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Abstract

In this work the structure of hybrid static potential flux tubes is investigated. First of
all a trial state of static quark and antiquark is considered to measure the square of
the gluon field components of the ordinary static potential. This is done by evaluating
Wilson loops and plaquettes on the lattice. Then the spatial part of these Wilson loops
are modified with respect to the quantum numbers of the hybrid state Πu via ’insertions’
off the separation axis of the quark-antiquark pair. For both cases we take a look at the
time evolution to confirm convergence. The chromoelectric and chromomagnetic field
components are computed on the separation axis and on orthogonal axes in the middle
between quark and antiquark. Additionally we obtained results for the hybrid static
potential field strength on the plane along the separation axis and an orthogonal one.
Those give a complete picture of the gluonic distribution between the colour charges.

Zusammenfassung

In dieser Arbeit wird die Struktur von Flussschläuchen des hybriden statischen Poten-
tials untersucht. Zunächst wird ein Testzustand in Form eines statischen Quarks und
Antiquarks betrachtet, um das Quadrat der Komponenten der Farbfelder des gewöhn-
lichen statischen Potentials zu messen. Dies geschieht durch Berechnung von Wilson
Loops und Plaketten auf dem Gitter. Dann wird der räumliche Teil dieser Wilson
Loops in Hinblick auf die Quantenzahlen des hybriden Zustandes Πu mithilfe von ’inser-
tions’, welche sich nicht auf der Separationsachse des Quark-Antiquark-Paares befinden,
modifiziert. Für beide Fälle betrachten wir die Zeitentwicklung um Konvergenz zu
bestätigen. Die chromoelektrischen und chromomagnetischen Feldkomponenten werden
auf der Separationsachse und auf Achsen orthogonal zur Separationsachse in der Mitte
zwischen Quark und Antiquark berechnet. Zusätzlich erhielten wir Ergebnisse für die
Farbfelder des hybriden statischen Potentials auf einer Ebene aufgespannt durch die
Separationsachse und eine dazu orthogonale Achse. Diese können ein vollständiges Bild
der gluonischen Verteilung zwischen den Farbladungen liefern.
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1 Introduction

The fundamental constituents of matter, quarks, interact strongly with each other ex-
changing the gauge boson of Quantum chromodynamics, the gluon. QCD can be de-
scribed with the SU(3)-colour gauge group. In contrast to quantum electrodynamics,
which corresponds to the abelian gauge group U(1), SU(3) is non-abelian. This implies
the gauge bosons to carry colour charge and consequently interact accordingly. More-
over the coupling constant of the strong force is of high magnitude for large distances
and low energies. As a consequence perturbative approaches cannot be used in this
regime making it very hard to describe QCD analytically. Therefore numerical solution
procedures are used in form of lattice gauge theory, doing statistical simulations on a
discretized space-time-lattice.

Another implication of the high coupling constant is that quarks only appear in bound
states. The most simple one is the meson, consisting of a quark and an antiquark.
As a quantum dynamical system mesons can be characterized by quantum numbers
arising from the structure of the quark-antiquark-pair. In experiments exotic meson
states were measured not explainable by this classic model. One way to explain them
is by excitation of the gluonic field. Quark-antiquark states in which excited gluons
contribute to the quantum numbers are called hybrid mesons.

In the past especially the static potential of the hybrid meson state was computed ([1]-
[4]). This was done by modifying the spatial part of the Wilson loop to create states
according to the hybrid quantum numbers covered in chapter 3. To get a better under-
standing of the structure of those excited gluons in a meson state one can investigate
the chromoelectric and chromomagnetic field components. This is done in this thesis
for an explicit example of insertions which create a trial state of a hybrid meson.

The flux tubes of an ordinary quark-antiquark pair are a well understood system that
has been computed on the lattice from 1990 onwards ([5]-[7]). At the beginning of the
research for this thesis the only publication about hybrid static potential flux tubes was
[8] where the gluon was treated as an adjoint source. This is a very different approach
than the one used in this work since the gluons are free after we indicate an excited
shape.
Recently results on various hybrid static potentials were published using the very same
approach as in this thesis ([9]). Those results are compared to ours in chapter 4.5.
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2 SU(2) Yang-Mills-theory on the
lattice

Quantum chromodynamics can be described via the colour gauge group SU(3). With
the gauge group SU(2), there are only two different colour charges instead of three. This
still works effectively for investigating a meson system with two static quarks, giving
similar results. In addition to that the computation time is lower for SU(2) making it a
good choice to obtain first qualitative results.

