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Abstract

In this thesis we investigate the phase diagrams of the two- and three-dimensional
Gross-Neveu model in the large-N limit. A main focus is on the development of gen-
eral numerical methods, which are tested by comparison with the analytically known
two-dimensional model, for the investigation of phase diagrams in QCD-inspired models
without making ansatzes for the chiral condensate. Then we apply them on the three-
dimensional version ending up with the homogeneous diagram and �rst results for the
inhomogeneous case.

Zusammenfassung

In dieser Thesis untersuchen wir das Phasendiagramm des zwei- und dreidimensionalen
Gross-Neveu Modells im Grenzfall groÿer Flavorzahlen. Groÿer Wert liegt dabei auf
der Entwicklung numerischer Methoden zur allgemeinen Untersuchung von Phasedia-
grammen, ohne Ansätze für den chiralen Ordnungsparametern zu wählen. Dazu wird
das bereits analytisch berechnete Phasendiagramm des zweidimensionalen Gross-Neveu
Models als Vergleich verwendet. Diese Methoden werden dann auf das dreidimensionale
Modell angewendet, wodurch wir das homogene Phasendiagramm berechnen konnten.
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1. Introduction

1. Introduction

Quantum chromodynamics (QCD) is the theory of interaction between the fundamental
components of nuclear matter, the quarks, which is realized by exchanging gauge bosons,
the gluons. This so called strong interaction acts on a property called colour charge.
In consequence of the non-abelian SU(3) gauge group of the theory gluons carry colour
charge, which makes QCD complicated compared to quantum electrodynamics where the
gauge bosons do not carry charge. For large distances and low energies the coupling is
of a high scale making a perturbative access and in general analytical approaches very
hard to realize. Therefore, we apply numerical computations on a discretized space-time
lattice as a non-perturbative approach.

The phase diagram of QCD displays at which temperature and chemical potential the
quarks exist in di�erent phases. One central phenomenon in their distinction is con�ne-
ment. It forces physical particles to be colour neutral causing the colour charged quarks
to form hadrons, that are build either from quark-antiquark pairs or three quarks. At
very large temperatures or chemical potential con�nement is resolved and quarks exist
as free excitations. This decon�ned phase is also known as quark-gluon plasma.

Regarding the QCD phase diagram it is well-known that in a region of low temperature
and chemical potential there exist con�ned quarks surrounded by a phase boundary to a
decon�ned phase. However, there is a region of large chemical potential and small tem-
perature that still is subject of intense research, as another phase, called inhomogeneous
phase, is suspected to be located there [Bub15]. As there exist no working approaches
for computation of phase diagram for full QCD, especially in the region where the inho-
mogeneous phase is suspected to be located, we will investigate e�ective models sharing
some characteristic properties with QCD. Hence, we focus on the two-dimensional and
three-dimensional Gross-Neveu model in the limit of large �avor numbers(large-N limit),
as it retains the chiral symmetry in common with QCD.

Phases are usually described by an order parameter that characterizes each phase with its
behavior. For our model this order parameter is called the chiral condensate expressing
the breaking of chiral symmetry. In the phase within the boundary this order parameter
has a constant value breaking chiral symmetry, while in the phase outside the boundary
it vanishes and restores the chiral symmetry. Later investigations have shown that in a
region of large chemical potential and low temperature there exits a phase, where the
chiral condensate has a spatial dependence, called the inhomogeneous phase. Current
research investigates whether this phase also exists in more QCD-like theories.

For development of numerical techniques we will reproduce the phase diagram of the
two-dimensional model because it has already analytically been solved [Th03]. Then we
will expand it to three dimensions using our developed numerical tools for an investiga-
tion whether inhomogeneous phases will also occur in a two-dimensional space.
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2. The Gross-Neveu model

2. The Gross-Neveu model

One often used tool for research regarding the QCD phase diagram is the usage of e�ective
models that share some symmetries with the full theory, so they are expected to reproduce
some of its characteristic properties. The Gross-Neveu (GN) model, that was introduced
by David Gross and Andre Neveu in 1974 [GN74], retains a discrete chiral symmetry for
massless fermions while staying relatively easy to deal with. We will work on the GN
model in the chiral limit and include the chemical potential via the term γ0µ in the free
Dirac Lagrangian. As an introduction to the properties of the GN model, we do the
Lagrangian formulation and general transformations of the action in d dimensions and
specify di�erent aspects later on in the two and three dimensional case. The GN action
is a sum of the free Dirac action and a four-fermion interaction term with a coupling
constant g to approximate the QCD interaction. In the following we will work in an
Euclidean space-time.

