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Abstract

In this work, masses of heavy hybrid mesons are calculated from hybrid static potentials. For
this purpose, a parametrisation is fitted to lattice data for the hybrid static potentials Πu and
Σ−u . Applying the Born-Oppenheimer approximation, a Schrödinger equation for the heavy
quark-antiquark pair is derived. By using the fitted hybrid static potential as an input in
the Schrödinger equation, binding energies for a system of two bottom quarks are computed
numerically. From this, we obtain heavy hybrid meson masses and discuss corresponding
meson quantum numbers.
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Zusammenfassung

In dieser Arbeit werden Massen für schwere hybride Mesonen aus statischen hybriden Po-
tentialen berechnet. Dafür werden die Parameter einer analytischen Potentialfunktion durch
Fits an Gitterdaten für die statischen hybriden Potentiale Πu und Σ−u bestimmt. In der Born-
Oppenheimer-Näherung wird die Schrödingergleichung für das schwere Quark-Antiquark-Paar
hergeleitet. Das Spektrum für Bottom-Quarks in einem statischen hybriden Potential wird
numerisch aus der Schrödingergleichung berechnet. Daraus erhalten wir Massen für schwere
hybride Mesonen und ordnen sie möglichen Mesonen-Quantenzahlen zu.

iii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Jackknife analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fitting procedure for the lattice potential 4
2.1 Parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Weighted Least-Squares Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Πu-potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Σ−u -potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Solving the Schrödinger equation 10
3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Centrifugal term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The heavy hybrid meson spectrum 16
4.1 Quantum numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Probability density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion and Outlook 22

References 23

A Behavior of the radial wave function for r → 0 24

B Selbstständigkeitserklärung 26

iv



1 Introduction

1.1 Motivation

Quantum Chromodynamics (QCD) describes the strong interaction in theoretical physics.
The strong interaction belongs to the fundamental forces of nature. It is mediated by gluons,
the gauge bosons of QCD, which is a non-abelian gauge theory of the SU(3)-color gauge group.
Due to the large coupling constant of QCD at low energies, a perturbative treatment of the
theory is not possible in the region of small energies or large distances. Therefore, lattice
QCD is used which evaluates physical quantities on a discretized spacetime, the lattice. Here,
a numerical treatment is possible.
Mesons are systems bound by the strong interaction. In the quark model, they consist

of a quark and an antiquark. Beyond that, the gluonic field causing the binding of quark
and antiquark can be excited, it then contributes to the quantum numbers of the meson.
Such bound states with exotic quantum numbers that cannot be explained by the simple
quark model are called hybrid mesons. An example for an exotic quantum number state is
the JPC = 1−+ state for which two candidates, the π1(1400) and the π1(1600) states, were
measured in experiments. An alternative way of explaining these states are exotic quark
structures like tetraquarks. Exotic mesons are an important topic for the understanding
of the strong interaction. Studying such states theoretically can give predictions for hadron
spectroscopy and experiments like PANDA at FAIR searching for glueballs and hybrid mesons.
The aim of this work is to compute masses of hybrid mesons with heavy bottom quarks by

inserting hybrid static potentials into the Schrödinger equation. This was previously done for
the ground state static potential finding the bottomonium spectrum [1]. Similarly, we develop
methods to fit the hybrid static potential data that was calculated in [2]. Furthermore, an
approach is described to arrive at a Schrödinger equation for the heavy quarks in a hybrid
static potential caused by the gluons. We explain how to obtain masses of heavy hybrid
mesons from numerical methods. In this work, masses are calculated from the hybrid static
potentials Πu and Σ−u for a bottom and antibottom quark pair and assigned to possible meson
quantum numbers.

1.2 Theory

Discretizing spacetime with a lattice enables a numerical treatment of QCD using statistical
methods. Path integrals can be solved on the lattice by using Monte-Carlo simulations that
generate a large number of field configurations with the corresponding weight factor of the path
integral ∝ e−S

Z , where S is the QCD action and Z denotes a normalization factor. The path
integral expression is calculated by averaging over these field configurations. After defining
operators O that create a trial state from the vacuum with the same quantum numbers as
the state of interest, a second step to determine the desired observables is to calculate the
corresponding correlation functions. These can be expressed through path integrals as follows

C(t) =
〈

Ω|O†(t)O(0)|Ω
〉

(1.1)

=
1

Z

∫
DADq̄Dq O†(t)O(0)e−S(A,q,q̄). (1.2)
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1 Introduction

Here, the integration runs over all possible gauge field and quark field configurations. The
operators create a quark and antiquark with a separation r from the vacuum. The quarks are
considered to be infinitely heavy and fixed on one lattice site, thus they are static and can be
integrated out. Using the euclidian time evolution O(t) = eHtO(0)e−Ht and a set of energy
eigenstates to the Hamilton operator and, in the end, taking the limit t→∞, Equation (1.1)
can be modified to:

lim
t→∞

C(t) = lim
t→∞

∑
n

〈
Ω|eHtO(0)e−Ht|n

〉
〈n|O(0)|Ω〉 (1.3)

= lim
t→∞

∑
n

| 〈n|O(0)|Ω〉 |2e−(En−EΩ)t (1.4)

∝ e−(E0−EΩ)t. (1.5)

The sum over n runs over all energy eigenstates with the same quantum numbers as the trial
state. For large t, the higher energy levels are suppressed so that only the trial state with the
lowest energy with n = 0 survives. The energy difference E0 −EΩ is defined as the potential
V (r) between the quark and the antiquark that can be extracted by fitting an exponential
function to the correlator at large t. Another common approach is to fit a constant to the
effective potential defined through

Veff(t) =
1

a
ln

(
C(t)

C(t+ a)

)
, (1.6)

at large t. Here, a denotes the lattice spacing. To obtain a static potential, one has to use
lattice expressions for the correlator. It can be shown that the expectation value of a Wilson
loop, which is defined as a product of spatial and temporal links along a closed path on the
lattice, behaves in the same way as the correlator. Hence, one calculates Wilson loops for
each quark separation to obtain static potentials. By varying the shape of spatial paths, the
quantum numbers for the static potential can be chosen. Straight paths of links between the
two static quarks result in the ground state static potential, whereas more complex insertions
within the quark separation produce hybrid static potentials. A hybrid static potential is
characterized by the quantum numbers Λεη :

• Λ = 0,±1,±2, ... = Σ,Π,∆, ... denotes the angular momentum with respect to the
separation axis of two quarks.

• η = u, g stands for the behavior under combination of charge conjugation and parity,
P ◦ C = −,+.

• Only states with Λ = 0 are nondegenerate with respect to the spatial inversion along
the axis perpendicular to the separation axis, Px, and are designated with an additional
quantum number ε = +,−.

