

(
−2r

m
+ 4

CFαsµr

2πm2

)
∂rA

r→0
J,0;s;l(r) +

((
−er + σr3

)
+

1

m

(
2σ

π
r2 ln(r)

)
− Er2

)
Ar→0

0,0;0;0(r)

for r → 0,

will eliminate one of these solutions, namely the one containing the modified Bessel function of the second
kind K0. This is because the derivative of K0(2

√
−CBC

SQP r) times r as r → 0 is unequal to zero, while the

derivatives of I0(2
√

−CBC
SQP r) converge to zero as r tends to 0, even after scaling with r and r2, respectively.

Therefore, the final solution is

A0,0;0;0(r) = CI0

(
2
√

−CBC
SQP r

)
for C ∈ C.

Non-Coupled Case

Writing out the full Schrödinger equation in the non-coupled case results in

0 =

(
−1

m
+
CFαsµ

πm2
+

e

rm2

)
∂2rAJ,0;s;l(r) +

(
−2

mr
+

−e
r2m2

+
CFαsµ

2πm2

4

r
+

2e

r2m2

)
∂rAJ,0;s;l(r) +

(
l(l + 1)

r2
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
2l(l + 1)

(
−e
4r3

− σ

12r
− CFαsµ

2πr2

)
+

(
5e

2r3
+
σ

2r

)
J(J + 1)− l(l + 1)− s(s+ 1)

2
+

√
2πe

r3
⟨J, 0; s; l|CT |J, 0; s; l⟩

)
− E

)
AJ,0;s;l(r).

Assuming that the asymptotic solution arises by neglecting all but the dominant terms leads to

0 =
e

rm2
∂2rA

r→0
J,0;s;l(r) +

e

r2m2
∂rA

r→0
J,0;s;l(r) +

1

m2

(
l(l + 1)

−e
2r3

+
5e(J(J + 1)− l(l + 1)− s(s+ 1))

4r3
+

√
2πe

r3
⟨J, 0; s; l|CT |J, 0; s; l⟩

)
Ar→0

J,0;s;l(r)

or
0 =r2∂2rA

r→0
J,0;s;l(r) + r∂rA

r→0
J,0;s;l(r) +

(
−l(l + 1)

2
+

5(J(J + 1)− l(l + 1)− s(s+ 1))

4
+
√
2π⟨J, 0; s; l|CT |J, 0; s; l⟩

)
Ar→0

J,0;s;l(r).

The coefficient ofAr→0
J,0;s;l(r) is from now on abbreviated withCNCC

SQP (static quark potential, non-coupled case).
This is yet again a Cauchy-Euler differential equation and thus has the two independent solutions

Ar→0
J,0;s;l(r) = rλ±

for λ± as the roots of
x2 + x+ CNCC

SQP ,

i.e.
λ± = ±

√
−CNCC

SQP .

The final solution must satisfy the assumption, i.e.

0 =

(
−r2

m
+
CFαsµr

2

πm2

)
∂2rA

r→0
J,0;s;l(r) +

(
−2r

m
+ 4

CFαsµr

2πm2

)
∂rA

r→0
J,0;s;l(r) +

(
l(l + 1) +

(
−er + σr3

)
+

1

m

(
−8e2

9
+

2σ

π
r2 ln(r)

)
+

1

m2

(
2l(l + 1)

(
−σr
12

− CFαsµ

2π

)
+
σr

2

J(J + 1)− l(l + 1)− s(s+ 1)

2

)
− Er2

)
Ar→0

J,0;s;l(r) for r → 0.

It is apparent that this assumption only holds if and only if
lim
r→0

rλ± = 0.

This is the case for precisely λ+ since λ− < 0 (it will be verified numerically that CNCC
SQP < 0). Consequently,

the total solution is
Ar→0

J,0;s;l(r) = B · rλ+ with λ+ =
√
−CNCC

SQP and B ∈ C.
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Coupled Case

The general Schrödinger equation in the coupled case is
0 =

(
−1

m
+
CFαsµ

πm2
+

e

rm2

)
∂2rAJ,0;s;l(r) +

(
−2

mr
+

−e
r2m2

+
CFαsµ

2πm2

4

r
+

2e

r2m2

)
∂rAJ,0;s;l(r) +

(
1

r2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+

(
−e
r

+ σr

)
+

1

m

(
−8e2

9r2
+

2σ

π
ln(r)

)
+

1

m2

(
2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)(
−e
4r3

− σ

12r
− CFαsµ

2πr2

)
+

(
5e

2r3
+
σ

2r

)(
J − 1 0
0 −(J + 1)

)
+

√
2πe

r3

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1; J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))
− E

)(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
.