S =

∫
ddx

 N∑
j=1

[
ψ̄j (γµ∂µ + γ0µ)ψj

]
− g2

2

 N∑
j=1

ψ̄jψj

2 (2.1)

Here γµ are the Dirac(or Gamma) matrices, which are famous from the Dirac equation
and the corresponding Lagrangian, and N is our number of di�erent �avors of fermionic
�elds. µ is the chemical potential. The Lagrangian of the GN model is invariant under
a discrete chiral symmetry transformation

ψ → γ5ψ, ψ̄ → −ψ̄γ5. (2.2)

In classical physics we could just minimize the action with respect to ψ̄ and ψ, but in
quantum theory we normally have to compute a whole path integral over all possible �eld
con�gurations in the partition function, which is a di�cult task when the �elds occur in
higher powers than quadratic. For simpli�cation we want to get rid of the four-fermion
interaction via introducing a scalar �eld σ = −g2

∑N
j=1 ψ̄jψj , which represents the chiral

condensate.

Se� =

∫
ddx

 1

2g2
σ2 +

N∑
j=1

ψ̄j
(
γµ∂µ + γ0µ+ σ

)︸ ︷︷ ︸
:=Q

ψj



Z =

∫ ( N∏
i=1

Dψ̄jDψj

)
Dσe−Se�

(2.3)

Now we can integrate over all fermionic �eld con�gurations applying the following formula
for Grasman valued �elds∫

DᾱDα exp

[
−
∫

ddx ddy ᾱ (x)M (x, y)α (y)

]
= det(M). (2.4)
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2. The Gross-Neveu model

Raising the determinant back into the exponent we get with the de�nition λ := N ∗ g2

Se� = N

(
1

2λ

∫
ddxσ2 − ln (det(Q))

)

Z =

∫
Dσe−Se� .

(2.5)

To be able to apply (2.4) in the context of (2.3), we need det(Q) to be real and pos-
itive, which is checked for the 1 + 1-dimensional and the 1 + 2-dimensional GN model
in the following section. With this simpli�cations we apply our large-N limit N → ∞
suppressing any contribution besides the minimum of the e�ective action. So basically,
we have to search for the chiral condensate that minimizes the e�ective action like in the
classical case to get the physical con�guration of σ due to the large-N limit. Notice that
we explicitly search for inhomogeneous phases, so this con�guration should be allowed
to be spatially dependent σ = σ (~x).

The chiral symmetry is now expressed via the chiral condensate σ, that acts like a typ-
ical mass term in quantum �eld theory. Due to the de�nition of σ the chiral symmetry
transformation for 2.5 is

σ → −σ. (2.6)

Hence, the Lagrangian retains its chiral symmetry for vanishing chiral condensate. If we
�nd a �nite value of σ via minimization at a certain phase point, this symmetry will be
broken dynamically.

2.1. Gross-Neveu in 1+1 dimensions

As said before, it is essential to ensure that the determinant of the Dirac operator is real
and positive to get our e�ective action as in (2.5). In 1 + 1 dimensions there is a simple
proof for det(Q) ∈ R without specifying our choice of Dirac matrices. We will look at
the eigenvalue equation for Q, since the determinant of an operator is the product of
its eigenvalues. The eigenvalue equation of the Dirac operator of the 1 + 1 dimensional
GN-model with the eigenfunction f is

Q · f = (γµ∂µ + γ0 ∗ µ+ σ) · f = λf. (2.7)

For our proof we will complex conjugate (2.7).

[(γ0)∗∂0 + (γ0)∗µ+ (γ1)∗∂1 + σ] · f∗ = λ∗f∗ (2.8)

The gamma matrices have to ful�ll Cli�ord algebra

{γµ, γν} = 2gµν12 (2.9)
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2. The Gross-Neveu model

with 12 being the identity in two dimensions, because the spinor space can be reduced
to two components in the two dimensional case. Since the Euclidean and Minkowski
signature are real and diagonal, also γ∗µ (as well as γTµ and γ†µ) generate the Cli�ord
algebra. [Park05, page 3] points out that this implies that γ∗µ are related to γµ by an
unitary similarity transformation in even dimensions, which is unique up to some constant
and preserves the eigenvalues. We de�ne this transformation with

(γµ)∗ = B · γµ ·B−1. (2.10)

One can insert this relation into (2.8)

(B · γ0 ·B−1∂0 +B · γ0 ∗B−1 · µ+B · γ1 ·B−1∂1 + σ ·BB−1) · f∗ = λ∗f∗ (2.11)

Now we can multiply with B−1 from the left to get the Dirac operator Q back on the
left side.

