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Abstract

The focus of this thesis is the reduction of discretization errors in lattice gauge theory computa-
tions of the static quark-antiquark potential. Specifically, two well-known and frequently used
methods of tree-level improvement of the static potential are discussed and compared in detail
using lattice simulations in the framework of SU(2) Yang-Mills theory.
Criteria for the effective reduction of discretization errors assessed for each method are the
restoration of the static potential’s rotational symmetry, as well as agreement between lattice
computations of the potential using two discretizations with different static actions. Evidence
suggesting the superior efficacy of one of these two methods is presented; an explanation for this
discrepancy between methods is proposed and supported by further calculations.
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1 INTRODUCTION

1 Introduction

In the Standard Model of particle physics, the strong interaction between color-charged elemen-
tary particles is described by the theory of Quantum Chromodynamics (QCD). The fundamental
local gauge symmetry of QCD, i.e. the invariance of the QCD action under rotations in color
space, is characterized by the gauge group SU(3). Therefore, the dynamics of the gauge bosons
– the gluons – exhibit self-interactions, a characteristic trait of non-Abelian gauge theories as
first described by C. N. Yang and R. L. Mills. [1]
Both the pure Yang-Mills theory of the strong interaction, which omits the presence of dynamical
fermions, and full QCD are of great interest in researching the interaction’s unique qualities and
phenomena; however, a significant challenge to early theoretical descriptions was its eponymous
strong coupling below an energy threshold of the order E . 1GeV. [2, 3]
The framework of perturbation theory, which had produced highly successful theoretical pre-
dictions in Quantum Electrodynamics (QED) preceding QCD, requires a sufficiently small cou-
pling to allow convergence of power series expansions with respect to this parameter. Thus,
non-perturbative methods are necessary to accurately research QCD and obtain physically valid
results at lower energy scales.

Lattice gauge theory is a first-principles approach to QCD that regularizes the theory by ap-
proximating continuous space-time with a finite, discrete lattice, allowing numerical simulations
and theoretical predictions without the inherent restriction to the high-energy sector typical of
perturbative analyses. In the past few decades, this approach has been implemented to great
success. After the first formulation of QCD on the lattice by K. G. Wilson in 1974 [4], character-
istics of the strong interaction such as confinement of quarks and the QCD β-function describing
the transition from strong coupling at low energies to asymptotic freedom at high energies could
be accurately replicated in lattice simulations using this approach. [4, 5]
In particular, one of the first observables to be successfully described by Wilson’s formulation
of lattice gauge theory was the potential energy of a quark-antiquark pair as a function of their
spatial separation in the static limit (see Sec. 2.1), commonly referred to as the static poten-
tial [6]. This quantity – as well as the related static force – continues to be of great interest in
QCD research today, due to its relevance to not only improving the theoretical understanding of
quark-antiquark pairs themselves, but also to setting the physical scale in lattice QCD [7] and
precision computations of observables such as the strong coupling (e.g., [8, 9]).

However, this approach to QCD and Yang-Mills theory gives rise to unwanted effects due to the
lattice regularization, the so-called lattice artifacts or discretization errors. For static quark-
antiquark pairs on the lattice, these deviations from the expected continuum behavior were first
described in the literature soon after the potential itself, becoming apparent in the form of sig-
nificant breaking of the continuum potential’s rotational invariance. [10,11]
To address this problem, different approaches aiming to reduce discretization errors were pro-
posed, notable examples being two different methods of tree-level improvement [7, 12] specific
to the static potential and static force. Here, the lattice data is adjusted in a way that aims
to better approximate the continuum counterparts of these observables, which are computed at
tree-level of perturbation theory. Due to the nature of perturbative calculations and the strong
coupling, this methodology is applicable to the region of small quark-antiquark separations, in
which discretization errors are largest.

The first of these methods, which uses a multi-parameter fit procedure discussed in detail in
Sec. 4.4, was introduced by C. Michael [12] and has since been commonly used to improve the
static potential, see e.g. [13–18].
The second method, often referred to as the method of improved separation, was originally
introduced by R. Sommer for the static force [7] and has been used specifically for this quantity
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1 INTRODUCTION

to good success since then, cf. e.g. [15,19–22]. However, it was later also adopted for the static
potential and is still commonly used in this manner, e.g. in Refs. [8, 9, 20,23–26].

The goal of this thesis is to systematically compare these two methods of tree-level improvement,
in particular regarding their efficacy for reducing discretization errors in lattice computations
of the static potential. An important result of this is evidence that appears to favor one of the
two methods over the other, which is discussed in detail below. Further, an expression aiming
to quantitatively explain the problems occurring with the less favorable method is proposed. It
is then shown that when adjusting for this term, significantly better restoration of rotational
symmetry and agreement between different discretizations can be achieved for the static poten-
tial, indicating superior tree-level improvement and supporting the explanation given for the
discrepancy between methods.
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2 THEORY AND METHODOLOGY

2 Theory and methodology

In the following, aspects of lattice gauge theory relevant to this thesis are outlined. A more
detailed discussion can be found in the introductory literature, see e.g. [27, 28]; the notation
used below is primarily based on [27].

Lattice gauge theory allows the numerical evaluation of correlation functions in the path integral
formalism by replacing continuous space-time with a finite number of discrete points x on a
four-dimensional Euclidean lattice Λ. The four dimensions correspond to the three spatial
coordinates x separated by the lattice spacing a, and Euclidean time t, which is obtained from
real time τ by a Wick rotation, t = iτ . Time intervals are commonly discretized with the
same lattice spacing a as the spatial components, resulting in a hypercubic lattice structure
with volume T × L3. Here, T and L denote the temporal and spatial extensions of the lattice,
respectively.

Due to limited computational capacities, early simulations aiming to investigate the strong in-
teraction in lattice gauge theory (e.g., [4–6]) typically used relatively small lattice volumes and
considered Yang-Mills theory with the gauge group SU(2), which describes pure gluodynamics
with only two colors. Since then, advancements in technology have been a key driving factor
in the progress of lattice gauge theory, allowing increasingly sophisticated simulations. How-
ever, since SU(2) Yang-Mills theory accurately describes many of the qualities and characteristic
phenomena of full QCD to a reasonable extent, particularly when studying purely gluonic ob-
servables such as the static potential, this approach is still a common choice (see e.g. [29–31])
for explorative studies and is used in this work.

In SU(2) lattice gauge theory, the gauge fields of the continuous theory are replaced by link
variables Uµ(n), which are elements of the gauge group SU(2) and connect a given lattice site n
to the neighboring lattice site in µ-direction, n+ µ̂. In this notation, n ∈ Λ ⊂ Z4 describes the
lattice sites located at space-time coordinates x = an and µ̂ denotes a unit vector normalized
to length a and oriented along one of the lattice axes.