The Sommer parameter r0, which is defined through the force F (r) between two static
quarks in the ground state static potential

F (r0)r2
0 = 1.65, (1.7)

corresponds to r0 ≈ 0.5 fm. The lattice spacing a can be determined by finding the parameters
V0, α and σ of the parametrisation for the ground state static potential

V (r) = V0 −
α

r
+ σr, (1.8)

that it is finally determined to be a = 0.093 fm for the data used in this work. The methods
to obtain the lattice data were developed in [2] where further details can be found.
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1 Introduction

1.2.1 Jackknife analysis

In the following work, we use the common jackknife analysis to give an estimate of the
statistical error. For this purpose, the method is described here. The lattice simulations for the
calculation of static potentials provide data sets consisting of a large number of configurations.
In this work, we perform the analysis with N = 700 configurations. Using the jackknife
method, we take into account the correlation of the simulated data [3]. Instead of calculating
the standard error of the full sample, reduced samples are constructed by leaving out one of
the N configurations. Hence, we obtain N reduced samples consisting of N−1 configurations,
whereby the standard means are calculated by making use of the formula

θ̃i =
1

N − 1

∑
k 6=i

xk. (1.9)

The regarded parameters are calculated on the results of each reduced sample. The mean of
the full sample is given by

θ̄ =
1

N

N∑
i=1

θi. (1.10)

Finally, the jackknife error for the estimator of interest is given by

∆θ =

√√√√N − 1

N

N∑
i=1

(
θ̃i − θ̄

)2
. (1.11)

1.3 Outline

In the following the structure of the thesis is outlined. Given the lattice data for hybrid static
potentials, fit procedures for the potentials are explained in Chapter 2 to gain a continuous
form of the potentials. The next chapter describes the derivation and numerical implementa-
tion of the Schrödinger equation for heavy quarks in a hybrid potential. Finally, in Chapter 4
quantum number multiplets for hybrid mesons are deduced and associated to the calculated
spectrum of heavy hybrid mesons. Results are presented and discussed.
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2 Fitting procedure for the lattice potential

2.1 Parametrisation

To be able to solve the Schrödinger equation, we require continuous functions for the lattice
potential data of the Πu- and Σ−u -potential that are shown in Figure 2.1. The ground state
static potential is mostly fitted with the Cornell potential

V (r) = V0 −
α

r
+ σr. (2.1)

The confining nature of strong interaction between two quarks is delineated by a linear term
in r for large separations. It is proportional to the string tension σ which is the energy per
length of the flux tube between two quarks, the parametrisation also includes corrections to
the linear behavior.
A parametrisation for hybrid potentials can be derived in an effective theory, called weakly-

coupled potential non-relativistic QCD (pNRQCD). It is explained in detail in [4]. This
theory is valid for short quark-antiquark distances, as long as r � 1/ΛQCD ≈ 0.6 fm. By
multipole expansion, the leading order of the hybrid static energy is given by a r-dependent
potential V (r) plus a constant. Using perturbation theory, the potential term turns out to
be proportional to ∝ 1/r. The next-to-leading order correction gives a term quadratic in the
quark-antiquark distance. This approach results in the following three-parameter-function

V (r) = c1 +
c2

r
+ c3r

2. (2.2)

As distinguished from the phenomenological Cornell potential, this parametrisation includes
a quadratic term in r. The absolute value of the energy constant c1 is physically not relevant.
Other suggestions are to fit only the lowest lying potential Πu to Equation (2.2) and apply

Equation (2.3) to the potential difference to the Πu-potential [5]

∆V (r) = c4
r2

1 + c5r2
. (2.3)

It is expected that the candidates for a parametrisation reviewed before are only valid for
quark-antiquark separations smaller than 1 fm. Therefore, the large r-region requires another
parametrisation

V (r) = c6r

√
1 +

c7

c6r2
, r > 1 fm. (2.4)

The function given by Equation (2.4) is motivated by the fine structure of the string picture
of QCD exhibiting a linear dependence on the quark-antiquark distance and corrections to
this behavior. Therefore, the parameter c6 represents the string tension σ and c7 corresponds
to

c7 =
π(12N − 1)

6
.

For the Πu-potential the excitation number is N = 1, for Σ−u -excitation N = 3 [5]. Applying
the formula to the lattice data could serve as a test if either c6 or c7 correspond to the ex-
pected values. Using different fits for large and small separations would require a continuation
between the regions to receive a continuous function that can be inserted in the Schrödinger
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Figure 2.1: Lattice potential data for the Πu (blue) - and Σ−u (red) -potential [2].

equation. Therefore, methods developed in [1] could be used. In the following, the method of
least-squares fitting is introduced before results for the fit parameters are discussed.

2.2 Weighted Least-Squares Fitting

Given a set of data points yi, i = 1, 2, ..., N , the parameters cj , j = 1, 2...,M of a function
f(xi, cj), that is fitted to the data points, can be found by minimizing the weighted sum of
squared residuals

χ2(cj) =

N∑
i=1

(
yi − f(xi, cj)

σi

)2

. (2.5)

The more the fit function suits to the data points, the smaller the value of χ2 becomes. Since
the error of the data points σi is included here, points with small error have more weight for
the determination of the fit parameters cj than data with large uncertainties. The value of
χ2 divided by the degrees of freedom, d.o.f. = N −M , serves as a criterion for the quality of
the fit. An evidence for a proper fit is a value of approximately one. If χ2/d.o.f � 1, the fit
model may be improper to describe the data and χ2/d.o.f � 1 occurrs due to correlated fit
parameters.
Numerically, the implemented code for a function depending linearly on the fit parameters

differs from the one used to solve the minimization problem for non-linear functions. A linear
function in cj can be expressed through

f(xi,~c) =

M∑
j=1

Aijcj , (2.6)

where Aij forms the matrix element of a matrix A so that Equation (2.5) becomes

χ2(cj) =
N∑
i=1

(∑M
j=1Aijcj − yi

σi

)(∑M
l=1Ailcl − yi

σi

)
. (2.7)

The weight factors form the diagonal elements of a matrix W = diag(1/σ2
1, ..., 1/σN ). Thus,
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2 Fitting procedure for the lattice potential

parametrisation [rmin, rmax] parameters χ2/d.o.f.

Equation (2.2) [0.186 fm, 1.116 fm]

c1 = (7.63± 0.03) 1
fm

0.77c2 = 0.118± 0.007

c3 = (2.28± 0.05) 1
fm3

Equation (2.4) [0.558 fm, 1.116 fm]
c6 = (6.39± 0.06) 1

fm2
1.19

c7 = 9.3± 0.2

Table 2.1: Fit parameters for two diffferent parametrisations for the Πu-potential.

minimizing χ2 is equivalent to solving a linear system of equations ATWA~c − ATW~y = 0.
This is performed using Gaussian elimination with back substitution. The errors of the found
parameters cj are computed with a jackknife analysis.
To fit a function that depends non-linearly on the parameters cj to data points, a program

is implemented using GNU Scientific Library (GSL) [6]. GSL uses trust region methods to
minimize Equation (2.5) by approximating it with a second order Taylor series expansion
around cj and minimizing this only in a small region. This trust region subproblem is solved
for a trial step, evaluated if the objective function is minimized and then the trust region is
expanded until it converges finally. Therefore, a Levenberg-Marquardt algorithm is used. The
starting point for the parameters has to be in the region of the minimum of Equation (2.5)
since the above described methods are local ones. The errors in the parameters for non-linear
least square fitting are computed analogous to the case of linear fitting.