In SU(2) gauge theory one demands the action to be gauge invariant under SU(2)
transformations. To ensure the gauge invariance of the dynamical part of the action one
needs to introduce the covariant derivative. It can be expressed using link variables

U(x, y) = exp
[
ig
∫ y

x
dzµAµ(z)

]
∈ SU(2) (2.1)

where g is the coupling constant and Aµ = Aiµ
σi
2 the gauge field with the Pauli-matrices

σi.

On the lattice this link variable between one site and the next at position r = (t, x, y, z)
in direction µ will be referred to as Uµ(r). It is used to construct gauge invariant
quantities on the lattice. For notation purposes we introduce the straight path of link
variables starting at r0 and ending at r0 +R in direction µ as

Sµ(r0, R) =
R−1∏
k=0

Uµ(r0 + akêµ) (2.2)

where a is the distance between two lattice sites.
The Wilson loop as a closed path of four straight paths in direction µ and ν at lattice
site r with extensions R and T is defined as

Wµν(r, R, T ) = Tr
[
Sµ(r, R) ∗ Sν(r + êµR, T ) ∗ S†µ(r + êνT,R) ∗ S†ν(r, T )

]
(2.3)

The simplest non-unit Wilson loop possible is obtained by setting R = T = 1 and called
plaquette:

Pµν(r) = Tr
[
Uµ(r) ∗ Uν(r + aµ) ∗ U †µ(r + aν) ∗ U †ν(r)

]
(2.4)
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2.1 Computation of the static QQ̄ potential in SU(2)
Yang Mills theory

The correlation function for a trial state of a quark at y and an antiquark at x at t = 0
is given by:

CQQ̄(x, t;y, t) = 〈Ω|O(x, t;y, t)O(x, 0;y, 0)|Ω〉
= 〈Ω|ψ̄(Q)(x, t)U(x, t;y, t)ψ(Q)(y, t)ψ̄(Q)(x, 0)U(x, 0;y, 0)ψ(Q)(y, 0)|Ω〉

(2.5)

Actually there are also colour indices appearing at the quark fields. We omit them in this
work since they do not change the calculation for better readability. Via path integral
formalism this correlation function can be rewritten as a function of the Wilson loop
in temporal and separation direction z as shown in figure 2.1. This lengthy calculation
can be found in [10] and was not done in this work. The result gives

CQQ̄(x, 0;y, t) = P+P−e
−2MQt 〈W0z(r, t, R, T )〉 (2.6)

with

P± = 1
2
(
1± γ0

)
(2.7)

On the other hand one can express the correlation function through time evolution of
the operators and inserting a complete basis of energy eigenvalues as:

C(t) = 〈Ω|O(t)O(0)|Ω〉 = 〈Ω|eHtO(0)e−HtO(0)|Ω〉
=
∑
n

〈Ω|eHtO(0)|n〉 〈n|e−HtO(0)|Ω〉

=
∑
n

|〈Ω|O(0)|n〉 |2e−(En−EΩ)t (2.8)

where En is an energy eigenvalue of the system and EΩ the energy of vacuum. One can
already see, that after giving the system enough time only the ground energy state E0
will remain as all others are exponentially suppressed. This leads to

lim
t→∞
C(t) = F (t)e−(E0−EΩ)t = F (t)e−VQQ̄t (2.9)

Figure 2.1: Wilson loop for computing the static quark-antiquark potential



4

where VQQ̄ is the static QQ̄ potential and

F (t) = |〈Ω|O(0)|0〉 |2 (2.10)

denotes the overlap of the initial trial state with the ground state of the system.
Combining 2.6 and 2.9 we obtain an expression for the static quark-antiquark potential

VQQ̄ = lim
a→0

lim
t→∞

Veff (r) = lim
a→0

lim
t→∞

1
a
ln
(
〈W (R, T )〉
〈W (R, T + 1)〉

)
(2.11)

2.2 Computation of the square of the chromoelectric
and chromomagnetic field in SU(2)
Yang-Mills-theory

Due to the additional (colour) index of the E- and B-field in non-abelian gauge theories
they do not represent gauge invariant quantities. To still gain information about them
we take a look at the field strength tensor Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]. On the
lattice this quantity is connected to the plaquette defined in 2.4:

Pµν = Tr
[
eiga

2Fµν
]

(2.12)

Since a is chosen very small one can perform a second order Taylor expansion and find

Pµν = Tr
[
1 + iga2Fµν −

g2a4

2 F 2
µν +O(a6)

]

= Tr
[
1− g2a4

2 F 2
µν +O(a6)

]
since Pµν ∈ SU(2)

≈ 2− g2a4

2 Tr
(
F 2
µν

)
⇔ Tr

(
F 2
µν

)
≈ 2
g2a4 (2− Pµν) (2.13)

This means the square of the components of the field strength tensor are a gauge invari-
ant quantity and can be measured as such. We want to measure the chromoelectric and
chromomagnetic field strength in presence of a quark antiquark pair in comparison to
the vacuum. Therefore we need to calculate the expectation value of Tr