The plaquette Uµν(n) is defined as

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) (1)

and forms the smallest non-trivial closed loop of link variables, the trace of which is gauge-
invariant due to the transformation properties of the gauge links.

This quantity is key to Wilson’s plaquette action [4], a discretization of the continuum SU(N)
Yang-Mills action, given by

S[U ] = β

N

∑
n∈Λ

∑
µ<ν

Re Tr (1− Uµν(n)) , (2)

with N = 2 for gauge group SU(2). The inverse coupling β is a quantity commonly used in
place of the continuum coupling g in lattice gauge theory and defined as β = 2N

g2 .

It is worth noting that there are other discretizations of the continuum gauge action with different
properties, such as the Symanzik improved action [32,33], which – like the methods of tree-level
improvement discussed in the following – aims to reduce discretization errors. However, since
the focus of this work is tree-level improvement achieved by methods separate from and different
to this approach, the standard Wilson plaquette action is used for the lattice calculations of the
static potential.
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2 THEORY AND METHODOLOGY

2.1 The static quark-antiquark potential

In the context of the quark-antiquark potential, the static limit is a non-relativistic approx-
imation assuming an infinitely heavy quark and antiquark, which are fixed in space and can
neither be dynamically created nor annihilated. Using this approximation, the dependence of
path integrals on the static quarks can be “integrated out”, allowing calculations of the static
potential in pure Yang-Mills theory. [34]

To obtain this observable using lattice gauge theory, it is conducive to first define the Euclidean
correlation function

C(t) = 〈Ω|O†(t)O(0)|Ω〉 = 1
Z

∫
D[U ]O†(t)O(0) e−S[U ] (3)

of the operator O, which acts on the vacuum state |Ω〉 to create a state describing a static quark
and antiquark located at two lattice sites separated by the distance r. The partition function Z
in the lattice path integral on the right-hand side of Eq. (3) is a normalization factor given by

Z =
∫
D[U ] e−S[U ] . (4)

The static quark-antiquark potential V (r) is defined as the difference between the ground state
energy E0(r) of the quark-antiquark pair at separation r and the energy EΩ of the vacuum state,

V (r) = E0(r)− EΩ . (5)

This energy difference can be computed by considering the spectral decomposition of the cor-
relation function C(t), which is obtained from Eq. (3) by using a set of energy eigenstates |n〉
with eigenvalues En, and the Euclidean time evolution of the operator O. When considering
the limit of large time t, this results in an expression which is exponentially proportional to the
static potential:

lim
t→∞

C(t) = lim
t→∞

∑
n

|〈n|O(0)|Ω〉|2 e−(En(r)−EΩ)t (6)

= |〈0|O(0)|Ω〉|2 e−(E0(r)−EΩ)t ∝ e−V (r)t . (7)

Therefore, the static potential can be obtained by an exponential fit to the correlation function.
However, a more commonly used approach is to calculate the static potential from a fit to a
constant according to

V (r) = lim
t→∞

Veff (r, t) , (8)

with the effective potential Veff defined at a given separation r via the dimensionless quantity

aVeff (r, t) = ln
(

C(t)
C(t+ a)

) ∣∣∣∣
r

. (9)

The t-range of the constant fit has to be chosen carefully in order to avoid unnecessarily large
errors due to statistical fluctuations at large t, as well as minimize contributions of excited states,
which are exponentially suppressed with increasing t but still contribute significantly if the lower
bound of the fit range is chosen too low, cf. Eq. (6). The fitting procedure used in this work is
described in more detail in Sec. 3.4.
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2 THEORY AND METHODOLOGY

In practice, the correlation functions C(t) in lattice gauge theory calculations of the static
potential are evaluated by calculating the vacuum expectation values of Wilson loops

WL[U ] = Tr

 ∏
(k,µ)∈L

Uµ(k)

 = Tr
(
S(m,n, nt) T †(n, nt)S†(m,n, 0) T (m, nt)

)
, (10)

which are gauge invariant observables satisfying

lim
t→∞
〈Ω|WL|Ω〉 ∝ e−V (r)t . (11)

In the above definition, the path L is characterized by two spatial transporters S and two
temporal transporters T forming a closed loop of gauge links on the lattice.
The temporal transporter T (m, nt) is defined as the product of temporal gauge links connecting
the lattice points (m, 0) and (m, nt), while T †(n, nt) runs in the opposite temporal direction at
spatial coordinates n, connecting the lattice point (n, nt) to (n, 0). Accordingly, the temporal
extension TW of the Wilson loop is given by TW = ant.
The spatial transporter S(m,n, nt) is analogously defined as a product of gauge links connecting
the lattice sites at spatial coordinates m and n, or vice versa for S†(m,n, 0), each at a fixed
time given by the third argument. The Wilson loop’s spatial extension LW is the parameter
defining the quark-antiquark separation r when evaluating the static potential,

r = LW = a |m− n| . (12)

Wilson loops are further categorized by the direction of their spatial paths relative to the lattice.
If these paths are defined along a coordinate axis of the lattice and can therefore be described by
a straight line of gauge links, they are referred to as on-axis or planar Wilson loops; otherwise,
they are termed off-axis or non-planar Wilson loops. The advantage of considering a large
number of both on- and off-axis Wilson loops is the possibility to compute a larger data set of
the static potential at different separations, with off-axis Wilson loops additionally allowing the
evaluation of the potential at non-integer values of r/a.

This is particularly relevant to assessing the restoration of rotational symmetry of the static
potential by tree-level improvement. The continuum potential is invariant under spatial rota-
tions of r = a (m− n), i.e. for different orientations of r with the same absolute value r = |r|,
whereas the lattice potential breaks rotational symmetry due to the discretization of space-time.
An example of this are values of the static potential computed from on- and off-axis Wilson loops
with the same spatial extension, which correspond to identical values of the continuum potential
but frequently differ in lattice calculations, cf. Sec. 4.1.
A more general measure for the restoration of rotational symmetry can be obtained by consider-
ing the convergence of a fit of the lattice potential to an appropriate continuum parametrization,
effectively giving an indication of how consistent the values from multiple different Wilson loops
are with a single curve. A poor fit due to outlying data points, particularly at small quark-
antiquark separations, can suggest the presence of discretization errors [10–12].
Thus, fitting the lattice potential to a continuum parametrization also serves as an important
tool for assessing the quality of a method of tree-level improvement, cf. e.g. [12,14,17], which is
discussed in further detail in Sec. 4.

For this purpose, the commonly used parametrization of the static potential is the well-known
continuum Cornell potential with an additional additive constant C, given by

V (r) = −α
r

+ σr + C . (13)

Here, the constant C is included in addition to the Coulomb term with coefficient α and the
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2 THEORY AND METHODOLOGY

linear term proportional to the string-breaking coefficient σ due to a constant, unphysical energy
shift that occurs in lattice simulations of the static potential.