2.3 Results

In the following, the fit parameters found by applying the above-described methods to the
given lattice potential data points are discussed. The afore-mentioned parametrisations are
fitted to lattice data in a dimensionless form. The dimensionfull parameters cj are obtained
from the numerical results ĉj by using the following relations

c1 = ĉ1/a, c2 = ĉ2, c3 = ĉ3/a
3,

c4 = ĉ4/a
3, c5 = ĉ5/a

2,

c6 = ĉ6/a
2, c7 = ĉ7, (2.8)

where a = 0.093 fm is the lattice spacing.

2.3.1 Πu-potential

First, the parametrisation of Equation (2.2) is fitted to the data of the Πu-potential. The
range of lattice data included in the fit is varied. All fit regions produce acceptable values
of reduced χ2 ≈ 1, accordingly, we can use the fit parameters for the whole region in which
potential data points are available. The fit function with an errorband for the parameters
given in the first row of Table 2.1 is shown in Figure 2.2a. The width of the errorband
compared to the errors of the data points is caused by the fact that the parameters of the
fitfunction (2.2) are not independent. A change in c3 causes an adjustment of c2 to balance
the deviation. As only one parameter is varied to plot the errorband, the compensation is
not revealed and the band exceeds the data errors. The parameter c2 is in agreement to the
result found in [7] by fitting the same parametrisation to lattice data from [8].
As mentioned before, we can also apply the large r-formula (2.4) to the lattice data. The

formula is valid for separation larger than 1 fm for which we have only two points available.
Applying the formula in a region between 0.558 fm and 1.116 fm results in the parameters
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(a) Lattice potential data of the Πu-potential with fit (2.2) in the
region [0.186 fm, 1.116 fm] and errorband.
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(b) Lattice potential data of the Πu-potential with fit (2.4) in the
region [0.558 fm, 1.116 fm] and errorband.

Figure 2.2: Fits for the Πu-potential.

given in the second row of Table 2.1. The fit is shown in Figure 2.2b. The discrepancies of
the parameters to the expected values, such as to the string tension σ ≈ 5.4± 0.5 1

fm2 , reveal
that the parametrisation is improper for the available lattice data to extract the value for
the string tension or the parameter c7. The larger the lower boundary of the fit region, the
smaller is the number of data points. Since neighbouring points are correlated, the value of
reduced χ2 gets smaller for less data points, χ2/d.o.f� 1. The correlation of the parameters
can again be seen in the width of the errorband compared to the errors of the data points in
Figure 2.2b. To be able to perform better fits with Equation 2.4, we would either need more
lattice data for larger separations or fix the string tension parameter to the expected value
from the ground state potential fit [5].
For simplicity, we use the fit function of Equation (2.2) with its parameters presented in

Table 2.1 for the Πu-potential to insert it into the Schrödinger equation in the following. It
still provides a good fit for the whole region despite the fact that it exceeds the limit to which
the parametrisation was derived according to [4].

2.3.2 Σ−u -potential

A selection of parameters for each parametrisation fitted to the Σ−u -potential is presented in
Table 2.2. Figure 2.3a shows the fit of the Σ−u -potential with function (2.2) for the whole
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2 Fitting procedure for the lattice potential

parametrisation [rmin, rmax] parameters χ2/d.o.f.

Equation (2.2) [0.186 fm, 1.116 fm]

c1 = (8.71± 0.07) 1
fm

2.82c2 = −0.04± 0.01

c3 = (4.6± 0.2) 1
fm3

Equation (2.4) [0.558 fm, 1.116 fm]
c6 = (10.0± 0.2) 1

fm2
0.57

c7 = 7.2± 0.3

Equation (2.3) [0.186 fm, 1.116 fm]
c4 = (8.5± 0.3) 1

fm3
1.16

c5 = (2.0± 0.2) 1
fm2

Table 2.2: Fit parameters for different parametrisations for the Σ−u -potential.

range of available lattice data points. The fact that, reducing the upper boundary for the fit
region, the parameter c2 changes its sign and has large uncertainties and the high value of
reduced χ2 as well, reveal that the parametrisation is not optimal for the Σ−u -potential in the
whole region. To obtain physically meaningful values for the parameter c2, data points for
smaller separations need to be added as the term ∝ 1

r becomes dominant in this region.
Better fits are achieved by applying the fit function (2.3) to the potential difference to the

Πu-potential as can be seen in Figure 2.3b. The disadvantage of this fit function is that the
lower lying potential has to be added again to obtain a potential function that can be inserted
into the Schrödinger equation. This would increase the errors of the fit.
Similar to the case of the Πu-potential, the fit function (2.4) for large quark-antiquark

separations is fitted to the lattice data in a region between [0.558 fm, 1.116 fm]. The plot
can be found in Figure 2.3c with the parameters listed in Table 2.2. For the deviation of the
found parameters to the expected values, the same arguments hold as for the Πu-potential.
As before, we need either more data in the large r-region or fix one parameter by a known
value to improve the quality of the fit.
In the following, we use the parametrisation of Equation (2.2) with the parameters from

Table 2.2 due to the fact that it can be directly inserted into the Schrödinger equation.
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(a) Lattice potential data of the Σ−
u -potential with fit (2.2) in the region

[0.186 fm, 1.116 fm] and errorband.
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(b) Potential difference between lattice data of the Πu- and Σu-potential
with fit (2.3) in the region [0.186 fm, 1.116 fm] and errorband.
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(c) Lattice potential data of the Σ−
u -potential with fit (2.4) in the region

[0.558 fm, 1.116 fm] and errorband.