(
F 2
µν

)
for this

case but also subtract the vacuum contribution:

〈Tr
(
F 2
µν

)
〉
QQ̄
− 〈Tr

(
F 2
µν

)
〉
vac

(2.14)

The first step we need to take in evaluating this expression is to discuss the time-ordering
operator T arising:

〈Tr
(
F 2
µν

)
〉
QQ̄

= 1
Z

∫
DADψ̄(Q)Dψ(Q)T {O(x, t;y, t)Fµν(z, t/2)O(x, 0;y, 0)} e−(SQ[ψ̄(Q),ψ(Q),A]+SG[A])

(2.15)
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For the chromomagnetic part we know that µ, ν ∈ {1, 2, 3}. There are no temporal
components in this part of the field strength tensor. So time-ordering is fulfilled without
changes.

For the chromoelectric part of the field strength we can consider ν ∈ 1, 2, 3 and µ = 0
without loss of generality. To simplify calculations we assume temporal gauge A0 = 0.
For the euclidean field strength tensor this leads to

F0j = −i∂0Aj (2.16)

Since we operate on the lattice the derivative can be rewritten as

F 2
0j

(
l + 1

2aê0

)
=
[
−iAj(l + aê0)− Aj(l)

a

]2

= 1
a2

[
−Aj(l + aê0)2 − Aj(l)2 + Aj(l + aê0)Aj(l) + Aj(l)Aj(l + aê0)

]
(2.17)

where l is a lattice coordinate in space time. Performing time-ordering this expression
yields

TF 2
0j

(
l + 1

2aê0

)
= 1
a2

[
−Aj(l + aê0)2 − Aj(l)2 + 2Aj(l + aê0)Aj(l)

]
(2.18)

We can also explicitly write the plaquette in temporal gauge and Taylor expand the
exponential functions to obtain

P0j(l) = Tr
[
eigaAj(l+aê0)eigaAj(l)

]
= Tr

[
1 + g2a2

2
[
−Aj(l + aê0)2 − Aj(l)2 + Aj(l + aê0)Aj(l) + Aj(l)Aj(l + aê0)

]]
(2.19)

where in the last step was used that the imaginary part of the trace of SU(2) matrices
is always zero. As we can see the right side of 2.18 reappears in 2.19. Plugging this in
we obtain an time-ordered expression of the square of the chromoelectric field:

TF 2
0j

(
l + 1

2aê0

)
= 2
g2a4 (P0j − 2) (2.20)

Now we can use the obtained expression for the square of the chromoelectric field 2.20
and chromomagnetic field 2.13 and plug those into 2.14:

〈Tr
(
F 2

0j

)
〉
QQ̄
− 〈Tr

(
F 2

0j

)
〉
vac

= 2
g2a4

[
〈P0j〉QQ̄ − 〈P0j〉vac

]
(2.21)

〈Tr
(
F 2
kl

)
〉
QQ̄
− 〈Tr

(
F 2
kl

)
〉
vac

= 2
g2a4

[
〈Pkl〉vac − 〈Pkl〉QQ̄

]
(2.22)

The expectation value of the plaquette in vacuum can immediately be numerically com-
puted. Still 〈Pµν〉QQ̄ needs to be determined. In order to do this we first consider the
plaquette temporarily exactly between the quark-antiquark-pairs in spacetime in path
integral formalism:

〈Ω|O(x, t;y, t)Pµν(z, t/2)O(x, 0;y, 0)|Ω〉

= 1
Z

∫
DADψ̄(Q)Dψ(Q)O(x, t;y, t)Pµν(z, t/2)O(x, 0;y, 0)e−(SQ[ψ̄(Q),ψ(Q),A]+SG[A])

= P+P−e
2MQt 〈W0z(r, 0, R, T ) · Pµν(z, T/2)〉 (2.23)
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The steps of solving this path integral with the plaquette the same as without (see 2.6).

On the other hand we consider the energy eigenvalue representation of 〈Pµν〉QQ̄ (z, t/2)
to get a connection to 〈Pµν〉QQ̄ (z, 0):

〈Ω|O(x, t;y, t)Pµν(z, t/2)O(x, 0;y, 0)|Ω〉
= 〈Ω|eHtO(x, 0;y, 0)e−Hte 1

2HtPµν(z, 0)e− 1
2HtO(x, 0;y, 0)|Ω〉

=
∑
n,m

〈Ω|eHtO(x, 0;y, 0)|n〉 〈n|e− 1
2HtPµν(z, 0)e− 1

2Ht|m〉 〈m|O(x, 0;y, 0)|Ω〉

=
∑
n,m

〈Ω|O(x, 0;y, 0)|n〉 〈n|Pµν(z, 0)|m〉 〈m|O(x, 0;y, 0)|Ω〉 e−( 1
2En+ 1

2Em−EΩ)t (2.24)