2.2 One gluon exchange and the lattice propagator

When evaluated at tree-level of perturbation theory, the continuous static potential describes
the one gluon exchange between the quark and the antiquark and has the form of a Coulomb
potential inversely proportional to the separation [34],

V tree-level
cont (r) ∝

(1
r

)
cont

. (14)

On the lattice, assuming that one of the static color sources is positioned at the spatial origin
and the other at spatial lattice coordinates R = r/a resulting in the separation r = |r|, the
corresponding one gluon exchange expression is given by the lattice Coulomb potential (see
e.g. [10, 12,35])

V tree-level
lat (r) ∝

(1
r

)
lat

= 4π
a
G(R) . (15)

The lattice propagator G(R) in position space is given by the Green’s function

GEH(R) = 1
(2π)3

∫ π

−π

∏3
j=1 cos(pjRj)∑3
j=1 4 sin2(pj/2)

d3p (16)

for computations using the Wilson plaquette gauge action and the Eichten-Hill (EH) static
action, cf. e.g. [17, 18]. The latter refers to the standard action for static quarks introduced
by E. Eichten and B. Hill [36], which uses unsmeared temporal gauge links as opposed to the
HYP static action, see [17,37–39]. The HYP smearing of temporal links is characterized by the
parameters α1, α2 and α3 and will be discussed further in Sec. 3.1. For the lattice propagator,
the use of the HYP static action requires the multiplication of the integrand in Eq. (16) by an
additional factor [17], resulting in

GHYP(R) = 1
(2π)3

∫ π

−π

∏3
j=1 cos(pjRj) ·

(
1− (2α1/3)

∑3
i=1 sin2(pi) Ωi0(p)

)2

∑3
j=1 4 sin2(pj/2)

d3p , (17)

with Ωµν defined as

Ωµν(p) = 1 + α2(1 + α3)− α2(1 + 2α3)

 3∑
j=1

sin2(pj/2)− sin2(pµ/2)− sin2(pν/2)


+ α2α3

∏
η 6=µ,ν

sin2(pη/2) . (18)

The lattice propagator for the Eichten-Hill static action was calculated using a recursion relation
discussed in Refs. [20, 40]. For the HYP static action, the values were obtained numerically via
Monte Carlo integration in the context of Ref. [18].
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3 COMPUTATIONAL DETAILS

3 Computational details

3.1 Lattice setup and gauge link smearing

The calculations of the static potential presented in the following were performed in SU(2) lattice
gauge theory using the Wilson plaquette gauge action and a lattice with temporal and spatial
extensions T/a = L/a = 16. The inverse coupling set to β = 2.40 corresponds to a lattice
spacing of approximately a ≈ 0.097 fm when introducing physical units via the Sommer scale [7]
with the Sommer parameter r0 = 0.5 fm, cf. Sec. 4.5.

In total, 20 000 gauge link configurations were generated for this work using an SU(2) heat
bath algorithm. Each sweep of this Markov chain Monte Carlo algorithm describes an update
of every gauge link on the lattice according to a statistical heat bath probability distribution
depending on the gauge action, cf. e.g. [6,27]. After a hot start, which refers to the initialization
of the gauge links to random SU(2) matrices, 1 000 thermalization sweeps were performed to
ensure that the following configurations are sufficiently close to the equilibrium distribution.
To measure observables accurately, these thermalization updates are discarded. Further, the
configurations used to compute the expectation values of Wilson loops are each separated by
100 sweeps in order to reduce statistical correlations between subsequent configurations.
Consequently, 190 of the generated gauge link configurations were used to measure the static
potential for each of the two computations described in the following.

As mentioned in Sec. 2.2, one of these two calculations of the static potential uses the Eichten-
Hill static action with unsmeared temporal links (abbreviated as the “no-HYP” computation in
the following), while the other uses the HYP2 static action (“HYP2” computation).
Generally, the HYP static action is characterized by the hypercubic smearing of temporal gauge
links, in which these link variables are replaced by an average over paths within the hypercubes
attached to the respective original gauge link, cf. [17, 37,38].
The specification HYP2 refers to the choice of smearing parameters α1 = 1.0, α2 = 1.0, and
α3 = 0.5, which approximately minimizes the noise-to-signal ratio and the unphysical self-
energy shift in lattice computations [39, 41], thereby significantly reducing statistical errors.
However, a disadvantage of HYP smearing for the static potential is the occurrence of increased
discretization errors at small separations [17], appearing in the form of noticeable distortions of
the short distance potential, cf. Sec. 4.

Besides the smearing applied to the temporal gauge links for the HYP2 computation, both
computations in this work use APE smearing [42] for the spatial links with NAPE = 20 steps
and αAPE = 0.5, which is a commonly used choice of parameters, cf. e.g. [43]. This technique
replaces a given gauge link with the weighted average of the original link itself and its six
orthogonal staples, which are each products of the three gauge links that form a path connecting
the endpoints of the original gauge link [27]. The benefit of APE smearing is an increased overlap
of the trial state generated by the operator O (cf. Sec. 2.1) with the ground state of the static
potential, allowing a more precise extraction of the potential due to an improved signal-to-noise
ratio, see e.g. [44].

3.2 On- and off-axis Wilson loops

The typical vector notation (see e.g. [12–15, 45]) for a Wilson loop is defined by the difference
between its spatial start- and endpoint in lattice coordinates, (x/a, y/a, z/a) = m − n. This
description is irrespective of the exact orientation of the spatial paths – for example, no distinc-
tion is made between (1, 0, 0) and (0, 1, 0), since these are both on-axis Wilson loops resulting in
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3 COMPUTATIONAL DETAILS

the same separation and are therefore typically averaged together as described in the following.
However, it should be stressed in the context of this thesis that an explicit distinction is made
between different spatial paths only resulting in the same separation, such as the on-axis Wilson
loop (3, 0, 0) and the off-axis Wilson loop (2, 2, 1), since these can result in slightly different
values of the lattice static potential due to the breaking of rotational symmetry, cf. Sec. 2.1.

To obtain the static potential, the vacuum expectation values of Wilson loops were averaged
over 190 gauge link configurations, cf. Sec. 3.1, and evaluated as described in Sec. 2.1. Further,
the average over three orthogonal spatial directions, each parallel to the lattice axes, was taken
for all on-axis Wilson loops to improve statistics. Similarly, the expectation values of the off-
axis Wilson loops were each averaged over four of the possible different orientations of the
spatial transporters, namely the directions (1, 1, 0), (1,−1, 0), (1, 0,−1) and (1, 0, 1) for the two-
dimensional off-axis Wilson loops, as well as the directions (1, 1, 1), (1,−1,−1), (1,−1, 1) and
(1, 1,−1) for the three-dimensional off-axis Wilson loops. This choice does not exhaust all of
the possible spatial directions in order to save computation time, while still helping to reduce
statistical errors.