Figure 2.3: Fits for the Σ−u -potential.
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3 Solving the Schrödinger equation

3.1 Derivation

The spectrum of hybrid mesons is determined by solving

Ĥ |ψ〉 = E |ψ〉 (3.1)

for its energy eigenvalues. Since it is very difficult to compute heavy hybrid meson masses
using lattice QCD with quarks of finite mass, one can choose the Born-Oppenheimer approx-
imation as first proposed in [9]. For further details see [5] and [10]. With this approximation,
the computation is reduced to solving a Schrödinger equation for the heavy quark-antiquark
pair in a potential generated by the gluons. This is explained in the following.
In the case of diatomic molecules, the Born-Oppenheimer approximation enables the calcu-

lation of molecular energy levels by solving the Schrödinger equation. It provides an equation
for the heavy nuclei in a potential generated by the light degrees of freedom, the electrons, at
fixed nuclei positions. It is rooted in the existence of slow and fast degress of freedom, two
types of particles with masses differing in orders of magnitude and therefore with different
time scales. The Born-Oppenheimer approximation consists of the adiabatic approximation
stating that the light degrees of freedom adapt to changes of the heavy nuclei while remaining
in the instantaneous eigenstate. This approximation exploits the fact of two different time
scales. Subsequently, the single-channel approximation neglects contributions of mixing be-
tween states from different stationary electronic eigenstates. Hybrid mesons exhibit the same
characteristics as diatomic molecules, consequently the Born-Oppenheimer approximation can
be applied to our problem.
The first step is to calculate the potentials generated by the light degrees of freedom using

lattice QCD with static sources as quarks. This was performed in [2]. This work deals with
the second step which is the solution of the Schrödinger equation for heavy quarks in a hybrid
static potential.
The Hamilton operator describing the dynamics of heavy hybrid mesons can be divided

into the sum of the gluonic Hamilton operator and the kinetic energy of the quark-antiquark
pair

H(~r) = Hgluon(~r) + Tqq̄(~r). (3.2)

The former is given by the QCD Hamiltonian describing the dynamics of the gluon field. It
also includes the interaction between gluon field and static quarks. The Hamilton operator
depends on the relative coordinate of the two quarks ~r. The center of mass coordinates can
be integrated out since they are not relevant for the spectrum of heavy hybrid mesons. The
kinetic energy of the quark-antiquark pair is

Tqq̄ =
−1

2µ
∆ =

−1

2µ

(
1

r2
∂r
(
r2∂r

)
−

L2
qq̄

r2

)
, (3.3)

with Lqq̄ being the orbital angular momentum operator and µ denoting the reduced mass of
the quark-antiquark pair.
In the first place, considering the static limit with infinitly heavy quarks, the kinetic energy

of the quarks can be neglected due to its proportionality to ∝ 1/µ in contrast to the gluonic

10



3 Solving the Schrödinger equation

energy. The problem (3.1) reduces to

Hgluon |ψ〉 = E |ψ〉 . (3.4)

The eigenvalue equation for the gluonic Hamiltonian is given by

Hgluon |m;~r〉 = Vm(r) |m;~r〉 , (3.5)

where the eigenvalue Vm(r) is the static potential calculated on the lattice for each quark-
antiquark separation r using static sources as quarks. The index m represents the quantum
numbers of the corresponding gluonic state. The eigenfunction |ψ〉 of the full system can be
expanded in terms of the eigenstates for the gluonic Hamiltonian

|ψ〉 =
∑
k

ψ(k)
n (~r) |k;~r〉 . (3.6)

Substituting the expansion of eigenstates in the total Equation (3.1), making use of Equation
(3.5) and multiplying it with 〈m;~r| yields[

Vm(r) +
−1

2µr2
∂r
(
r2∂r

)]
ψ(m)
n (~r) +

1

2µr2

∑
k

〈
m;~r

∣∣L2
qq̄

∣∣k;~r
〉
ψ(k)
n (~r)

+ {terms ∝ ∂r |k;~r〉}
= E(m)

n ψ(m)
n (~r).

(3.7)

Since we assume the gluon field to remain in its instantaneous eigenstate when the quark
coordinate r changes slowly, which corresponds to the adiabatic approximation, we neglect
the radial derivative acting on the gluonic state

∂r |k;~r〉 ≈ 0. (3.8)

As a consequence of the adiabatic change, we can assume for the low lying hybrid static po-
tentials that they are separated well enough that the gluon eigenstates do not mix. Therefore,
we neglect all contributions but one ψ(m)

n corresponding to a single gluon configuration m.
This is equivalent to assuming

|ψ〉 ≈ ψ(m)
n (~r) |m;~r〉 . (3.9)

What remains from the sum in the second term of Equation (3.7) is only the diagonal term

1

2µr2

〈
m;~r

∣∣L2
qq̄

∣∣m;~r
〉
ψ(m)
n (~r). (3.10)

The wave function can be splitted into a radial and an angular part using

ψ(m)
n (~r) =

un(r)

r
Y (θ, φ). (3.11)

Finally, in the Born-Oppenheimer approximation problem (3.1) results in(
−1

2µ

d2

dr2
+

〈
L2
qq̄

〉(m)

2µr2
+ Vm(r)− E(m)

n

)
un(r) Y (θ, φ) = 0. (3.12)

To summarize, after evaluating the effect of the orbital angular momentum operator, we arrive
at a one-dimensional, non-relativistic Schrödinger equation for the radial quark-antiquark
wave function with an effective potential consisting of the hybrid static potential Vm(r) and
the centrifugal term.

11



3 Solving the Schrödinger equation

3.2 Centrifugal term

In this section, two approaches are discussed to evaluate the centrifugal term in Equation
(3.12).
Naively, one can start by replacing the angular momentum operator of the quark-antiquark-

pair with its eigenvalue Lqq̄(Lqq̄ + 1) corresponding to the spherical harmonics, YLm(θ, φ).
A difficulty arises when trying to refer the found eigenstates characterised by the angular
momentum of the quark and antiquark to meson quantum numbers. Therefore, one can
choose a superior approach reviewed in the following. For details see [5] where this approach
has been proposed. A great advantage of it is that we can then associate the quantum numbers
of the found eigenstates to the meson quantum numbers as explained in Section 4.1.
The total orbital angular momentum of the hybrid meson is given by the orbital angular

momentum of the quark-antiquark pair and the total angular momentum of the gluons

L = Lqq̄ + Jg. (3.13)

The square of the angular momentum operator of the quark-antiquark pair is then given by

L2
qq̄ = L2 − 2LJg + J2

g (3.14)

= L2 − 2LzJgz + (L+Jg,− + L−Jg,+) + J2
g. (3.15)

The linear combination of ladder operators L± couples the gluonic eigenstates. As we are
working in the single channel approximation, this term is neglected in the following. Evalu-
ating the expectation value of the operators gives〈

Λ, η, ε;~r
∣∣L2
∣∣Λ, η, ε;~r 〉ψ(m)

n (~r) = L(L+ 1) ψ(m)
n (~r), (3.16)

〈Λ, η, ε;~r |2LzJgz|Λ, η, ε;~r 〉ψ(m)
n (~r) = 2Λ2 ψ(m)

n (~r), (3.17)〈
Λ, η, ε;~r

∣∣J2
g

∣∣Λ, η, ε;~r 〉ψ(m)
n (~r) =

〈
J2
g

〉(m)
ψ(m)
n (~r), (3.18)

where |Λ, η, ε; r〉 represents the gluon configuration with its quantum numbers. In Equation
(3.17), it is used that the component of Lqq̄ parallel to the separation axis z vanishes by
definition. Consequently, the z-component of L is given by Jg,z = Λ. Inserting this into the
Schrödinger equation leads to(