Due to the assumption all non-dominating terms can be eliminated, resulting in

0 =
e

rm2
∂2rAJ,0;s;l(r) +

e

r2m2
∂rAJ,0;s;l(r) +

1

m2

((
J · (J − 1) 0

0 (J + 1)(J + 2)

)
−e
2

+
5e

2

(
J − 1 0
0 −(J + 1)

)
+

√
2πe

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1;J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))
1

r3

(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
or

0 =r2
(
∂2rAJ,0;1;J−1(r)
∂2rAJ,0;1;J+1(r)

)
+ r

(
∂rAJ,0;1;J−1(r)
∂rAJ,0;1;J+1(r)

)
+

(
−1

2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+

5

2

(
J − 1 0
0 −(J + 1)

)
+
√
2π

(
⟨J, 0; 1;J − 1|CT |J, 0; 1;J − 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J − 1⟩
⟨J, 0; 1;J − 1|CT |J, 0; 1;J + 1⟩ ⟨J, 0; 1;J + 1|CT |J, 0; 1;J + 1⟩

))(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
.

As in all the previous cases, the coefficient of (AJ,0;1;J−1(r), AJ,0;1;J+1(r)) will be abbreviated with CCC
SQP

(static quark potential, coupled case).
Motivated by the one method of solving the Cauchy-Euler differential equation, the substitution is carried

out as

v = ln(r)

(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
= u(v) =

(
u−(v)
u+(v)

)
,

leading to
0 = ∂2vu+ CCC

SQPu(v).

This is a linear differential equation and can easily be rewritten into a first order multi-dimensional differential
equation.

First, consider the vector-valued function w(v) together with the matrix A:

w(v) =


u−(v)
u+(v)
∂vu−(v)
∂vu+(v)

 A =


0 0 1 0
0 0 0 1

−CCC
SQP

0 0
0 0


Next, the above linear differential equation is equivalent to

Aw(v) = ∂vw.

Such differential equations are well-known to have the solution
w(v) = exp(Av)w(0).

As a consequence, this means that any solution(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
of the original asymptotic Schrödinger equation is a linear superposition of(

(exp(A ln(r))ei)1
(exp(A ln(r))ei)2

)
,

where ei enumerates the standard basis vectors of C4. Here only the first two components of the solution
w(v) = exp(Av)ei are being considered since the last two are simply the derivatives of the first.

Now, all that remains is to verify the assumption. Here the assumption works out to be
0 =

(
−r2

m
+
CFαsµr

2

πm2

)
∂2rAJ,0;s;l(r) +

(
−2r

m
+ 4

CFαsµr

2πm2

)
∂rAJ,0;s;l(r) +

((
J · (J − 1) 0

0 (J + 1)(J + 2)

)
+
(
−er + σr3

)
+

1

m

(
−8α2

9
+

2σ

π
r2 ln(r)

)
+

1

m2

(
2

(
J · (J − 1) 0

0 (J + 1)(J + 2)

)(
−σr
12

− CFαsµ

2π

)
+
(σr
2

)(J − 1 0
0 −(J + 1)

))
− Er2

)(
AJ,0;1;J−1(r)
AJ,0;1;J+1(r)

)
.

This condition can now be verified numerically to find the asymptotic solutions.



()

Chapter 4

Numerics and Results

In this chapter, the numerical methods used to compute the explicit energy levels of bottomonium are explained
and the resulting energy levels are discussed.

Numerical Calculations

Before it is possible to come to the numerical computations, the unknown additive offset present in the static
quark potential needs to be addressed. Regarding the additive offset, there are no concrete values. Therefore, the
energy levels of some base state, in this case 0−+, were first computed while neglecting the additive offset and
later compared with their experimental counterpart. In the present situation, the additive offset was then chosen
to be the difference between the computed first energy level of 0−+ and the experimental value of 9398.7MeV.
This additive offset was in turn incorperated into all subsequent calculations. It should be noted that the offset
was recalculated for each of the five main corrections. The second unknown constant is the string tension σ.
While there do exist some concrete values for σ, the author chose to use the correction with the full static quark
potential to match σ such that the energy difference between the first and second energy level of 0+− is realized.
This works out to a value of σ = 0.282159GeV2 which is used for all other cases.