Off-axis Wilson loops require the implementation of spatial transporters diagonal to the gauge
links. To obtain two-dimensional diagonal paths of the form r/a = (1, 1, 0), the sum S of two
products of gauge links, which describe the two L-shaped paths connecting the diagonal’s start-
and endpoint along the lattice axes, is computed and the result is projected back to SU(2) with

PSU(2) S = 1√
det (S)

S . (19)

Three-dimensional diagonal links of the form r/a = (1, 1, 1) are constructed analogously as an
average over the six possible paths that connect its start- to its endpoint and are each built from
the product of three gauge link variables.

The Wilson loops used for the computation of the static potential in this thesis, given in vector
notation as described above, are

r/a = n (1, 0, 0) , n ∈ {0, 1, . . . , 8},
r/a = n (1, 1, 0) , n ∈ {1, 2, 3},
r/a = n (1, 1, 1) , n ∈ {1, 2, 3},
r/a = (n, 1, 0) , n ∈ {2, 3, 4},
r/a = (n, 1, 1) , n ∈ {2, 3, 4},
r/a = (n, n, 1) , n ∈ {2, 3},
r/a = (3, 2, n) , n ∈ {0, 1, 2},
r/a = (4, 3, 0) ,
r/a = (3, 3, 2) .

The first row corresponds to the on-axis Wilson loops, while all further rows describe the off-axis
Wilson loops considered. The maximum spatial and temporal extension of the Wilson loops is
LW,max = TW,max = 8a, since the inclusion of too large extensions can introduce additional
systematic errors due to the finite size of the lattice, cf. e.g. [6].
The total number of different Wilson loops computed for each static action is 28, which includes
a total of 19 off-axis Wilson loops in the separation range

√
2 ≤ r/a ≤ 3

√
3, allowing the study

of discretization errors and rotational symmetry of the static potential at small separations in
detail.
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3 COMPUTATIONAL DETAILS

3.3 Statistical errors

All statistical errors cited in this work were obtained via a Jackknife analysis, which is a com-
monly used tool for the statistical analysis of large data sets. While the equations particularly
relevant to this thesis are briefly described below, a more detailed discussion of this method can
be found in the literature, see e.g. [46].

Given a set of N data points θj (j = 1, . . . , N) describing a quantity θ (e.g., the static potential
at a fixed separation), N so-called Jackknife samples specified by the index n = 1, . . . , N are
constructed from the original set by omitting the n-th data point, respectively.
The mean of the full data set θ and the mean of each Jackknife sample θn is calculated using
the standard arithmetic average

θ = 1
N

N∑
j=1

θj , (20)

θn = 1
N − 1

N∑
j=1
j 6=n

θj . (21)

Then, the Jackknife estimate for the standard deviation σ(θ), which defines the statistical errors
quoted in the following in the form of θ ± σ(θ), is given by

σ(θ) =

√√√√N − 1
N

N∑
n=1

(
θn − θ

)2
. (22)

3.4 Fitting procedure

Both the extraction of the static potential from the effective potential as described in Sec. 2.1 and
the comparison of methods of tree-level improvement discussed in the following in Sec. 4 require
the fitting of lattice data to a given function while taking statistical errors into consideration.
For this purpose, the method of χ2-minimizing fitting was employed, which is outlined below;
further details are described in e.g. [47, 48].

This approach aims to approximate a set of N data points fj(xj) (j = 1, . . . , N) with respective
errors σj by using a fit ansatz g(xj ; a) depending on M fit parameters, a = (a1, . . . , aM ).
To achieve an optimal fit, the weighted squared difference

χ2 =
N∑
j=1

(
g(xj ; a)− fj

σj

)2

(23)

between the fit function and data points is minimized by a suitable choice of fit parameters
determined by solving

∇(a)χ2 = 0 . (24)

The value of χ2 per degree of freedom (d.o.f.), or reduced χ2, is given by

χ2
red = χ2

d.o.f.
= χ2

N −M
(25)

and provides an indication of the quality of a fit, with χ2
red ≈ 1 being considered ideal. A

much lower result χ2
red � 1 potentially points to problems such as correlated data points or

overestimation of errors, while a considerably higher value of χ2
red � 1 indicates poor consistency
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3 COMPUTATIONAL DETAILS

of the data with the chosen fit function, or in some cases the presence of additional error sources
which were not accounted for in the specified values of σj . The latter will be particularly relevant
to the discussion of systematic lattice discretization errors of the static potential in the following.

In the special case of a one-parameter fit to a constant, g(a) = a, finding the constant a that
minimizes χ2 is equivalent to calculating the weighted sum

a =
N∑
j=1

wjfj , (26)

with the weight factors wj ∈ [0, 1] defined as

wj =
1/σ2

j∑N
k=1 1/σ2

k

. (27)

This method was used to obtain the static potential by approximating plateaus of the effective
potential as described in Sec. 2.1, using a fixed fit range of 3 ≤ t/a ≤ 7.

The three- and four-parameter fits of the static potential discussed in Sec. 4 require the fitting of
data points to parametrizations that are linear in the fit parameters. In this case, Eq. (24) yields
a system of linear equations, which was solved using Gaussian elimination with back substitution
and scaled partial pivoting to obtain the fits presented in this work.
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4 TREE-LEVEL IMPROVEMENT OF THE STATIC POTENTIAL

4 Tree-level improvement of the static potential

The goal of tree-level improvement is to reduce discretization errors in lattice gauge theory com-
putations of the static potential and static force, which occur due to the lattice regularization
of continuous space-time. In the following, two commonly used methods of tree-level improve-
ment are examined in detail for the static potential. In order to illustrate the aforementioned
discretization errors and establish a baseline for later comparison, the lattice static potential
without the use of tree-level improvement is discussed first.

4.1 The unimproved potential

The lattice results for the unimproved static potential of both the no-HYP and HYP2 computa-
tions performed in this work, cf. Sec. 3.1, are presented in Fig. 1 in lattice units, i.e. in terms of
the dimensionless quantities r/a for the separation r and aV for the potential V . The advantage
of this representation is that it does not require an additional scale setting step to determine
the lattice spacing a in physical units (cf. e.g. [7, 49]), since r/a and aV directly correspond
to the quantities processed by the computer in lattice gauge theory computations of the static
potential. This avoids the risk of introducing additional error sources through setting the scale,
which is particularly high in the presence of discretization errors.

Figure 1: Results of lattice computations of the static potential using the Eichten-Hill (“no-
HYP”) or HYP2 (“HYP2”) static action without tree-level improvement. Data points obtained
by on-axis and off-axis Wilson loops are indicated by their light green and dark green color,
respectively. The fit to the Cornell plus constant parametrization and the resulting reduced χ2

of the fit are shown in dark grey.