−1

2µ

d2

dr2
+
L(L+ 1)− 2Λ2 +

〈
J2
g

〉(m)

2µr2
+ V (r)

)
unL = EnLunL(r). (3.19)

In [5] it is argued that the value of
〈
J2
g

〉(m) should be 2 for the Πu - and Σ−u -potentials. Ac-
cording to this work, one justification for the expectation value of the gluon angular momen-
tum operator is given in the constituent gluon picture in which a Jg = 1-gluon accompanies
the quark-antiquark pair. As explained above, the value of the z-component of L is given by
Jg,z = Λ. As a consequence, we obtain a restriction of the orbital angular momentum, namely
L ≥ Λ. Therefore, there will be a L = 0 state for the Σ−u -potential, but not for Πu.
In the following we investigate the two cases:

• A : A centrifugal term consisting of the orbital angular momentum of the quark-
antiquark pair:

Lqq̄(Lqq̄ + 1)

2µr2
. (3.20)
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3 Solving the Schrödinger equation

The Schrödinger equation then reads(
−1

2µ

d2

dr2
+
Lqq̄(Lqq̄ + 1)

2µr2
+ V (r)

)
unLqq̄ = EnLqq̄unLqq̄(r). (3.21)

• B : A centrifugal term with the total angular momentum of the hybrid meson:

L(L+ 1)− 2Λ2 + 2

2µr2
, L ≥ Λ. (3.22)

The Schrödinger equation is given by(
−1

2µ

d2

dr2
+
L(L+ 1)− 2Λ2 + 2

2µr2
+ V (r)

)
unL = EnLunL(r). (3.23)

Finally, we arrive at an equation that is equivalent to a one-dimensional Schrödinger equation
with energy eigenvalues Enl depending on the principal number n and the angular orbital
momentum l = Lqq̄ or L for A or B, respectively.

3.3 Numerical implementation

To solve the Schrödinger equation numerically, it is convenient to make it dimensionless.
Multiplying Equation (3.12) with the lattice spacing a leads to

−a
2µ

d2unl
dr2

+

(
V (r)a+

〈
L2
qq̄

〉(m)

2µr2
a− E(m)

nl a

)
unl(r) = 0. (3.24)

Now we can identify the dimensionless quantities:

r̂ = ra−1

V̂ = V a

µ̂ = µa

Ê
(m)
nl = E

(m)
nl a. (3.25)

The dimensionless Schrödinger equation is

−1

2µ̂

d2unl
dr̂2

+

(
V̂ (r̂) +

〈
L2
qq̄

〉(m)

2µ̂r̂2
− Ê(m)

nl

)
unl(r̂) = 0, (3.26)

with an effective potential

V̂eff = V̂ (r̂) +

〈
L2
qq̄

〉(m)

2µ̂r̂2
. (3.27)

For numerical treatment, the boundary conditions can be formulated as follows:

h(y(r̂min)) =
unl(r̂min)

r̂s+1
min

− unl(r̂min + ε)

(r̂min + ε)s+1
= 0 (3.28)

unl(r̂max) = 0. (3.29)

The value of s is derived in Appendix A where we work out the behavior of the radial
probability amplitude for small r in detail.
The Schrödinger equation (3.26), which is an eigenvalue equation, can be rewritten into a

13



3 Solving the Schrödinger equation

system of first order differential equations

d

dr̂

 y
dy
dr̂
E

 =

 unl

2µ̂
[
V̂ + 1

2µ̂r̂2

〈
L2
qq̄

〉
− Ê

]
y1

0

 , (3.30)

that can be solved numerically using standard methods. A shooting method is implemented
with a Newton-Raphson method using a fourth order Runge-Kutta algorithm in every step.
It starts with initial values for y, y′ and E, where the boundary condition (3.29) fixes the
first one. The second initial value y′ is arbitrary because it only influences the normalization.
The remaining initial value has to be guessed. Now, one “shoots” from r̂max to a minimum
separation r̂min and then varies the initial guess for the energy eigenvalue to meet the boundary
condition h(y(r̂min)). For this purpose, we modify the initial guess E by dE = −h(y(r̂min)) ∗

1
∂Eh(y(r̂min)) until dE falls below a chosen criterion Emin. The Newton-Raphson method
converges only for an initial guess of E close enough to the exact root of the function h.
The idea behind starting the integration at r̂max is to avoid a problem that occurs in a region

which is classically forbidden for the wave function. For the wave function in a potential larger
than its energy there is an exponentially increasing and a decreasing solution which depends
on the size of the energy differences. Physically, only the exponentially decreasing solution is
allowed.
If the effective potential (3.27) is many orders larger than the energy eigenvalue, there exists

a numerical difficulty in finding a solution without an exponentially increasing part. Hence,
the solution to Equation (3.26) for regions of large effective potentials is unstable.
In our case, the effective potential (3.27) becomes large for small r as well as for large r.

Therefore, the problem of unstable solutions also occurs when integrating from r̂max to r̂min.
Numerically, the described behavior can be avoided by implementing a Runge-Kutta algo-

rithm starting its integration in the classically forbidden region for small r and one integrating
from the forbidden large r region. The boundary condition is then called logarithmic. At the
point, rm, where both integrations end their values and derivatives should fulfill

u′1(rm)

u1(rm)
− u′2(rm)

u2(rm)
= 0. (3.31)

But, since the energy eigenvalue turns out to be stable even if the boundary condition is
not fulfilled perfectly, we choose to improve only the termination condition of the Newton-
Raphson algorithm. The algorithm of finding the energy eigenvalue is stopped if the Newton
step size |dE| < Emin and the solution decreases or shows a sign change

|u(rmin)| < |u(rmin + ε)| ∨
u(rmin)(E + dE) ∗ u(rmin)(E) < 0. (3.32)

3.3.1 Hydrogen atom

The Schrödinger equation for the hydrogen atom can be solved with the same methods and
boundary conditions as described above. In comparison to the hybrid static potential, the
potential for hydrogen is given by a negative Coulomb term for which the Schrödinger equation
can be solved analytically. The energy eigenvalues are proportional to∝ 1/n2 with n = 1, 2, ....
Hence, the problem of the hydrogen atom is suitable for a check of our implementation for
finding energy eigenvalues for hybrid mesons.
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3 Solving the Schrödinger equation

For this purpose, we implement the differential equation

d

dr̂

 y
dy
dr̂
E

 =

 unl(
−2
r̂ + l(l+1)

r̂2 − Ên
)
y1

0

 , (3.33)

where r/aB = r̂ and aB = 4π~2

e2me
≈ 0.529Å. To obtain a good initial guess for the energy

value to insert in the Newton method, the boundary condition (3.28) is scanned for roots
with respect to E. We observe a dependence of the number of found energy eigenvalues on the
chosen value of integration boundary rmax. The larger the value for rmax, the more energy
eigenvalues are found. It was checked that the physical quantities do not depend on the
remaining numerical parameters like Runge-Kutta step size or the lower integration boundary
rmin. With the written program, the first three energy eigenvalues can be reproduced for
angular momentum l = 0, 1, 2.
The above-mentionend problem of unstable solutions for the radial probability amplitude

unl in the presence of large effective potentials can already be seen for the hydrogen atom.
In Figure 3.1a the radial probability amplitude is plotted for a corresponding energy eigen-
value and small deviations from it in a negative effective potential. Here, we obtain a stable
solution that vanishes for r → 0. In comparison, Figure 3.1b belongs to a solution in a high
effective potential for which the radial probability amplitude is unstable with respect to small
deviations of the energy eigenvalue. To deal with this problem, we implement the improved
termination condition (3.32) mentioned before.