In order to compute the energy levels in the coupled case there is one very useful trick from [5] which greatly
reduces the complexity of the calculations. To see where this trick is coming from, observe that the solution A
to the coupled differential equation is a linear combination of the two full solutions A1 and A2 obtained by
using the two different asymptotic behaviors found for the differential equation. In particular, this means that if
a specific energyE is in fact an energy level of bottomonium, then two constants C1 and C2 must exist such that

0 = A(∞) = C1A1(∞) + C2A2(∞) =
(
A1(∞) A2(∞)

)(C1

C2

)
.

This implies that the matrix (A1(∞) A2(∞)), recall that Ai(∞) is a two-dimensional vector, has a non-trivial
kernel and thus has a determinant of zero. Furthermore, this entails that if the precise value of the constants C1

and C2 is irrelevant, then it fully suffices to compute A1(∞) and A2(∞) and check that the determinant of the
combined matrix is zero.

In order to actually solve the occurring differential equations, a Runge-Kutta ordinary differential equation
solver, namely the Dormand–Prince (RKDP) method which is also implemented in the boost C++ library, was
applied. For all corrections with the exception of the ultimate one involving the complete static quark potential
an adaptive step size could be used inside the Runge-Kutta algorithm. In the case containing the full static quark
potential, this was sadly not possible in a reasonable amount of steps, and so it was elected to use a fixed step size
for these calculations. More precisely, first a starting energyE was specified and substituted into the differential
equation derived in chapter 2. Then the asymptotic solution as well as its derivative were evaluated at the set
start point of the Runge-Kutta algorithm after which the algorithm was run. It was then tested if the second
boundary condition, namely that the solution drops of to zero at infinity was satisfied. If this did not happen,
the energy E could be ruled out as a viable energy level of the considered state. Specifically, the locating of the
sought after energy levels was accomplished by first conducting a scan after which possible candidates where
identified via a sign change, and it was subsequently possible to find the precise energy levels by conducting a
bilinear search.
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Figure 4.1: The computed energies of the different states of bottomonium in the different cases are compared
with the experimental values which stem from [12]. The experimentally obtained energies are represented by
thick black lines.
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Figure 4.2: For the different cases in this thesis, the
values of the norm are compared with each other as well
as with the results obtained by using perturbation theory
in [11] by Michael Eichberg and Marc Wagner.

The computed results are shown in Figure 4.1 and the
exact values can be found in Appendix B. To validate
these results, it might help to make some elementary
observations. First of all, it is self-explanatory that
the zeroth and first order corrections depend only on
the angular momentum l. This means that the energy
levels should be the same for 0++, 1++, and 1+−.
Evidently, this is here the case. Secondly, the results
get better with the additions of further corrections. To
analyze this more qualitatively, consider the norm∑

C computed value
E experimental value

(E − C)2

E2
,

where the sum is taken over all computed energy
levels with respectable experimental counterparts,
i.e. in this case the first energy level of 0++

as well as the first and second energy levels of
0−+, 0++, 1++, 1+−, 1−−, 2++ were selected. The
resulting norms are shown in Figure 4.2.

The first thing to notice is that there is a massive
increase in accuracy when transitioning from the ze-
roth order to the first order correction. The resulting energy values are actually slightly better than the consecutive
corrections involving the spin-dependent contributions but are worse than those given by the complete static
quark potential with Vp(r) being set to zero. Since the latter of which involves the same asymptotic solutions
with a constant change, it is always better to use the full static quark potential with Vp(r) instead of only the
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spin-dependent corrections. If even more accuracy is required, the full static quark potential can be used, but
it should be noted that it needs substantially more computational resources due to the occurrence of higher
orders of r in front of the differentials. Lastly, observe that all corrections struggle with accurately predicting
the second energy level of 2++. This behavior will be addressed in the conclusion.
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Figure 4.3: The results computed throughout this thesis
are compared with those presented by Michael Eichberg
and Marc Wagner in [11].