For t → ∞ all eigenstates except for the ground state vanish because they are expo-
nentially suppressed. This leads to a very similar result to the two-point-correlation
function for a static-quark-antiquark pair in 2.9:

lim
t→∞
〈Ω|O(x, t;y, t)Pµν(z, t/2)O(x, 0;y, 0)|Ω〉

= 〈Ω|O(x, 0;y, 0)|0〉 〈0|Pµν(z, 0)|0〉 〈0|O(x, 0;y, 0)|Ω〉 e−(E0−EΩ)t

= CQQ̄(x, 0;y, t) · 〈0|Pµν(z, 0)|0〉 (2.25)

Comparing 2.23, 2.24 and 2.6 we obtain

〈Pµν〉QQ̄ (z, 0) = 〈W0z(r, 0, R, T ) · Pµν(z, T/2)〉
〈W0z(r, 0, R, T )〉 (2.26)

Returning to 2.21 and 2.22 we get the final expression for the square of chromoelectric
and chromomagnetic field on the lattice

〈Ej(z)2〉QQ̄ − 〈E
2
j 〉vac = 2

g2a4

[
〈W · P0j(T/2, z)〉

〈W 〉
− 〈P0j〉

]
(2.27)

〈Bj(z)2〉QQ̄ − 〈B
2
j 〉vac = 2

g2a4

[
〈Pkl〉 −

〈W · Pkl(T/2, z)〉
〈W 〉

]
(2.28)

Figure 2.2: Graphical representation of the lattice formula to compute the square of the chromoelectric
field.
green: The Wilson loop spatially and temporarily connecting the quark and antiquark pair
blue: The Plaquette positioned temporarily in the middle of both states and at the spatial coordinate
where the field is evaluated
red: A plaquette
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The calculation of E- and B-Field via 2.28 consists of three parts as sketched in figure
4.1. The two-point-correlation functions of Wilson loop and Plaquette can be computed
according to 2.3 and 2.4.

To compute the three-point-correlation-function of 〈W · Pµν(T/2, z)〉 one has to deter-
mine the values of plaquettes in all directions. Taking a closer look at the plaquette
Pµν(r) as defined in 2.4 this leads to a problem. While for the limit a → 0 one can
consider the plaquette to be evaluated at r, for a finite a the plaquette yields a field at
r̃ = r + 1

2aêµ + 1
2aêν with êµ being the four-unit-vector in µ direction.

This makes results hard to compare. One cannot measure all field components at a
certain lattice site because they are always shifted by 1

2 in their respective directions.
To solve this problem we average the plaquettes around a lattice site in the directions
µ and ν:

P ′µν(r) = 1
4 [Pµν(r) + Pµν(r − aêµ) + Pµν(r − aêν) + Pµν(r − aêµ − aêν)] (2.29)

We immediately notice that lim
a→0

P ′µν(r) = lim
a→0

Pµν(r) making P ′µν(r) an equivalent quan-
tity in the continuum limit. It turns out to be a lot better for comparing the field
strength component though since they are computed at r instead of r̃.

The separations on the lattice need to be chosen in a way that the plaquette is located
exactly between the two spatial parts of the Wilson loop in temporal direction at T/2.
So we are restricted to even T . We do not consider T = 0 because the system would
not get an opportunity to find a physical state according to its Hamiltonian. This leads
to T = 2a being the smallest possible temporal extension of the Wilson loop. Now
one needs to observe the behaviour of field strength as a function of time to find the
approximate threshold when the ground state is reached.

The results obtained for the square of chromoelectric and chromomagnetic field strength
are in lattice units and do not represent the actual values. To obtain those a renormal-
ization procedure needs to be performed which is a complicated and lengthy task itself.
Thus it is not done in this work.
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3 Hybrid static potentials

Hybrid mesons arise when excited gluons contribute to the quantum numbers of the
particle. This affects the potential between quark and antiquark. The static potential
of ordinary quark-antiquark is computed via 2.11 with the Wilson loop 2.3 in temporal
and one spatial direction. To compute the hybrid static potential the part of the Wilson
loop in spatial direction is modified according to arising quantum numbers. This results
in spatial Wilson lines off the separation axis, referred to as ’insertions’.

There are 3 hybrid static potential quantum numbers noted as |L|PxP◦C sketched in fig-
ure 3.1:

1. |L|∈ {Σ .= 0,Π .= 1,∆ .= 2} characterizes the angular momentum of the state with
respect to the separation axis of the quark-antiquark pair.
This quantum number is realized by rotating the insertion around the separation
axis and weighting them according to 2-dimensional spherical harmonics. For an
insertion I this leads to the sum

SL =
3∑

k=0
eiLk

π
2 R̂

(
kπ

2

)
I (3.1)

where R̂(φ) is a rotation operator around the separation axis.