Hydrogen atom
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(a) The 1S wave function of the hydrogen
atom is plotted for the energy eigenvalue
E∗ = −0.25 which was found by the New-
ton method and for small deviations of
∆E = 1 ∗ 10−6 from this value. The solu-
tion is stable.
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(b) The 1P wave function of the hydrogen
atom is plotted for the energy eigenvalue
E∗ = −0.25 which was found by the New-
ton method and for small deviations of
∆E = 1 ∗ 10−6 from this value. The solu-
tion is unstable.

Figure 3.1: Behavior of the solution for the hydrogen atom for small separations.
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4 The heavy hybrid meson spectrum

4.1 Quantum numbers

Mesons are characterized by quantum numbers JPC . Here, J is the total angular momentum
of the system, P is the parity and C stands for the behavior under charge conjugation. In com-
parison, the hybrid static potentials are characterized by different quantum numbers, namely
Λεη. To find the quantum numbers of hybrid mesons similar to conventional quark-antiquark
bound states, we have to associate the known properties with those quantum numbers.
First of all, we neglected spin in the whole derivation of hybrid meson masses. The two quark

spins of 1/2, respectively, can couple to either 0 or 1. Therefore, heavy quark spin multiplets
are obtained which are degenerate according to their masses. The eigenstates of the orbital
angular momentum operator L and spin operator S can be combined to eigenstates of the
total angular momentum operator for the system J using the Clebsch-Gordon-coefficients,
〈LmL;SmS |JmJ〉. The possible values of J are restricted to |L − S| ≤ J ≤ |L + S|. The
eigenstates as a solution to the Schrödinger equation are also eigenstates to the parity and
charge conjugation operators. Acting with P on the spherical harmonics yields a factor of
(−1)L. Also taking into account the opposite intrinsic parity of the quark and the antiquark
gives finally

P = (−1)L+1. (4.1)

The operator C acting on the state ψ = R(r)YLm(θ, φ)χ(~S) interchanges quark and antiquark,
which yields a factor of (−1)L+1 with the same arguments as used for parity. Additionally,
the charge conjugation flips the spins, this results in a factor of (−1)S+1. Combining these
factors yields

C = (−1)L+S (4.2)

as the eigenvalue of charge conjugation [11].
In the case of A, we insert the orbital angular momentum of the quark-antiquark pair Lqq̄

into the Schrödinger equation. In order to obtain hybrid meson quantum numbers we need
the JPC-representation of the gluons. As mentioned before, the potentials obtained from
lattice calculations are given in a different representation. There is no simple way to change
over to the JPC-representation.
According to [5], the quantum numbers of the gluon can be assigned to 1+− for the two

lowest hybrid static potentials Πu and Σ−u . The quantum numbers for quarks and gluon could
be added quantummechanically following the constituent gluon picture. In this model, the
excited gluon field is interpreted as a constituent particle bound to the quark-antiquark pair
with quantum numbers in the meson representation.
However, we will label the calculated energies by quantum numbers of the potential, the

principal quantum number n and the orbital angular momentum Lqq̄.
For the case of B, we work in the Born-Oppenheimer picture. Here, we associate our

results for binding energies with the orbital angular momentum of quarks and total angular
momentum of the excited gluon field, L = Lqq̄+Jgluon. The total angular momentum quantum
number J for the hybrid meson is derived by adding quantummechanically the spin to the
quantum number L. Furthermore, the eigenvalues of parity and charge conjugation for the
hybrid meson have to be found. The energy levels derived by solving the Schrödinger equation
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4 The heavy hybrid meson spectrum

JPC

Λεη L S = 0 S = 1 multiplet

Σ−u

0 0++ 1+− H3

1 1−− {0,1, 2}−+ H1

2 2++ {1,2, 3}+− H4

Π−u
1 1++ {0, 1,2}+− H2

2 2−− {1, 2,3}−+ H5

Π+
u

1 1−− {0,1, 2}−+ H1

2 2++ {1,2, 3}+− H4

Table 4.1: JPC quantum numbers from Born-Oppenheimer picture.

can be written as [5]

|nLmLSmS ; Λ η ε〉 =

∫
d3rRnL(r)YLmL

(~r) |Λ η ε;~r〉 |SmS〉 . (4.3)

The parity of the gluon field is P |Λ η ε;~r〉 = ε(−1)Λ |Λ η ε;~r〉. The remaining quark part
gives, as before, a factor of (−1)L+1. Consequently, the parity of the hybrid meson is given
by

P = (−1)L+Λ+1. (4.4)

From the Λεη representation we know the gluon behavior under the combination of parity and
charge conjugation which is given by the value of η. As a result, the additional factor to the
behavior under charge conjugation of the meson is given by C = ηε(−1)Λ. Therefore, the
eigenvalue of the hybrid meson with respect to charge conjugation is

C = ηε(−1)L+S+Λ. (4.5)

The possible quantum numbers resulting from the Born-Oppenheimer picture are given in
Table 4.1 where exotic quantum numbers that cannot be obtained in a conventional quark-
antiquark picture are printed with bold letters. The multiplets corresponding to Π−u and Π+

u

have the same masses because there exists no difference among their eigenvalue equations.
We label the heavy quark spin multiplets in the same way as it is done in [4].

4.2 Probability density

Having a look at the extension of the probability density can serve as a check for the reliability
of the calculated energy levels. The probability density to find the quark-antiquark pair with
a separation distance r is given by

ρ(r) =

∫
dΩ|ψnlm|2 =

∫ 2π

0

∫ π

0
|Rnl|2|Ylm|2r2dφsinθdθ = r2|Rnl|2 = |unl|2, (4.6)

where we used the normalization of the spherical harmonics and the definition unl = rRnl.
The probability densities for different states with principal and orbital angular momentum
quantum numbers nl are shown in Figure 4.1. Only radial excitations n should be taken into
account for which the probability density does not exceed the region in which the potential
parametrisation can be considered valid. The parametrisation can be assumed to describe the
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(a) A: Πu for Lqq̄ = 0 (green), Lqq̄ = 1 (red).
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(b) A: Σ−
u for Lqq̄ = 0 (green), Lqq̄ = 1 (red).
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(c) B: Πu for L = 1 (red), L = 2 (violet).
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(d) B: Σ−
u for L = 0 (green), L = 1 (red).