The fit functions shown in Fig. 1 were each obtained by three-parameter χ2-minimizing fits to
the continuum Cornell potential with an additional constant, cf. Eq. (13), in lattice units. This
is also referred to as the lattice Cornell parametrization in the following and given by

aV

(
r

a

)
= −α ·

(
r

a

)−1
+ a2σ · r

a
+ aC . (28)

The three dimensionless fit parameters are the Coulomb coefficient α, the string breaking coeffi-
cient in lattice units a2σ, and the constant aC describing lattice artifacts including the self-energy
of the static quarks; the results for these parameters are collected in Table 1.
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4 TREE-LEVEL IMPROVEMENT OF THE STATIC POTENTIAL

The reduced self-energy of the HYP2 computation of the potential in comparison to the no-HYP
computation using the Eichten-Hill static action, cf. Sec. 3.1, is the reason for the constant shift
between the y-axes in Fig. 1.

The discretization errors present in the unimproved lattice potential are readily apparent in
Fig. 1, exemplifying the necessity of tree-level improvement. The HYP2 values in particular
visibly deviate from the typical shape of a Cornell potential, which is empirically expected to
be a suitable parametrization for the continuum potential.
More specifically, the breaking of rotational symmetry is visible in both the no-HYP and HYP2
computations of the potential, most notably in the region of small quark-antiquark separations.
A clear indication of this is the poor fit convergence seen in both data sets, with values of
χ2
red = 17.5 for the no-HYP computation and χ2

red = 67.3 for the HYP2 computation strongly
suggesting the presence of discretization errors, cf. Sec. 2.1. It should be noted that fits of the
static potential are typically restricted to separations greater than approximately r/a & 2− 3
for just this reason, cf. e.g. [22, 24, 26]. However, for the purposes of this work, all separations
1 ≤ r/a ≤ 8 are specifically included in the fit range in order to examine and compare discretiza-
tion errors at small separations.
Illustrative examples showing the lack of rotational symmetry are the two data points at sepa-
ration r/a = 3 in the no-HYP results. Here, the static potential is computed separately by both
an on-axis and an off-axis Wilson loop (see Sec. 3.2), which return slightly different results de-
spite corresponding to the same separation, in contrast to the rotationally invariant continuum
potential. Similar observations can be made for the data points at separation r/a = 5 of the
no-HYP potential and, somewhat more subtly, r/a = 3 of the HYP2 potential.

Another important point of reference for the size of discretization errors in lattice calculations
of the static potential is the level of agreement between different discretizations. This can,
for example, be assessed by comparing computations using different static actions, such as the
no-HYP and HYP2 discretizations discussed in this thesis. An alternative option is the use of
multiple different lattice spacings, see e.g. [18].
In an idealized case without any discretization errors, the results for the potential and thus, the
variables α and a2σ defining its fit function in the lattice Cornell parametrization, should not
depend on the particular discretization used. However, a comparison between the no-HYP and
HYP2 fit parameters listed in Table 1 shows that for the unimproved potential, these parameters
do not match between discretizations, even when taking statistical errors into account.
This is expected for the constant shift aC due to the decreased self-energy of the static quarks
in the HYP2 computation, but the differences between the no-HYP and HYP2 values of both
α and a2σ show a dependence on the discretization that is indicative of lattice artifacts.

α a2σ aC

no-HYP 0.277± 0.009 0.064± 0.011 0.59± 0.06

HYP2 0.003± 0.04 0.087± 0.006 −0.03± 0.04

Table 1: Parameters computed by a χ2-minimizing three-parameter fit of the unimproved static
potential to the lattice Cornell parametrization with fit range 1 ≤ r/a ≤ 8.

A comparison of the no-HYP and HYP2 values of the unimproved potential is shown in Fig. 2.
To allow a direct comparison between these discretizations despite the difference in the self-
energy, the respective constants (aC)′ have been subtracted from the potential in both data
sets. Here and in the following sections, the prime in (aC)′ indicates that these constants have
been obtained by fits with restricted separation ranges, as opposed to the constants aC deter-
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4 TREE-LEVEL IMPROVEMENT OF THE STATIC POTENTIAL

mined by the original fits including all separations. The ranges of these additional fits are limited
to larger separations, starting from r/a ≥ 3−5 depending on the static action and improvement
method, to obtain sufficiently precise values for the constants with fewer distortions caused by
discretization errors.
Fig. 2 shows a clear discrepancy between the no-HYP and HYP2 data points at small separations
r/a . 2, in accordance with this being the range in which discretization errors are known to be
largest. Similarly to the comparison of the fit parameters discussed above, this illustrates an un-
physical dependence of the unimproved lattice potential on the static action at these separations.

Figure 2: Direct comparison of the no-HYP and HYP2 computations of the unimproved static
potential. The unphysical constant shifts (aC)′no-HYP = 0.49 and (aC)′HYP2 = 0.05 have been
subtracted to aid comparison.

The methods of tree-level improvement discussed below aim to address the problems presented
in this section and achieve results that reflect the expected behavior of the continuum potential
more closely. In the following, the methods are compared by assessing the same criteria as
described above, i.e. the achieved degree of rotational symmetry and the level of agreement
between the no-HYP and HYP2 values of the potential and its parameters α and a2σ.

4.2 The method of improved separation: V(r impr)

The method of improved separation for the static potential, also abbreviated as r-improvement
in the following, is a method of tree-level improvement that replaces the separation r of the unim-
proved potential with the so-called improved separation rimpr for all data points, V (r)→ V (rimpr).
While the original separations of the unimproved potential are simply given by r = |r|, where
r describes the spatial paths of the respective Wilson loops (cf. Sec. 3.2), the definition of the
improved separation is motivated by tree-level perturbative calculations of the static potential.
Specifically, it is defined according to the lattice one gluon exchange expression, cf. Eq. (15), as

rimpr
a

= 1
4πG(r/a) . (29)
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4 TREE-LEVEL IMPROVEMENT OF THE STATIC POTENTIAL

Here, the values of the lattice propagator G(r/a) have to be determined separately for the
no-HYP and HYP2 computations, since the definition differs between the Eichten-Hill and the
HYP static action, cf. Sec. 2.2.

Figure 3: Results for the r-improved static potential from the no-HYP and HYP2 computations
with three-parameter fits to the lattice Cornell parametrization.

Fig. 3 shows the results of this method of tree-level improvement for the no-HYP and HYP2
static potential computed in this work. As discussed in Sec. 2.1, the convergence of a fit of the
potential to an appropriate parametrization serves as an indicator for the quality of a method of
tree-level improvement, since it provides a measure for the restoration of rotational symmetry.
Ideally, the data points should be consistent with a single, smooth curve; however, noticeable
deviations of the r-improved potential from the fit functions parametrized by the lattice Cornell
potential are still visible in Fig. 3, particularly at small separations.