As already mentioned in the introduction, sim-
ilar computations to those presented in this thesis
have already been conducted by Michael Eichberg
and Marc Wagner in [11]. In their paper, they used
time-independent perturbation theory to arrive at their
energy levels. It should be noted that their computa-
tions used a set string tension σ of 0.23GeV2. When
compared with the full static quark potential compu-
tation in this thesis, their values are objectively better,
see Figure 4.2. A more complete picture can be seen
in Figure 4.3. In the state 0++, both the presented ap-
proach from this thesis as well as the perturbative one
lead to very good approximations of the energy lev-
els. Regarding 0−+, it appears as if the here presented
results are more accurate, but this is deceiving since
the string tension σ was explicitly chosen in this way.
Concerning the states 1−+ and 1++, the perturbative
computations are unilaterally better and the same can
also be said for 2++.
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Chapter 5

Conclusion

In this thesis, it was possible to compute the energy levels of different bottomonium bounded states, starting
from the static quark potential. In doing so, a method for finding the asymptotic solutions of a variety of
differential equations was introduced.

Using the full static quark potential, it is within reach to make predictions regarding the energy levels of
other states of bottomonium. Consider for instance the second energy level of the state 0++. The computed
value works out to be 10293.6MeV whereas experimentally a particle with a mass of 10232.5MeV (see [12])
was found which is presumed to correspond to this energy level. The similarity of the experimental data and
of the here computed value now provide additional encouragements that this is indeed the case. Similar can be
said for the first energy level Υ2(1D) of 2−− where experimentally masses of 10163.7MeV (see [12]) come
into question while computationally the mass of the state is 10165.8MeV.

Despite these advances, there are some improvements that can be implemented. One major deficit of the
employed numerical techniques lie in the computation of the asymptotic conditions in the coupled case. Here
infinite sums occur. Although these do converge, the convergence is sometimes quite slow, leading to very
large summands. Computationally, these summands get so large that they cause large inaccuracies in the final
computation of the asymptotic approximation of the solutions. These numerical inaccuracies can be alleviated
by computing the large summands not in double precision but rather keeping all digits pertained to the integer
part of the resulting values and choosing a fixed number of decimal points. This ought to hopefully allow for a
decrease in the start point of the Runge-Kutta algorithm for these coupled cases and thus lead to an increase in
precision of the energy levels. Here it should be pointed out that the computed energy levels appear somewhat
stable against inaccuracies in the asymptotic behavior around 0. This might also be a reason for why the two
different asymptotic behaviors derived in the correction, where only spin-dependent components are considered,
do not dramatically impact the final energy levels. It would be ideal if it were possible to completely eliminate
one of these asymptotic behaviors entirely in the future. Furthermore, the string tension is currently being
matched with experimental energy values. It seems reasonable that computing the string tension with methods
in lattice QCD could render this unnecessary.

In the future, it is also desirable to consider resonances as seen in [9]. This means that the bottomonium
will be free to decay into a pair of mesons. This can occur if the energy between the bottom quark and its
antiparticle is so large that it suffices to create a new light quark and its antiparticle. These can then pair with
the bottom quark and antiquark, respectively, to form two heavy-light mesons.
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Appendix A

Derivation of the Explicit Radial Potentials in
the Static Quark Potential

The aim of this appendix is to provide a precise justification of the individual components of the radial potentials
VLS(r), VS12(r), VS2(r), Vr(r), VL(r), and Vp(r):

Explicit Forms for the Radial Potentials (due to [1], [6], [10])

VLS(r) =
5e

2r3
+
σ

2r

VS12(r) =
3e

r3

VS2(r) =
2eδ(r)

r2

Vr(r)=

(
3

4
+ ds

)
δ(r)

r2

VL(r) =
e

4r3
− σ

12r

Vp(r) = −CFαsµ

2π
− e

2r

The potentials VS2(r) and Vr(r) are only shown for completeness. They will not be used throughout this
thesis.

mb = 4.977 GeV
αs = 0.2815

CF = 4/3

σ = 0.282159 GeV2

µ = 1.5879557
π

a
(see [1, p. 37])

e = CFαs (see [1, p. 97])

The string tension σ was determined by comparing certain computed energies with their experimental
counterpart. The details of this will be discussed in chapter 4.