Figure 4.1: Probability density |unl|2 for both potentials.

data well in the whole region up to quark-antiquark distances of about 1 fm. Therefore, we
can regard the two lowest radial excitations n = 1, 2 for both potentials, Πu and Σ−u . The
probability density is small for separations greater than the upper boundary as displayed by
Figure 4.1. Care must be taken in considering results beyond the second excitation.

4.3 Masses

From solving the Schrödinger equation we obtain energy values corresponding to the binding
energy Enl for the heavy hybrid meson. The calculated absolute values have no meaning
since they are shifted by a constant related to the self energy of the static quarks in lattice
calculations. The position of the heavy quarks on the lattice are localized up to the lattice
spacing a. Conversely, this implies that the quark momenta are very large and their energy
is proportional to ∝ 1/a. The contribution coming from the infinitely heavy quarks is added
to all potentials calculated on the lattice. As a result, a potential computed on a lattice with
small lattice spacing a, is shifted upwards in comparison to a potential generated using a
larger a. To acquire comparable values for binding energies, there are several options.
The first and easiest method is to take the difference to the lowest bound state, consequently

we can compare energy differences that are independent from the energy shift. A main
drawback of this method is loosing one state, the lowest one, about which no further statement
can be made.
An alternative way to gain comparable results, consists of calculating a simple bound state

of two quarks using the same lattice setup and compare the calculated mass to experimental
data. A good choice here is the bb̄ meson ηb(1S) with quantum numbers JP = 0−. Thus,
one can add the energy difference between the higher lying states and the 1S state to the
experimental mass mexp(ηb(1S)) like it was done in [1].

18



4 The heavy hybrid meson spectrum

The third option, used in the following, is to calculate the energy of the ground state static
potential Σ+

g at the point of stringbreaking and identify this energy with the mass of two
B-mesons. At some distance rsb between the two quarks the energy contained in the string
between them is sufficient to form two B-mesons from the quark-antiquark meson. B-mesons
consist of a heavy antiquark/quark and a light quark/antiquark. So, we identify the value
of the potential at the point of stringbreaking, VΣ+

g
(rsb), with the experimental mass of two

B-mesons, 2 ∗mexp(B).
The stringbreaking distance is calculated from rsb = (2.27±0.20)r0 [12], using the Sommer

parameter r0. The ground state static potential is

V̂Σ+
g

(r̂sb) = V̂0 +
α̂

r̂sb
+ σ̂r̂sb, (4.7)

with [13]

V̂0 = 0.149± 0.006, α̂ = 0.26± 0.02, σ̂ = 0.0480± 0.0007, r̂0 = 5.39± 0.02. (4.8)

Finally, the computed binding energies EnL for bound states of two bottom quarks with
masses m(M̄S)

b = 4.18 GeV and an excited gluon field with quantum numbers Πu and Σ−u are
presented in Table 4.2.
By adding the difference of binding energies EnL and VΣ+

g
(rsb) to the mass of two B-mesons

we obtain the results for heavy hybrid meson masses independent of the energy shift related
to the quark self energy

MnL = (EnL − VΣ+
g

(rsb)) + 10.56 GeV. (4.9)

The heavy hybrid meson masses are presented in Table 4.3 for the case of A, for B they are
given in Table 4.4. For a graphical presentation, Figures 4.2 and 4.3 show the results in an
energy level diagram for case A and B, respectively.
The errors are the results of a jackknife analysis according to Section 1.2.1, so they only

take into account statistical uncertainties.
The results from the Πu-potential are the same for the naive appraoch A and the superior

case B besides the non-existence of a S-state for B as was outlined before. In contrast to this,
the Σ−u -potential differs in an additional term in the centrifugal term for the two cases which
results in the fact that masses lie higher in the case of B.
To draw a comparison of our results to others, for instance discussed in [4], we would have to

adjust the energy offset for the calculated masses or compare mass differences. This is due to
the fact that different methods for substraction of the quark self energy are used. Furthermore,
the given uncertainties reveal only statistical errors but give no clue to the size of systematic
errors in, for example, the quark mass or the choice of parametrisation. However, results
so far are encouraging to gain precise heavy hybrid meson masses by applying the presented
methods and mentioned enhancements.
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4 The heavy hybrid meson spectrum

A B
n Lqq̄ Πu Σ−u L Πu Σ−u
1 0 1.765 ± 0.003 1.964 ± 0.005 0 - - 2.160 ± 0.006
2 2.015 ± 0.005 2.339 ± 0.009 - - 2.531 ± 0.011
1 1 1.874 ± 0.004 2.160 ± 0.006 1 1.874 ± 0.004 2.266 ± 0.007
2 2.129 ± 0.006 2.531 ± 0.011 2.129 ± 0.006 2.637 ± 0.012
1 2 1.995 ± 0.004 2.348 ± 0.008 2 1.995 ± 0.004 2.418 ± 0.009
2 2.252 ± 0.007 2.719 ± 0.014 2.252 ± 0.007 2.788 ± 0.015

Table 4.2: The binding energy values EnL for both potentials in GeV.

Λεη(nLqq̄) MnL

Πu(1S) 10.808 ± 0.003

Πu(2S) 11.058 ± 0.005

Πu(1P ) 10.917 ± 0.004

Πu(2P ) 11.172 ± 0.006

Πu(1D) 11.038 ± 0.004

Πu(2D) 11.295 ± 0.007

Σ−u (1S) 11.007 ± 0.005

Σ−u (2S) 11.382 ± 0.009

Σ−u (1P ) 11.202 ± 0.006

Σ−u (2P ) 11.574 ± 0.010

Σ−u (1D) 11.391 ± 0.008

Σ−u (2D) 11.762 ± 0.014

Table 4.3: A: Masses in GeV from hybrid static potentials Λεη(nLqq̄) for n = 1, 2 and Lqq̄ =
0, 1, 2 = S, P,D.