The fit convergence of the no-HYP computation is moderately improved as indicated by a lower
– though still not ideal – value of χ2

red = 7.7, which suggests that a certain degree of restoration
of rotational symmetry could be achieved for this discretization. This is also evident in Fig. 3,
as the values of the r-improved potential computed by on- and off-axis Wilson loops are slightly
more consistent than those of the unimproved potential shown in Fig. 1.
However, the result χ2

red = 325.3 for the HYP2 computation shows a fit convergence that is
considerably worse than even that of the unimproved potential, suggesting a severe lack of ro-
tational symmetry. This is reflected in the corresponding graph: despite the overall shape of
the r-improved potential resembling the typical Cornell potential more closely at first glance,
the discrepancy between on- and off-axis data points is noticeably more pronounced at small
separations rimpr/a < 3 when compared to the unimproved HYP2 potential.

α a2σ aC

no-HYP 0.21± 0.05 0.075± 0.006 0.53± 0.04

HYP2 0.41± 0.15 0.065± 0.018 0.17± 0.11

Table 2: Fit parameters obtained by χ2-minimizing fits of the r-improved static potential to the
lattice Cornell parametrization. The fit ranges each include all values of rimpr/a.
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When comparing the no-HYP and HYP2 computations of the r-improved static potential, the
respective values α and a2σ given in Table 2 narrowly match within their statistical errors, in
contrast to the unimproved potential. However, it should be noted that these errors are signif-
icantly larger than the corresponding errors of the unimproved potential, particularly for the
HYP2 computation due to the poor fit. A more illuminating point of reference less affected
by large statistical errors is therefore a direct comparison between the values of the potential,
which is shown in Fig. 4.

Figure 4: Comparison of the no-HYP and HYP2 static potential as a function of the improved
separation rimpr with the constant shifts (aC)′no-HYP = 0.51 and (aC)′HYP2 = 0.06 subtracted.

Here, a distinct discrepancy between the no-HYP and HYP2 computations arises again at small
separations rimpr/a . 3. While the deviation between the values of the potential appears slightly
smaller than for the unimproved potential, see Fig. 2, these visible discretization errors extend
to larger separations here than for the latter, where they are only prominent for r/a . 2.

Furthermore, Fig. 4 shows signs of an “overcorrection” of the static potential by the method of
improved separation, which is discussed in detail in the following section. When comparing this
graph with Fig. 2, it is noticeable that the sign of the difference between the no-HYP and HYP2
values of the potential (minus the unphysical constant (aC)′) is flipped: after r-improvement,
the HYP2 computation returns lower values at small separations than the no-HYP computation,
while the opposite is the case for the unimproved potential.
This observation in combination with the considerably worse fit convergence of the HYP2 data
points suggests that this issue of overcorrecting the potential lies with these values in particular.

4.3 The method of improved separation with a linear correction: Vcorr(r impr)

To find an explanation for the problems discussed in the previous section, it is necessary to exam-
ine the improved separation rimpr, as well as the commonly used definition of the improvement
step V (r)→ V (rimpr), more closely.

The method of improved separation was originally introduced for tree-level improvement of
the static force [7]. Similarly to the definition of rimpr for the static potential, cf. Eq. (29),
the improved separation rFimpr for the static force F (r) along the orientation d is given by an
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expression characterized by the lattice propagator G(r),

rFimpr =
( |d|

4π (G (r/a)−G ((r− d)/a))

)1/2
. (30)

Improvement is then achieved by replacing the separation r with rFimpr, which results in values
F (rFimpr) that are in agreement with the continuum force at tree-level of perturbation theory,

F (r) ∝ 1
r2 → F (rFimpr) ∝

1
(rFimpr)2 . (31)

Consequently, F (rFimpr) is a tree-level improved observable; for further details, see Ref. [7].

For the static potential, the equivalent replacement of the separation r by the improved separa-
tion rimpr can be described in a similar manner as

V (r) = −α
r

+ σr + C → V (rimpr) = − α

rimpr
+ σrimpr + C . (32)

The tree-level perturbative expression for the lattice static potential describes one gluon ex-
change in terms of the lattice Coulomb potential, cf. Sec. 2.2. The method of improved separa-
tion takes this into account by replacing α

r with α
rimpr

.
However, since the linear term proportional to the string breaking coefficient σ is a non-
perturbative component of the static potential in Yang-Mills theory and QCD, there appears to
be no similar theoretical basis for replacing the separation in this term by an expression rimpr
that is inherently based on tree-level perturbative calculations.

Thus, the replacement σr → σrimpr that occurs within the definition of the r-improved static
potential V (rimpr) is a plausible possible explanation for the overcorrection observed above. This
can be quantified by defining an “overcorrection term”

∆ = σ (rimpr − r) , (33)

with the proposed corrected expression for the r-improved static potential being

Vcorr(rimpr) = V (rimpr)−∆ = − α

rimpr
+ σr + C . (34)

Detailed evidence for this hypothesis is explored in the following. Beyond this, it is also sup-
ported by numerical tests performed in the context of Ref. [18], which suggest that the afore-
mentioned problems do not occur in a similar manner for the static force, in accordance with
this observable not including the non-perturbative linear term σr.

Further, this explanation is highly consistent with the specifics of the overcorrection observed
in the previous section, in regards to this problem being the most pronounced for the HYP2
potential at small separations.
In Fig. 5, the difference between the improved and unimproved separations (rimpr − r), which
is proportional to the overcorrection term ∆ proposed above, is plotted as a function of the
original separation r in lattice units. Here, it is not only apparent that this term gets noticeably
larger for small separations, but also that the difference is particularly large for the HYP2
discretization. This is due to the distortion of the static potential at small separations caused
by HYP smearing, cf. [17]. In the context of the r-improved potential, this provides a coherent
explanation for both the remarkably poor fit convergence of the HYP2 potential, cf. Fig. 3, and
the larger overcorrection of these data points observed by comparing Figs. 2 and 4.
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Figure 5: Difference between the improved separation rimpr and the unimproved separation r in
lattice units as a function of r/a for the no-HYP and HYP2 discretizations. The separations
included in this graph correspond to the Wilson loops computed in this thesis, cf. Sec. 3.2.

The results for the r-improved potential with the linear correction defined in Eqs. (33) and (34)
are presented in Fig. 6 in lattice units.
To obtain the values aVcorr(rimpr/a), the term a∆ = (a2σ)′ ·

( rimpr
a − r

a

)
was subtracted from the

values of the potential aV (rimpr/a). Similarly to the notation of the constants (aC)′, the prime
in the coefficient (a2σ)′ indicates that this value was computed using a reduced fit range in
order to obtain a more accurate result. Specifically, (a2σ)′ was determined by a fit of the r-
improved HYP2 potential to the lattice Cornell parametrization with the restriction rimpr/a ≥ 5.
This separation range is chosen to avoid the discretization errors at shorter distances, while the
HYP2 computation is a suitable choice due to the smaller statistical errors. Further, there is
little difference between rimpr and r for the HYP2 potential in this region, cf. Fig. 5. This is
an important consideration to prevent an interdependence between the result for (a2σ)′ and the
proposed overcorrection itself, since the latter affects the fitted data points aV (rimpr/a) less for
smaller values of ∆ ∝ (rimpr − r).