In his master thesis, Michael Eichberg used the following expression for the spin-dependent contribution to
the static quark potential

HSD(r) =

(
LS1

m2
1

+
LS2

m2
2

)
V ′
0(r) + 2V ′

2(r)

2r
+

L(S1 + S2)

m1m2

V ′
2(r)

r

+

(
(S1r)(S2r)

m1m2
− S1S2

3m1m2

)
V3(r) +

S1S2

m1m2
V4(r)

(see [10, (2.11)]) together with the potentials

V0(r) = −e
r
+ σr, ⇝ V ′

0(r) =
e

r2
+ σ,

V ′
1(r) = −σ, V3(r) =

3e

r3
,

V ′
2(r) =

e

r2
, V4(r) = 8πeδ3(r)

(see [1, (6.80), (6.83)-(6.86)] with h(µ) = 0). The above formula is of course more general than necessary
since it governs the interaction of a quark-antiquark pair with possibly unequal masses. In the situation of this
thesis, only quark-antiquark pairs possessing equal masses will be considered and therefore m1 = m2 = m.
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This leads to the following simplified form for the spin-dependent part of the static quark potential

HSD(r) =
LS

m2

(
V ′
0(r) + 2V ′

2(r)

2r
+
V ′
2(r)

r

)
+

(
(S1r)(S2r)

m2
− S1S2

3m2

)
V3(r) +

S1S2

m2
V4(r)

=
1

m2

((
V ′
0(r)

2r
+

2V ′
2(r)

r

)
LS+ V3(r)S12(r) + V4(r)(S1S2)

)
.

A comparison with the presented spin-dependent contribution of the static quark potential yields

VLS(r) =
V ′
0(r)

2r
+

2V ′
2(r)

r

=
e

2r3
+
σ

2r
+

2e

r3

=
5e

2r3
+
σ

2r
,

VS12(r) =V3(r) =
3e

r3
,

VS2(r) =V4(r) = 8πeδ3(r)

=
2eδ(r)

r2
.

Here the identity δ3(r) = δ(r)
4πr2

, which can easily be verified by observing that∫
dr3 f(r)

δ(r)

4πr2
=

∫ ∞

0
dr r2

∫ π

−π
dφ

∫ π

0
dθ sin(θ)f(r cosφ sin θ, r sinφ sin θ, r cos θ)

δ(r)

4πr2

=
f(0, 0, 0)

4π

∫ π

−π
dφ

∫ π

0
d θ sin(θ) = f(0) =

∫
dr3 f(r)δ3(r),

was used.
Now, it is time to study the spin-independent contributions. These are slightly more involved in the sense

that the spin-independent part of the Hamiltonian

HSI =
1

m2
1

(
1

2

[
p2
1, V

(2,0)
p2 (r)

]
+
+ V (2,0)

r (r) + V
(2,0)
L2 (r)

L2
1

r2

)
+

1

m2
2

(
1

2

[
p2
2, V

(0,2)
p2 (r)

]
+
+ V (0,2)

r (r) + V
(0,2)
L2 (r)

L2
2

r2

)
+

1

m1m2

(
− 1

2

[
p1p2, V

(1,1)
p2 (r)

]
+
+ V (1,1)

r (r)− V
(1,1)
L2 (r)

L1L2 + L2L1

2r2

)
(see [6, (3)-(5)], again allowing for unequal masses) is expressed in terms of V (2,0)

p2 (r), V
(1,1)
p2 (r), V

(0,2)
p2 (r),

V
(2,0)
L2 (r), V

(1,1)
L2 (r), V

(0,2)
L2 (r), and V (2,0)

r , V
(1,1)
r , V

(0,2)
r which in turn are linked via the equations

Vb(r) = −2

3
V

(1,1)
L2 (r)− V

(1,1)
p2 (r), Vd(r) =

2

3
V

(2,0)
L2 (r) + V

(2,0)
p2 (r),

Vc(r) = −V (1,1)
L2 (r), Ve(r) = V

(2,0)
L2 (r)

(see [6, (76)-(79)] and note that there E is used instead of V to denote the potentials) to the commonly used
potentials

V,Cb +
2

3

e

r
− σ

9
r, Vd =Cd −

σ

9
r,

Vc =− 1

2

e

r
− σ

6
r, Ve =− σ

6
r

(see [1, (6.88) - (6.91)]). In the present specialized situation, of a quark and its antiquark interacting, m1 =

m2 = m, p = p1 = −p2, L = L1 = −L2, V
(2,0)
p2 (r) = V

(0,2)
p2 (r), V (2,0)

L2 (r) = V
(0,2)
L2 (r), V (2,0)

r = V
(0,2)
r , and

therefore the Hamiltonian reduces to

HSI =
1

m2

(
1

2

[
p2, 2V

(2,0)
p2 (r) + V

(1,1)
p2 (r)

]
+
+ 2V (2,0)

r (r) + V (1,1)
r (r) + (2V

(2,0)
L2 (r) + V

(1,1)
L2 (r))

L2

r2

)
.