Q ·B−1 · f∗ = (γ0∂0 + γ0µ+ γ1∂1 + σ) ·B−1 · f∗ = λ∗ ·B−1 · f∗ (2.12)

Concluding, this means λ∗ is eigenvalue to the eigenfunction B−1 ∗f∗, if (2.7) is ful�lled.
Now we have to examine two di�erent cases. In case of =(λ) 6= 0 for all λ it is ensured
now that det(Q) ≥ 0 and det(Q) ∈ R as it is a product of a complex conjugated pair of
eigenvalues. If λ is real, we have also ensured that det(Q) is real, but we cannot secure
that B−1 ∗ f∗ 6= f , so it is possible that there exists another real, possibly negative
eigenvalue of the Dirac operator. This means we cannot proof the positivity of det(Q).
However, we never obtained a negative determinant in our numerical computation.

2.1.1. Choice of representation

Since we have not speci�ed our Dirac matrices in the beginning, we will do that in the
following. In 2 dimension we can simply use the from quantum mechanics well-known
Pauli matrices as they ful�ll the Cli�ord algebra in Euclidean space-time (gµν = δµν).

{σi, σj} = 2δij12 (2.13)

As we only need two matrices, we choose γ0 = σ1 and γ1 = σ3. With this set of
Dirac matrices we can represent det(Q) as a simple sum over its eigenvalues, that can
be computed directly, for constant value of chiral condensate via solving the eigenvalue
equation. This is done extensively for three dimensions in 2.2.2, but works analogous in
two dimensions.
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2. The Gross-Neveu model

2.2. Gross-Neveu in 1+2 dimensions

For the three-dimensional GN theory the same proof for det(Q) ∈ R as in two dimensions
does not work when applying an irreducible representation. Searching for an explanation
we take a look at the construction of matrices that ful�ll the Cli�ord algebra in odd
dimensional theories.

With d being a odd number the irreducible representation in d dimensions is build via
combining the Dirac matrices of the (d− 1)-dimensional irreducible representation with
the chirality operator that is famous as γ5 in four dimensions. We use the following
de�nition of the chirality operator in (d− 1) dimensions with an Euclidean signature to
generate a linear independent third matrix

γchiral := i
d−1
2

d−1∏
ν=0

γν . (2.14)

The problem with this set of Dirac matrices,where γ2 := γchiral, is that we are not able
to apply the same argumentation used in 2.1 because we can not simply reproduce the
Dirac operator out of its complex conjugated via inserting the similarity transformation
(2.10) as we get an additional factor i that we also have to complex conjugate. This has
a more mathematical background. The behavior of the additional Dirac matrix under
transformations is studied in [Park05, page 6 and following]. To guarantee the realness
of det(Q) in the same way as in 2.1 one could go into a reducible representation, where
it would work perfectly using the usual representations from four dimensional theories.
This is however unfavorable due to other problems occurring, that are mentioned in the
next section. But although this general procedure fails for the irreducible case, we obtain
nevertheless a real det(Q) in our numerical computation, which forces us to search for
other arguments to justify our result.

2.2.1. Reducible representation

For a �rst investigation we will restrict to spatially constant value of the chiral conden-
sate, choose an explicit set of Dirac matrices and calculate the eigenvalues explicitly,
which will give us a real result. Being uncertain whether the irreducible representation
also leads to a real determinant for inhomogeneous chiral condensate we also explored
reducible representations. Even though we are able to use an irreducible one in our
computation, we will show the connection and di�erences between both representations,
since we can for sure guarantee the determinant in reducible representation, det(Q4),
being real. Therefore, let us have a closer look to the de�nition of irreducibility.

De�nition: A representation of a group in a K-vector space V is irreducible, if V 6= 0
and V and 0 are the only subspaces, which are invariant under the group.