2. P ◦ C ∈ {g .= +, u .= −} corresponds to a combination of parity and charge conju-
gation
In practice this quantum number is the behaviour under spatial reflection of all
insertions along the point in the middle between quark and antiquark and then
reversal of the direction of the paths.

3. Px ∈ {+,−} describes the inversion along an axis perpendicular to the separation
axis of quark and antiquark

In this work an explicit insertion which yields the trial state for Πu is used. It corresponds
to angular momentum |L|= 1 and parity and charge conjugation "−". We do not take
the last quantum number Px into account since hybrid states with angular momentum

Figure 3.1: Schematic representation of quantum numbers of hybrid static potentials
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Figure 3.2: Spatial insertion of the Wilson loop for hybrid static
potential Πu.

The separation axis is indicated by the dashed line but does
not contribute to the modified Wilson Loop. The insertions in
direction of x and -x move three links away from the separation
axis and proceed parallel. One of them contributes with a positive
sign and the other with a negative one.

|L|= 1 are degenerate in this quantum number. The insertions we use to generate this
hybrid static potential is one of the most simple ones shown and explained in figure 3.2.
The modified Wilson loop is computed as

WΠu(r, R, T ) = [S+(r, R)− S−(r, R)] · St(r + êzR, T )
·
[
S†+(r + êzT,R)− S†−(r + êzT,R)

]
· S†t (r, T ) (3.2)

where S+(r, R) denotes the upper insertion path in figure 3.2 and S− the lower one with
quark position r and separation distance of the quark-antiquark pair R.
We immediately notice that this trial state is not symmetric in all directions perpendic-
ular to the separation axis. There is a distinguished axis along the insertions. This will
be referred to as x-direction. Consequently the last axis perpendicular to the insertions
will be the y-axis.
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4 Results

4.1 Lattice setup

For the Wilson loop APE smearing is used. The plaquette is computed without smearing
since a smeared plaquette would result in a different formula than 2.28. All the following
lattice calculations were done on a 183 ·18 SU(2) lattice. The configurations were gener-
ated by a Monte-Carlo heatbath algorithm ([12]). Only every hundredth configuration
was taken to minimize correlations between the results. The APE smearing parameters
are NAPE = 20 and α = 0.5. Errors were calculated with the Jacknife method [11].

To obtain as many statistics as possible from each configuration the observable is relo-
cated and rotated in spatial directions on the lattice. With this one obtains 184 ∗ 3 =
314928 results from each configuration to average over.

To compute the static potential discussed in 4.2 β = 2.3 was used which corresponds to
a ≈ 0.14fm. The results were obtained averaging over 700 configurations.

To compute the square of the chromoelectric and chromomagnetic fields β = 2.5 corre-
sponding to a ≈ 0.073fm was used averaging over 2000 configurations.

4.2 Ordinary and hybrid static QQ̄ potential

To compute the potential of a static QQ̄ state the Wilson loop needs to be evaluated
according to 2.11. In figure 4.1 the effective potential is calculated for all T ≤ 8 and
R ≤ 8. We can observe the convergence of the effective potential to the actual potential
in this plot. On the other hand errors become larger the higher T and R. One needs to
come to a compromise between low errors and convergence.

Taking an explicit look at the ordinary static QQ̄ effective potential, shorter separations
between quark and antiquark lead to a faster convergence of the effective potential. Also
the errors remain very small for R ≤ 5 even for large temporal separations. For R ≥ 6
the errors become significant for T ≥ 5. Still the data is sufficiently precise up to T = 3
across all separations to yield meaningful results. Additionally values of the effective
potential are constant within their errors between R = 2 and R = 3 indicating that
the plateau of convergence is already reached. Therefore we can fit a constant to those
values obtaining the potential in lattice units shown in the right pictures.

The effective potential of the hybrid static state shows large to very large errors for
T ≥ 4. Again between T = 2 and T = 3 a convergence within the errors is reached
while the error bars are acceptable especially for smaller R.
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Figure 4.1: left: effective potentials of ordinary static QQ̄ and hybrid static QQ̄ Πu for different
temporal and spatial separations
right: the resulting potentials for those states

The hybrid static potential is higher than the ordinary static potential for all separations
R. A different shape of the plot for low R is noticeable. The ordinary static potential
starts out linearly increasing but the hybrid one actually starts decreasing up to the
minimum at R = 3. Taking a look at large distances both behave similarly: The
potential increases linearly as a function of the distance. The graph for the ordinary
case rises faster though.