At last, comparing coefficients with the presented static quark potential results in

Vp(r) =V
(2,0)
p2 (r) +

1

2
V

(1,1)
p2 (r)

=

(
Vd(r)−

2

3
V

(2,0)
L2 (r)

)
+

1

2

(
−Vb(r)−

2

3
V

(1,1)
L2 (r)

)
=

(
Vd(r)−

2

3
Ve(r)

)
+

1

2

(
−Vb(r) +

2

3
Vc(r)

)



()

28 Appendix A. Derivation of the Explicit Radial Potentials in the Static Quark Potential

=

(
Cd −

σ

9
r − 2

3

(
−σ
6
r
))

+
1

2

(
−Cb −

2

3

e

r
+
σ

9
r +

2

3

(
−1

2

e

r
− σ

6
r

))
=Cd −

Cb

2
− e

2r
,

VL(r) =
1

2r2

(
2V

(2,0)
L2 (r) + V

(1,1)
L2 (r)

)
=

1

2r2
(2Ve(r)− Vc(r))

=
1

2r2

(
2
(
−σ
6
r
)
+

1

2

e

r
+
σ

6
r

)
=

e

4r3
− σ

12r
.

For the purposes of this thesis, the values

Cb = 0 and Cd = −1

4
Vself(µ) = −CFαsµ

2π
(compare [1, (4.46), (6.92)]) will be used which yield the final forms for Vp(r) and VL(r).

The last remaining potential Vr(r) can be obtained by comparing coefficients of the presented static quark
potential with the form given in [1, (6.95)-(6.100)]:

Vr(r) =

(
3

4
+ ds

)
4πδ3(r)

=

(
3

4
+ ds

)
δ(r)

r2
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Appendix B

Computed Energies and Matrix Elements

State Label Experimental Mass Computed Mass (Normed) Relative Error
JPC MeV MeV %

Zeroth Order
χb0(1P ) 0++ 9859.44± 0.42± 0.31 9791.69 0.687176

ηb(1S) 0−+ 9398.7± 2.0 9398.7 0
ηb(2S) 9999± 4 9950.02 0.489865

χb1(1P ) 1++ 9892.78± 0.26± 0.31 9791.69 1.02187
χb1(2P ) 10255.46± 0.50 10212.1 0.422338

hb(1P ) 1+− 9899.3± 0.8 9791.69 1.08706
hb(2P ) 10259.8± 1.2 10212.1 0.464461

Υ(1S)
1−− 9460.30± 0.26 9398.7 0.651142

Υ(2S) 10023.26± 0.31 9950.02 0.730717

χb2(1P ) 2++ 9912.21± 0.26± 0.31 9791.69 1.21589
χb2(2P ) 10268.65± 0.5 10212.1 0.550245

First Order
χb0(1P ) 0++ 9859.44± 0.42± 0.31 9853.49 0.0603974

ηb(1S) 0−+ 9398.7± 2.0 9398.7 0
ηb(2S) 9999± 4 9998.21 0.0078836

χb1(1P ) 1++ 9892.78± 0.26± 0.31 9853.49 0.397207
χb1(2P ) 10255.46± 0.50 10289.1 0.32831

hb(1P ) 1+− 9899.3± 0.8 9853.49 0.462809
hb(2P ) 10259.8± 1.2 10289.1 0.28587

Υ(1S)
1−− 9460.30± 0.26 9398.7 0.651142

Υ(2S) 10023.26± 0.31 9998.21 0.249902

χb2(1P ) 2++ 9912.21± 0.26± 0.31 9853.49 0.59245
χb2(2P ) 10268.65± 0.5 10289.1 0.199439

Only Spin-Dependent Contribution
χb0(1P ) 0++ 9859.44± 0.42± 0.31 9782.11 0.784343