Figure 6: The corrected r-improved static potential from the no-HYP and HYP2 computations
with three-parameter fits to the lattice Cornell parametrization.
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When comparing Fig. 6 to the equivalent graph without the correction of the potential, see
Fig. 3, the most immediately noticeable difference is the substantially improved rotational sym-
metry of the corrected potential. The fit convergence of the data points from the no-HYP
computation is close to ideal, as indicated by the value of χ2

red = 1.5. Additionally, while the
result χ2

red = 18.9 for the HYP2 potential is not optimal by usual standards, it is an immense
improvement compared to the previous value of χ2

red = 325.3 for the r-improved potential before
the linear correction.

α a2σ aC

no-HYP 0.222± 0.013 0.0720± 0.0019 0.542± 0.011

HYP2 0.09± 0.06 0.082± 0.006 0.02± 0.04

Table 3: Fit parameters of χ2-minimizing fits of the corrected r-improved static potential to the
lattice Cornell parametrization. All separations rimpr/a are included in the fit ranges.

Furthermore, after correcting the values of the potential, the statistical errors of the fit parame-
ters are less than half of those computed for the improved separation method alone, see Tables 2
and 3. In accordance with the much improved fit convergence of the full data set discussed
above, this indicates more consistent fits across the Jackknife samples (cf. Sec. 3.3). However,
as a consequence, the parameters α and a2σ no longer match between the no-HYP and HYP2
computations within their statistical errors, despite the discrepancy being smaller in absolute
terms than that between the corresponding parameters of the r-improved potential without the
correction.

Figure 7: Comparison between the results for the corrected r-improved static potential in
the no-HYP and HYP2 discretizations. The values of the subtracted constants are given by
(aC)′no-HYP = 0.50 and (aC)′HYP2 = 0.05.

A more conclusive observation can be made by comparing Fig. 7, showing the direct comparison
between the no-HYP and HYP2 computations of the corrected r-improved potential, to Fig. 4,
which shows the same comparison without the correction.
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It is readily apparent in these graphs that the corrected potential shows significantly better
agreement between the two discretizations. Along with the highly improved restoration of
rotational symmetry achieved by accounting for the correction term, this strongly supports the
proposed explanation for the problems occurring with the method of improved separation.

4.4 Improvement using a four-parameter fit: Vimpr(r)

The method of tree-level improvement discussed in the following is based on a multi-parameter
fit of the lattice static potential and is also referred to as V -improvement below. The starting
point of this method is the definition of a fit function for the potential that aims to isolate the
contributions stemming from lattice artifacts into separate terms. While this was achieved by
a five-parameter fit in the original definition of the method, see Ref. [12], the parametrization
considered in this thesis is given by the commonly used four-parameter fit function

V (r) = −α
r

+ σr + C + α̃

(1
r
− 4πG(r/a)

a

)
(35)

with fit parameters α, σ, C, and α̃, cf. e.g. [17, 18].
The correction term

∆Vlat(r) = α̃

(1
r
− 4πG(r/a)

a

)
(36)

is proportional to the difference between the continuum and lattice one gluon exchange ex-
pressions, cf. Sec. 2.2, which corresponds to the discretization errors of the lattice potential at
tree-level of perturbation theory. Accordingly, the improved potential Vimpr(r) is defined via the
subtraction of the unphysical terms ∆Vlat(r) and C describing lattice artifacts,

Vimpr(r) = V (r)− C −∆Vlat(r) . (37)

For this purpose, the values of ∆Vlat(r) and C are determined by a four-parameter χ2-minimizing
fit of the unimproved lattice potential V (r) to the parametrization given in Eq. (35).

Notably, for α̃ = α this definition is conceptually equivalent to the corrected r-improved potential
proposed in Sec. 4.3, since in this case Eq. (35) can be written as

V (r)|α̃=α = −α · 4πG(r/a)
a

+ σr + C = −α · 1
rimpr(r) + σr + C , (38)

with rimpr defined as in Eq. (29). This expression is evidently very similar to Eq. (34). However,
a noteworthy difference is that the values of the separation are not altered in the context of
V -improvement, i.e. the resulting tree-level improved observable

Vimpr(r) = −α
r

+ σr (39)

is a function of the original separation r.

The inclusion of an additional fit parameter α̃ that can be adjusted separately from α is moti-
vated by the next-to-leading order of perturbation theory, in which a shift of the coupling pa-
rameter from the so-called bare coupling to an effective coupling occurs (cf. [12] and references
therein). While V (r)|α̃=α is an appropriate parametrization to define an improved potential
based purely on tree-level perturbation theory as shown above, the additional degree of free-
dom in the fit helps to account for further deviations of the lattice data from this lowest-order
approximation. Therefore, including α̃ as a separate parameter is expected to provide a more
comprehensive description of the discretization errors at small separations.
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The expression for the V -improved potential given in Eq. (39) also holds for the general case
α̃ 6= α. Since this equation appears deceivingly similar to the fit function of the unimproved po-
tential, cf. Eqs. (13) and (28), it should be reiterated that here, the values of the potential have
been altered and the parameter α is determined via the four-parameter fit defined in Eq. (35),
not simply by a fit of the unimproved data points to the standard Cornell parametrization.

Figure 8: The static potential after four-parameter fit improvement for the no-HYP and HYP2
discretizations. The improved potential and fit functions were computed using the fit parameters
listed in Table 4.

In Fig. 8, which shows the results of V -improvement for the no-HYP and HYP2 lattice compu-
tations of the static potential, the highly successful restoration of rotational symmetry achieved
by this method is immediately apparent. The data points of both computations are each very
consistent across all on- and off-axis separations, which is reflected in the good fit convergence:
the values of χ2

red = 1.5 and χ2
red = 0.8 for the fits of the no-HYP and HYP2 potential, respec-

tively, are close to ideal. For the HYP2 potential in particular, this represents a considerable
improvement compared to the previously discussed fits, which consistently returned values of
χ2
red > 10 for this discretization.

Further, at both of the separations r/a = 3 and r/a = 5 mentioned in Sec. 4.1, there is no longer
a difference between the on- and off-axis results for the potential at the same separation within
statistical errors. These examples, which were not discussed for the r-improved potential due
to the difference between the on- and off-axis values of rimpr preventing a direct comparison,
provide another clearly visible indication of the restoration of rotational invariance.