4.3 Gluon field strength of static QQ̄ potential

In all our numerical computations of the square of chromoelectric and chromomagnetic
field the separation of quark-antiquark pair is R = 6a. In figure 4.2 we take a look at the
time evolution of the field strength components on the separation axis. While analysing
the behaviour of an observable as a function of time one has to pay close attention to
the errors. The values for T ≥ 6a are impossible to compare due to their large errors.
However they do need to support the result for lower T within their error bars. The
differences between values for T = 2a and T = 4a are very small. Especially in the
middle between quark and antiquark the ground state seems to be reached already at
T = 2a.
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Figure 4.2: The field strength in components for different locations on the separation axis z as a function
of T. Quark and antiquark are located at z = 0 and z = 6a respectively.
F 2
µν,err(T = 2a) ≈ 2 ∗ 10−5

F 2
µν,err(T = 4a) ≈ 3 ∗ F 2

µν,err(T = 2a)
F 2
µν,err(T = 6a) ≈ 10 ∗ F 2

µν,err(T = 2a)

The small deviations at the quark position z = 0 are almost negligible due to the
large field strength there. All in all one can obtain reasonable results even for T = 2a.
Since the errors are very small it seems best to use a higher temporal separation, T = 4a
being a suitable compromise. Therefore for the ordinary static quark-antiquark potential
T = 4a will be computed.

In figure 4.3 we take a look at the fields on the separation axis. At the positions of
charges r = 0 and r = 6 the absolute values of all components is the largest. Also
contributions of the chromoelectric and chromomagnetic field strength are even across
all components respectively. It seems like the other charge has no influence on the
chromoelectromagnetic field components at the charges position. This also holds for
r ≤ 0a and r ≥ 6a. Between the quarks the z-component of both E- and B-field are
distinguished while the x- and y-components remain identical due to symmetry of the
Wilson loop.

The contribution of the Ez-component to the energy density is by far the largest, while
the B-field is more dominant orthogonal to the separation axis. In between the quarks
all field components become constant forming a flux tube.

To get a better picture of the spatial extent of the flux tube in figure 4.4 the fields are
evaluated on an axis orthogonal to z. We do not consider this for all z but for the most
interesting ones at the charges position z = 0 (which is identical to z = R) and in the
middle between quark and antiquark z = R/2 where a flux tube structure is apparent.
We choose this axis to be the x-axis. In the middle between quark and antiquark the
choice of the axis does not affect the result due to rotational symmetry around the z-
axis. At the charges the x component of the fields is distinguished. The behaviour of all
components is very similar, their absolute value becomes smaller the larger x becomes.
At r ≥ 5 all field components are 0 within their errors.
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Figure 4.3: Square of chromoelectric and chromomagnetic field on the separation axis for static QQ̄
potential
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Figure 4.4: E- and B-field on charges and mediator x-axis for static QQ̄ potential
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Our results are in agreement with results from [7].

It seems like we can interpret maxima in chromoelectric field strength and minima in
chromomagnetic field strength at the same time connecting quark and antiquark as flux
tubes transporting colour charge via unexcited gluons. This will be something to look
out for when investigating exotic states in the next chapter.

4.4 Gluon field strength of hybrid static QQ̄ potential Πu

First of all the time evolution needs to be investigated. T has to be even as before
since the modifications only affect the spatial part of the Wilson loop. In figure 4.5 one
can right away omit all T ≥ 6a due to large errors. Differences between T = 2a and
T = 4a can be neglected for stronger field strength at z = 0 and z = a. In between the
quarks at z = 3a the values for T = 2a are within the errors supported by the values
for T = 4a. This needs to be treated carefully though due to the high relative error for
T = 4 not distinguishing the signal from zero clearly. Since the errors for T = 4 are
too high, no meaningful results can be obtained for these temporal separations without
increasing the statistics significantly. Therefore we consider T = 2.

First of all the field components are computed on the separation axis as shown in figure
4.6. Comparing the results to figure 2.28 the field strength components look very similar
at the charges positions.
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Figure 4.5: Time evolution of field strength components for hybrid static potential Πu on the separation
axis.
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µν,err(T = 2) ≈ 4 ∗ 10−5

F 2
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µν,err(T = 2)
F 2
µν,err(T = 6) ≈ 50 ∗ F 2

µν,err(T = 2)