L multiplet JPC M1L M2L

Πu

1
H2

{
1++, (0, 1, 2)+−}

10.917 ± 0.003 11.172 ± 0.006
H1

{
1−−, (0, 1, 2)−+ ,

}
2

H5

{
2−−, (1, 2, 3)−+}

11.038 ± 0.004 11.295 ± 0.007
H4

{
2++, (1, 2, 3)+−}

Σ−u

0 H3 {0++, 1+−} 11.203 ± 0.006 11.574 ± 0.011

1 H1

{
1−−, (0, 1, 2)−+} 11.309 ± 0.007 11.680 ± 0.012

2 H4

{
2++, (1, 2, 3)+−} 11.461 ± 0.009 11.831 ± 0.015

Table 4.4: B: Masses in GeV from hybrid static potentials for the ground state and first exci-
tations n = 1, 2 associated to heavy quark spin multiplets with possible quantum
numbers JPC .
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4 The heavy hybrid meson spectrum
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Figure 4.2: A: Masses calculated with potentials Λεη with the centrifugal term (A).
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Figure 4.3: B: Masses calculated with Λεη(nL) associated with quantum numbers JPC .
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5 Conclusion and Outlook

In this work, different parametrisations were fitted to lattice data of the hybrid static po-
tentials Πu and Σ−u . Due to the available range of lattice data, the three-parameter-function
(2.2) was chosen to fit the whole region from 0.186 fm to 1.116 fm for both hybrid poten-
tials. By means of the Born-Oppenheimer approximation and after evaluating the centrifugal
term, we arrived at a one-dimensional, non-relativistic Schrödinger equation for the heavy
quark-antiquark pair in a hybrid static potential. The numerical method used to solve the
Schrödinger equation for its energy eigenvalues was discussed and tested for the hydrogen
atom. After that, we deduced the possible quantum number multiplets for heavy hybrid
mesons from the quantum numbers of hybrid static potentials. Finally, the computed masses
for a bottom quark-antiquark pair in a hybrid static potential associated with those quantum
numbers were presented. The reliability of the calculated spectrum was checked investigating
the radial probability density.
In the future, further enhancement can be made to gain an even better understanding

of hybrid mesons. As mentioned in Chapter 2, there are different parametrisations. Fits
should be improved by combining the functions for small quark-antiquark separations to the
one for large r or by fitting potential differences like it was proposed for the Σ−u -potential.
As pointed out before, lattice data for smaller as well as larger interquark distances are
required. Subsequently, the developed methods can be perfomed with higher lying hybrid
static potentials. Further investigations are needed to improve the estimated uncertainties to
take into account not only statistical but also systematic errors. After that, another future
aim is to include spin effects in the theoretical treatment that will break the degeneracy
between the heavy quark spin multiplets.
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A Behavior of the radial wave function for r → 0

The behavior of the radial wave function for large r is easily determined by considering the
following. Since the total wave function is required to be normalised, the radial probability
amplitude has to fulfill the normalization condition∫ ∞

0
|unl|2dr = 1. (A.1)

According to this, the radial probability amplitude unl(r) = rR(r) has to vanish for r →∞.
Now, we investigate the behavior of unl for r → 0. The hybrid static potential in the form

of Equation (2.2) is inserted into the radial Schrödinger equation(
−1

2µ

[
∂2

∂r2
+

2

r

∂

∂r

]
+

〈
L2
qq̄

〉(m)

2µr2
+ Vm(r)− E(m)

nl

)
R(r) = 0. (A.2)

This is an ordinary differential equation with singularities at r = 0. For finding the appropriate
boundary condition for the radial wave function it is useful to choose the following ansatz [15]

R(r) = rs
∞∑
k=0

akr
k, a0 6= 0. (A.3)

The term in the parametrisation (2.2) proportional to ∝ r2 is only dominant for large r, thus
can be neglected in the region of small separations. Inserting the ansatz into Equation (A.2)
yields

− 1

2µ

[
s(s− 1)rs−2

∞∑
0

akr
k + srs−1

∞∑
0

kakr
k−1 + srs−1

∞∑
0

kakr
k−1 + rs

∞∑
0

k(k − 1)akr
k−2

]

− 1

µ

[
srs−2

∞∑
0

akr
k + rs−1

∞∑
0

kakr
k−1

]

+

〈
L2
qq̄

〉(m)

2µ
rs−2

∞∑
0

akr
k + rs(c1 − E)

∞∑
0

akr
k + rs−1c2

∞∑
0

akr
k

= 0

(A.4)

With the relations
∑∞

k=0 kakr
k−1 =

∑∞
k=0 ak+1r

k and
∑∞

k=2 akr
k−2 =

∑∞
k=0 ak+2r

k the terms
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A Behavior of the radial wave function for r → 0

are sorted with respect to their power in r:

rs−2

[(
−s(s− 1)

2µ
− s

µ
+

〈
L2
qq̄

〉(m)

2µ

)
a0

]

+rs−1

[(
−s(s− 1)

2µ
− 2(2s− 1)

2µ
+

〈
L2
qq̄

〉(m)

2µ

)
a1 + c2 a0

]

+rs
∑
k

[
−1

2µ

(
(s+ k + 3)(s+ k + 2)−

〈
L2
qq̄

〉(m)
)
ak+2 + c2 ak+1 + (c1 − E) ak

]
rk

= 0.

(A.5)

All three terms have to vanish separately so that this equation is fulfilled. From this, a
conditional equation for s follows:

s(s+ 1)−
〈
L2
qq̄

〉(m)
= 0 (A.6)

Now we distinguish the cases of different centrifugal terms:

• A: For
〈
L2
qq̄

〉(m)
= Lqq̄(Lqq̄ + 1) the value of s is either Lqq̄ or −(Lqq̄ + 1). The latter

option would imply an unbounded wave function so that we choose s = Lqq̄. For the
radial probability amplitude follows the boundary condition

r → 0 : unl(r) ∼ rLqq̄+1. (A.7)

• B: For the Πu-potential the centrifugal term looks the same as in A besides the quark-
antiquark orbital angular momentum is replaced by the orbital angular momentum of
the meson. The behavior of the radial probability amplitude for small separations is
described by

r → 0 : unl(r) ∼ rL+1. (A.8)

For the Σ−u -potential we obtain non-integer values for s given by

s =
1

2
(
√

4L2 + 4L+ 9− 1) (A.9)

so that we write

r → 0 : unl(r) ∼ rs+1. (A.10)

25



B Erklärung nach § 30 (12) Ordnung für den
Bachelor- und dem Masterstudiengang

Hiermit erkläre ich, dass ich die Arbeit selbstständig und ohne Benutzung anderer als der
angegebenen Quellen und Hilfsmittel verfasst habe. Alle Stellen der Arbeit, die wörtlich oder
sinngemäß aus Veröffentlichungen oder aus anderen fremden Texten entnommen wurden, sind
von mir als solche kenntlich gemacht worden. Ferner erkläre ich, dass die Arbeit nicht - auch
nicht auszugsweise - für eine andere Prüfung verwendet wurde.

Frankfurt am Main, den 14. September

(Carolin Riehl)

26


	Introduction
	Motivation
	Theory
	Jackknife analysis

	Outline

	Fitting procedure for the lattice potential
	Parametrisation
	Weighted Least-Squares Fitting
	Results
	u-potential
	u–potential


	Solving the Schrödinger equation
	Derivation
	Centrifugal term
	Numerical implementation
	Hydrogen atom


	The heavy hybrid meson spectrum
	Quantum numbers
	Probability density
	Masses

	Conclusion and Outlook
	References
	Behavior of the radial wave function for r 0
	Selbstständigkeitserklärung