ηb(1S) 0−+ 9398.7± 2.0 9398.7 0
ηb(2S) 9999± 4 9998.21 0.0078836

χb1(1P ) 1++ 9892.78± 0.26± 0.31 9830.65 0.628002
χb1(2P ) 10255.46± 0.50 10268.1 0.122817
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State Label Experimental Mass Computed Mass (Normed) Relative Error
JPC MeV MeV %

hb(1P ) 1+− 9899.3± 0.8 9853.49 0.462809
hb(2P ) 10259.8± 1.2 10289.1 0.28587

Υ(1S)
1−− 9460.30± 0.26 9435.77 0.259291

Υ(2S) 10023.26± 0.31 10020.7 0.0260083

χb2(1P ) 2++ 9912.21± 0.26± 0.31 9874.17 0.383782
χb2(2P ) 10268.65± 0.5 10307.8 0.380797

Complete Potential with Vp = 0

χb0(1P ) 0++ 9859.44± 0.42± 0.31 9818.34 0.416873

ηb(1S) 0−+ 9398.7± 2.0 9398.7 0
ηb(2S) 9999± 4 9998.21 0.0078836

χb1(1P ) 1++ 9892.78± 0.26± 0.31 9844.48 0.488222
χb1(2P ) 10255.46± 0.50 10284.1 0.279079

hb(1P ) 1+− 9899.3± 0.8 9854.58 0.45176
hb(2P ) 10259.8± 1.2 10282.3 0.219718

Υ(1S)
1−− 9460.30± 0.26 9430.95 0.310285

Υ(2S) 10023.26± 0.31 10017.7 0.0551397

χb2(1P ) 2++ 9912.21± 0.26± 0.31 9877.32 0.352159
χb2(2P ) 10268.65± 0.5 10310.1 0.403336

Complete Potential
χb0(1P ) 0++ 9859.44± 0.42± 0.31 9850.54 0.09031

ηb(1S) 0−+ 9398.7± 2.0 9398.7 0
ηb(2S) 9999± 4 9999.74 0.00744996

χb1(1P ) 1++ 9892.78± 0.26± 0.31 9864.74 0.283389
χb1(2P ) 10255.46± 0.50 10296.5 0.400585

hb(1P ) 1+− 9899.3± 0.8 9883.35 0.161138
hb(2P ) 10259.8± 1.2 10311.2 0.500509

Υ(1S)
1−− 9460.30± 0.26 9461.38 0.0113715

Υ(2S) 10023.26± 0.31 10038.7 0.154431

χb2(1P ) 2++ 9912.21± 0.26± 0.31 9906.48 0.0577752
χb2(2P ) 10268.65± 0.5 10331.6 0.61313

Table B.1: The computed energies for the different states of bottomonium are shown. The results are split up
with regard to the different cases considered in this thesis. The grayed out values were applied to normalize the
static quark potential and thus cannot be used to draw conclusions. The experimental values stem from [12].
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State
State

CT
0
+
+

|0,0
;1;1⟩

0
+
+

⟨0,0;1
;1|

−
1

√
2
π

0
−
+

|0,0
;0;0⟩

0
−
+

⟨0
,0;0

;0|
0

1
+
+

|1,0;1
;1⟩

1
+
+

⟨1,0;1
;1|

1
√
8
π

1
+
−

|1,0;0;1⟩

1
+
−

⟨1
,0
;0;1|

0

1
−
−

|1,0;1;0⟩
|1,0;1;2⟩

1
−
−

⟨1,0
;1;0|

⟨1,0;1
;2|

01
2 √

π

1
2 √

π

−
1

√
8
π

2
+
+

|2,0;1;1⟩
|1,0;1;3⟩

2
+
+

⟨2,0
;1;1|

⟨1,0;1;3|

−
1

1
0 √

2
π

31
0 √

3π

31
0 √

3π

−
15 √

2π

2
−
+

|2,0;0;2⟩

2
−
+

⟨2
,0
;0;2|

0

2
−
−

|2,0;1;2⟩

2
−
−

⟨2,0;1;2|
1

√
8
π

Table B.2: The matrix CT is expressed in terms of the basis |j, jz; s; l⟩. Due to the conservation laws presented
in chapter 2, it is possible to assume that jz = 0. These values were computed with the help of Mathematica.
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