For our matrix representation this means, if our Dirac matrices contain smaller sub-
spaces that also ful�ll the Cli�ord algebra (2.9), we have a reducible representation that

5



2. The Gross-Neveu model

could be broken down to an irreducible one. Obviously most times one is interested in the
irreducible representation because a reducible (4×4) representation doubles the spinor
space and simultaneously creates two di�erent amounts of �avors, which transform dif-
ferently under the Dirac matrices and maybe could produce di�erent physics than our
original system, out of one in�nite amount. Nevertheless we want to create a reducible
one for our model, because we are interested in the connection between both representa-
tions. We can construct a set of 4×4 Dirac matrices out of tensor products with our two
dimensional representations 2.1.1 using the Pauli matrices again. The exact procedure
is given in [Gm18], but we have to be careful as we have to adapt it when using the
Euclidean signature. We end up with

γ0 =

(
σ1 0
0 σ1

)
γ1 =

(
σ3 0
0 −σ3

)
γ2 =

(
σ2 0
0 σ2

)
γ3 =

(
0 σ3

σ3 0

)
. (2.15)

Now we have constructed a set of 4 Dirac matrices. In the following we will only choose
γ0, γ1 and γ2, that we use as a reducible representation for the 1 + 2-dimensional GN
model. These three matrices contain the three Pauli matrices in a block diagonal way.
This fact we can use for an investigation of the connection between det(Q4) and the
determinant in the irreducible representation, det(Q2).

2.2.2. Computation of Dirac determinant

For computation of the determinant, we solve the eigenvalue equation of the Dirac oper-
ator (2.7) for translationally invariant σ. We make a plane wave ansatz for the eigenfunc-
tion, as they are eigenfunction of a continuum derivative as well as of a lattice derivative.(

f1
f2

)
=

(
v1
v2

)
ei(k0x0+k1x1+k2x2) (2.16)

v1, v2 are constants and xi (i = 0, 1, 2) are the three directions in space-time, where x0
denotes the time coordinate. ki denotes the corresponding momentum.
Applying periodic boundary conditions in the two spatial directions and anti-periodic
boundary condition in time direction quantizes the momenta.

k0 =
2π
(
nt − 1

2

)
T

; k1 =
2πnx
L

; k2 =
2πny
L

nt = −Nt + 1, . . . , Nt − 1, Nt; nx = 0, 1, 2, . . . , L− 1; ny = 0, 1, 2, . . . , L− 1

(2.17)

Here L is the spatial extent of our system and T = 2Nt is the temporal extent, taking
into account that we have even and odd modes. We do the calculation with continuum
derivatives for simplicity, but it works analogous for lattices derivatives with the replace-
ment ki → sin (ki).

With this ansatz we can compute the eigenvalues of Q2 in dependence on our momenta
via the characteristic polynomial

det

(
ik1 + σ − λ ik0 + µ+ k2
ik0 + µ− k2 −ik1 + σ − λ

)
!

= 0. (2.18)
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2. The Gross-Neveu model

Solving this quadratic equation in lambda delivers two eigenvalues, which corresponds
to the fact that we wrote out the matrix in spinor space, but not in momentum space.

λ1/2 = σ ± i
√
k20 + k21 + k22 − µ2 − i2µk0 (2.19)

As λ1/2 depend on our momenta, we get

det(Q2) =
∏

k0,k1,k2

λ1λ2 =
∏

k0,k1,k2

[
σ2 − µ2 + k20 + k21 + k22 − 2iµk0

]
=

Nt∏
nt=−Nt+1

L−1∏
nx=0

L−1∏
ny=0

[
σ2 − µ2 +

(
2πnx
L

)2

+

(
2πny
L

)2

+

(
(2nt − 1)π

T

)2

− 2iµ
(2nt − 1)π

T

]

=

Nt∏
nt=1

L−1∏
nx=0

L−1∏
ny=0

[{
σ2 − µ2 +

(
2πnx
L

)2

+

(
2πny
L

)2

+

(
(2nt − 1)π

T

)2
}2

+

{
2µ

(2nt − 1)π

T

}2
]
.

(2.20)

In the last step we shifted the product over nt and made use of the multiplication of com-
plex paired eigenvalues. As det(Q2) is now expressed as a product of squares of absolute
values taken from its eigenvalues, it must be real and positive due to the properties of
the absolute value. By the way, for 1 + 1-dimensional space-time this computation works
the same yielding an analogous result with omitting one term containing the eigenvalue
of one spatial dimension in (2.20).

Using block diagonal representation (2.15), we can additionally show a simple relation
between det(Q4) and det(Q2) for homogeneous σ.