15

-20

0

20

40

60

80

100

120

140

-1 0 1 2 3 4 5 6

F
µν

2 *a
4 *1

04

r/a

<Ex
2>Q-Q - <Ex

2>vac
<Ey

2>Q-Q - <Ey
2>vac

<Ez
2>Q-Q - <Ez

2>vac
<Bx

2>Q-Q - <Bx
2>vac

<By
2>Q-Q - <By

2>vac
<Bz

2>Q-Q - <Bz
2>vac

-4

-2

0

2

4

6

-8

10

2 3 4

F
µν

2 *a
4 *1

04

r/a
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Figure 4.7: Square of chromoelectric and chromomagnetic field on axes orthogonal to the separation
axis in the middle between quark and antiquark for hybrid static potential of Πu.
The results are symmetric with respect to spatial inversion perpendicular to the separation axis and
therefore merged in order to get better statistics.
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Exactly in the middle between quark and antiquark all the chromoelectric field strength
components seem to vanish or even become slightly negative. On the other hand the
chromomagnetic field strength components are clearly positive, the By - component be-
ing the most dominant. Taking a look atWΠu and figure 3.2 again this seems reasonable
since the plaquette that computes the By-component lies in the plane of insertions.

The most interesting differences seem to be exactly halfway between quark and an-
tiquark. To get a better picture of the fields strength behaviour at this position we
consider the field components on axes perpendicular to the separation axis in the mid-
dle between quark and antiquark (figure 4.7). Unlike the ordinary static QQ̄ this state
is not invariant under rotations around the z-axis. We take a closer look at the axes in
x and y-direction.
In x-direction along the insertion axis chromoelectric field strength rises up until r = 3a
where we observe a maximum and domination of the Ez component. At the same time
chromomagnetic field strength decreases having a minimum at r = 3a. This looks very
similar to the field for ordinary static potentials on the separation axis, indicating chro-
moelectric field lines in z-direction at this position. For higher r the fields converge to
zero.
In y-direction there is a small decrease of field strength in the Ey and Ez component
from r = 0 to r = a. For r ≥ 2a all components are monotonically decreasing in their
absolute value.

Clearly the xz-plane, being the plane of insertions, turns out to be the most interesting
one. Therefore in figure 4.8 we take a look at the field on the xz-plane visualized via
heatmap. This shows very well the large chromomagnetic field in the middle between
quark and antiquark suppressing the chromoelectric field.

Figure 4.8: Heatmap of all field strength components for Πu

Quark and antiquark are positioned at x = z = 0 and z = 6, x = 0 respectively
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This also results in the chromoelectric parts maxima which can be interpreted as the
interaction between quark and antiquark not being able to happen in a straight line but
instead in a circular form around the excitation.

At this point it is important to take the separation of quark and antiquark into account,
which was chosen to be R = 6. As we can observe very well in the left part of figure 4.7
the insertions have a square-like form for this separation. For different separations we
would expect the circular form of the chromoelectric field in figure 4.8 to become more
ellipse-like accordingly.

4.5 Comparison with existing results

Recently the gluon fields for hybrid static flux tubes were computed in [9]. Apart from
the different insertions that were used, the most obvious difference is the rotational
symmetry around the separation axis of the results in [9]. To understand this we need
to take a closer look at the quantum number of angular momentum on the lattice.
Considering 3.1 for the explicit case of L = ±1 leads to

S+1 =
[
1 + iR̂

(
π

2

)
− R̂ (π)− iR̂

(3π
2

)]
I

S−1 =
[
1− iR̂

(
π

2

)
− R̂ (π) + iR̂

(3π
2

)]
I (4.1)

In this work we consider the quantum number |L| though. This amounts to average
over both angular momenta:

Sx = 1
2 (S+1 + S−1) =

[
1− R̂ (π)

]
I

Sy = 1
2 (S+1 − S−1) =

[
iR̂
(
π

2

)
− iR̂

(3π
2

)]
I (4.2)

The degree of freedom lost by taking the absolute value of angular momentum is included
by the quantum number Px. States with |L|= 1 are degenerate in this quantum number
though.
In this work we compute Sx which yields non-rotational invariant results. In [9] on the
other hand S+1 is used. For those states a different set of quantum numbers was used:

1. In [9]: Angular momentum L and parity and charge conjugation P ◦ C

2. In this work: Absolute value of angular momentum |L|, parity and charge conju-
gation P ◦ C and behaviour under spatial inversion along the x-axis Px

In the following we show that the results in the first set of quantum numbers can be
derived from results in the second one.
Let Ox(t) be the operator creating a trial state similar to the one discussed in this

work that lies in the x-z-plane. Also we introduce Oy(t) to be the same state rotated
by ±π

2 around the z-axis lying in the y-z-plane. Then we can write the operator used
in [9] as

O(t) = 1√
2

(Ox(t)± iOy(t)) (4.3)
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Figure 4.9: Sketch of O being decomposed in a part in xz-plane and a part in yz-plane. This works for
an arbitrary insertion I.

This identity is geometrically illustrated in figure 4.9. Now we take a look at the trial
state of the three point correlator created by O(t) and insert two sets of eigenstates of
energy n,m and behaviour under spatial inversion along the x-axis Px,1, Px,2.