α a2σ aC α̃

no-HYP 0.220± 0.024 0.072± 0.004 0.540± 0.020 0.23± 0.09

HYP2 0.229± 0.010 0.0705± 0.0010 0.102± 0.007 0.259± 0.010

Table 4: Fit parameters of the χ2-minimizing fits of the static potential to the defining
parametrization of four-parameter tree-level improvement. The fit ranges include all separations
1 ≤ r/a ≤ 8.

The results for the fit parameters of the V -improvement method’s characteristic parametrization,
cf. Eq. (35), are presented in Table 4 in lattice units. A comparison between the no-HYP

20



4 TREE-LEVEL IMPROVEMENT OF THE STATIC POTENTIAL

and HYP2 values shows that the fit parameters α and a2σ are each in good agreement, with
both values matching between discretizations within their respective error ranges. Further, the
statistical errors are consistently smaller than those calculated for the r-improved potential for
both the no-HYP and HYP2 computations and all three parameters α, a2σ, and aC shared
by the fits used for these methods. It should be noted that similarly to the constants aC, the
coefficient α̃ is characterized by lattice artifacts and therefore not necessarily expected to match
between different discretizations.

Furthermore, while the coefficients α and α̃ are deliberately both included and therefore not
required to be identical even within one discretization, they do match here for the no-HYP
computation within statistical precision, cf. Table 4. This suggests that for this specific compu-
tation, the V -improvement of the potential is equivalent in concept to the r-improvement with
the linear correction, as discussed above. Interestingly, it also appears to be similar in effect,
since the value of χ2

red = 1.5 shared by the fits of both of these computations, cf. Figs. 6 and 8,
indicates a similar degree of restoration of rotational invariance.
Conversely, the larger difference between the values of α and α̃ for the HYP2 discretization
suggests a more significant contribution of higher-order perturbative correction terms to the
parametrization of discretization errors at small separations, in accordance with the well-known
short distance distortions of the potential occurring for this static action.

Figure 9: Comparison between the no-HYP and HYP2 computations of the static potential with
four-parameter tree-level improvement.

Fig. 9 shows the direct comparison between the V -improved static potential in the no-HYP and
HYP2 discretizations. Since the constant aC of each computation is already subtracted in the
definition of the improved potential, cf. Eq. (37), it is not necessary to account for this difference
between discretizations in an additional step as described for the previous comparison graphs.
Consequently, the values aC subtracted from the potential here were obtained by a fit including
all separations, in contrast to the restricted fit ranges used to compute the values (aC)′ discussed
above. Due to the resulting slightly lower precision of the subtracted constants, the data points
of the no-HYP and HYP2 computations shown in Fig. 9 appear to have a slight vertical shift
relative to each other.

However, since the constant shift aC between discretizations is an unphysical lattice artifact to
begin with, this does not affect the physically relevant aspect of Fig. 9, which is the excellent
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agreement between the no-HYP and HYP2 curves achieved by this method of tree-level im-
provement. While the corrected r-improved potential already shows good agreement between
discretizations, cf. Fig. 7, slight deviations are discernible at very small separations r/a . 2.
For the V -improved potential, even the data points at the lowest separations are remarkably
consistent with a single curve, both in the comparison between different discretizations and
between on- and off-axis Wilson loops, as shown in Fig. 8 and evidenced by the substantially
improved fit convergences.

4.5 Sample application: setting the scale with the improved potential

As mentioned in the introduction, one of the reasons for the interest in precise computations
of the static potential in lattice gauge theory is the important application of determining the
lattice spacing a in physical units using the Sommer scale [7].

Since the calculation in the HYP2 discretization in combination with V -improvement appears to
be the least affected by both statistical and discretization errors as discussed in detail above, the
lattice spacing of the computations performed in this work was determined using these values
of the static potential.
Further, the Sommer parameter was set to the commonly used choice r0 = 0.5 fm, resulting in

a = r0

√
(a2σ)′

1.65 + α′
= (0.09679± 0.00007) fm . (40)

The statistical error cited here was determined analogously to the fit parameters via a Jack-
knife analysis, with each Jackknife sample being defined by omitting one value of the potential.
The Coulomb coefficient α′ = 0.223± 0.005 and the string tension coefficient in lattice units
(a2σ)′ = 0.07018± 0.00026 were both obtained by a fit to the HYP2 V -improved potential with
a restricted fit range, as indicated by the prime, of 3 ≤ r/a ≤ 7. This fit range is chosen to only
include separations in sufficiently close proximity to the value of the Sommer parameter itself,
in order to obtain an accurate result for the lattice spacing. Further details on this method of
scale setting are discussed in Ref. [7].
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5 Conclusion and outlook

For lattice gauge theory computations of the static potential, the four-parameter fit method of
tree-level improvement appears to be more effective at reducing discretization errors than the
method of improved separation, which shows clear signs of remaining lattice artifacts and even
an overcorrection of the values of the potential.
This claim is substantiated not only by the extensive comparisons presented above, which include
the computation of numerous on- and off-axis Wilson loops using two different static actions, but
also in particular by the discussion of the corrected r-improved potential. Here, the subtraction of
the proposed correction term evidently results in a significantly better restoration of rotational
symmetry and agreement between discretizations, therefore providing a convincing and self-
consistent explanation for the problems seen with the method of improved separation.

In terms of practicality, the method of improved separation is the easiest to implement, since
it essentially only involves determining the values of the lattice propagator and then replacing
the separation with the improved separation accordingly. The four-parameter fit improvement
method requires an additional χ2-minimizing fit as indicated by the name, as well as a final step
of adjusting the values of the potential according to the resulting fit parameters.
Using the method of improved separation and then correcting the results returns considerably
more accurate results than the method of improved separation alone. However, this is certainly
the most impractical approach, since it involves first calculating the improved separation, then
determining the string breaking coefficient – e.g., by a χ2-minimizing fit of the potential with an
appropriate fit range – and lastly subtracting the correction term from the values of the potential.
Therefore, this approach not only still returns slightly worse results than four-parameter fit
improvement, likely due to the inclusion of the additional parameter α̃ in the latter method,
but it also negates the main advantage of the method of improved separation, which is the easy
implementation without the reliance on a fit.

Ultimately, the concern about an effective improvement of the static potential likely outweighs
the minor differences in practicality between the methods. In this case, the results discussed in
this thesis strongly suggest the four-parameter fit improvement as the method of choice.

These results, which were obtained in this work using simulations in SU(2) lattice gauge theory,
further motivate interesting directions for future research. Exploring the discussed methods of
tree-level improvement in SU(3) lattice gauge theory, or even in full lattice QCD with dynamical
fermions, could be a step towards numerical simulations approximating the physical reality of a
quark-antiquark pair in nature more closely, at the cost of considerably more computationally
demanding simulations. Further, incorporating a set of multiple different discretizations, such
as varying lattice spacings, in addition to the computations considered in this thesis could allow
quantitative insight into the influence of the lattice spacing on discretization errors, as well as
provide additional comparisons between methods of tree-level improvement.
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