〈Ω| O†(t2)F 2
µν(t1)O(t0) |Ω〉

=
∑

n,m,Px,1,Px,2

〈Ω|O†(t2)|n, Px,1〉 〈n, Px,1|F 2
µν(t1)|m,Px,2〉 〈m,Px,2|O(t0)|Ω〉

(∗)= 1
2
∑
n,m

(
〈Ω|O†x(t2)|n,−〉 〈n,−|F 2

µν(t1)|m,−〉 〈m,−|Ox(t0)|Ω〉

+ 〈Ω|O†y(t2)|n,+〉 〈n,+|F 2
µν(t1)|m,+〉 〈m,+|Oy(t0)|Ω〉

±i 〈Ω|O†x(t2)|n,−〉 〈n,−|F 2
µν(t1)|m,+〉 〈m,+|Oy(t0)|Ω〉

∓i 〈Ω|O†y(t2)|n,+〉 〈n,+|F 2
µν(t1)|m,−〉 〈m,−|Ox(t0)|Ω〉

)
(∗∗)= 1

2
∑
n,m

(
〈Ω|O†x(t2)|n,−〉 〈n,−|F 2

µν(t1)|m,−〉 〈m,−|Ox(t0)|Ω〉

+ 〈Ω|O†y(t2)|n,+〉 〈n,+|F 2
µν(t1)|m,+〉 〈m,+|Oy(t0)|Ω〉

)
(4.4)

using

(∗) Ox(t) Px−→ −Ox(t) Oy(t) Px−→ Oy(t) (4.5)

(∗∗) E2 Px−→ E2 B2 Px−→ B2 (4.6)

The first part of this result in 4.4 is exactly what is computed in this work. The second
one can be obtained by rotating the first one by an angle of ±π

2 also leading to the
same result rotated by this angle. In practice this means that adding up results along
the x-axis with ones along the y-axis provides those only depending on distance from
the separation axis r. Those are now comparable to the results in [9] and are shown in
figure 4.10.
The right part of this figure is to be compared as it shows respectively the sum of all
chromoelectric and chromomagnetic field components. This is in contradiction to the
results from [9] where in the middle between quark and antiquark E2 is positive while
in our work it is negative compared to the vacuum. Also the magnetic field strength
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Figure 4.10: left: Colour field components of hybrid static potential Πu on any axis perpendicular to
the separation axis in the middle between quark and antiquark (mediator plane).
right: The sum of all components.

remains negative in euclidean space in [9] whereas in our results it is significantly positive
compared to the vacuum.

In conclusion there is a large discrepancy between both results that cannot be explained
by the different sets of quantum numbers chosen to compute the field strength. While in
[9] the structure of the hybrid potential flux tubes for Πu is very similar to the ordinary
static potential, in our results excited gluons result in a significant rise of chromomag-
netic field strength in between quark and antiquark suppressing the chromoelectric part
of the flux tube there.
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5 Conclusion

5.1 Summary

We computed the square of the chromoelectric and chromomagnetic field strength com-
ponents for an ordinary and an example of hybrid static potential. This was done by
considering a trial state in form of the ordinary Wilson loop first, followed by a modi-
fied Wilson loop with insertions according to the hybrid quantum numbers of Πu. The
convergence of those states was studied, investigating behaviour for different temporal
separations of the Wilson loop. Additionally the entire 2D-plane along the insertions
and the separation axis was covered, granting a complete picture of the gluonic dis-
tribution for this hybrid static potential. The results for the ordinary static potential
were in agreement with literature ([7]). In the end our results for the hybrid state were
compared to recent publications in [9] which led to high discrepancies whose origin still
needs to be determined.

Investigating the structure of hybrid static potential flux tubes of a state with angu-
lar momentum |L|= 1 one finds significant differences to ordinary flux tubes. There
are clear indications of local gluonic excitation in the middle between quark and anti-
quark causing those quantum numbers. This manifests in a large chromomagnetic field
strength suppressing the chromoelectric field. There still remains a similar structure of
positive chromoelectric field and negative chromomagnetic field compared to the vacuum
connecting quark and antiquark. It is forced to adapt to the excitation in the middle
though, resulting in a circular-like shaped gluonic distribution around the maximum in
chromomagnetic field strength in the middle.

5.2 Outlook

Firstly the origin of the different results compared to [9] needs to be resolved. The
single most important next step is to examine hybrid static potential flux tubes of other
quantum numbers since at the moment there is no way to differentiate between effects
characteristic for hybrid states in general and effects characteristic for this very state.
It will be important to consider different separations of quark and antiquark. We also
need to increase statistics to confirm the convergence of the state since errors for higher
values of T are still too large.
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