Q4 =


σ + ∂1 ∂0 + µ− i∂2 0 0

∂0 + µ+ i∂2 σ − ∂1 0 0
0 0 σ − ∂1 ∂0 + µ− i∂2
0 0 ∂0 + µ+ i∂2 σ + ∂1

 (2.21)

The starting point is again (2.7) for Q4. As the matrix is in a blockdiagonal form, we
can make two ansatzes for the eigenfunction.

f1 =


v1
v2
0
0

ei(k0x0+k1x1+k2x2) f2 =


0
0
u1
u2

 ei(k0x0+k1x1+k2x2)

vi, ui = const. with i = 1, 2

(2.22)

The determinant factorizes into the determinants of the both 2× 2 blocks that Q4 con-
tains. Applying (2.22) we can replace each derivative with the corresponding momentum.

det(Q4) = det

(
ik1 + σ ik0 + µ+ k2

ik0 + µ− k2 −ik1 + σ

)
det

(
−ik1 + σ ik0 + µ+ k2

ik0 + µ− k2 ik1 + σ

)
(2.23)

7



2. The Gross-Neveu model

Because all components are numbers now, we can conclude due to Sarrus' rule

det(Q4) = det(Q2)
2

=

Nt∏
nt=1

L−1∏
nx=0

L−1∏
ny=0

[{
σ2 − µ2 +

(
2πnx
L

)2

+

(
2πny
L

)2

+

(
(2nt − 1)π

T

)2
}2

+

{
2µ

(2nt − 1)π

T

}2
]2
.

(2.24)

This connection between the reducible representation (2.15) and the irreducible one(2.1.1)
for the translationally invariant condensate supports our numerical �ndings of det(Q2)
being real, as the choice of a reducible representation yields a real determinant even in
case of a spatial dependent condensate.

The following method to show the realness of det(Q2) works also in the spatially de-
pendent case and leads to breaking it down to the symmetry det(Q2(σ)) = det(Q2(−σ)).
Thus, we look again at the complex conjugated eigenvalue equation (2.7) for Q in repre-
sentation of the Pauli matrices (2.1.1), where only one of the Dirac matrices is complex
valued.

(σ1(∂0 + µ)− σ2∂1 + σ3∂2 + σ) · f∗ = λ∗f∗ (2.25)

Multiply with σ2 from the left and from the right and applying the properties of the
Pauli matrices leads to

(σ1(∂0 + µ) + σ2∂1 + σ3∂2 − σ) · f∗ = −λ∗f∗ (2.26)

From this equation we can conclude the relation

λ is eigenvalue to Q2(σ)↔ (−λ∗) is eigenvalue to Q2(−σ).

With this equivalence and the assumption that Q2 has an even dimension we get

det (Q2 (σ))∗ =
∏
i

λ∗i =
∏
i

(−λ∗i ) = det (Q2 (−σ)) . (2.27)

Basically we have broken the condition for realness det(Q2)
∗ = det(Q2) down to the

demand of det(Q2) being an even function in σ. For a full analytical proof for det(Q2) ∈ R
we still have to show

det(Q2(−σ))
!

= det(Q2(σ)) (2.28)

which we have not been able to proof yet. As a numerical test we have computed
det(Q2(σ)) and det(Q2(−σ)) for constant and spatially dependent condensate, which
has been generated via a random number algorithm, and di�erent lattice sizes using a
LU-decomposition for calculation and received the same results within the precision of
double variables used in C programming. Also we computed the phase of det(Q2(σ))
and got a phase factor of zero for every setup tested.
To conclude, we have done several investigations trying to guarantee a real and positive
det(Q), which we were not able to fully proof in a analytical way. Nevertheless, we have
gotten many analytical arguments and hints that help to justify our numerical results.
Therefore, we use the e�ective action (2.5) for computation of the phase diagram.

8



3. Implementation and numerical methods

3. Implementation and numerical methods

The GNU scienti�c library (GSL) is used in our code for several numerical functionalities.
The code base for the two-dimensional model has been provided by Marc Wagner. Calcu-
lations on the FUCHS-CSC high-performance computers of Goethe University Frankfurt
have been conducted for this research. We would like to thank HPC-Hessen, funded by
the State Ministry of Higher Education, Research and the Arts, for programming advice.

In our setup we have periodic boundary conditions in space with spatial lattice extent
L and an anti-periodic boundary in time direction with temporal extent T and the cor-
responding temperature θ = 1

T . We use a hybrid of a plane wave discretization for the
time direction and a naive lattice discretization in space, that obviously causes fermion
doubling as a pure lattice artifact (in detail explained in [GL10]), but this should not
bother us as we already work in the large-N limit. The basis functions for the plane
waves are sin(kntt) and cos(kntt) with knt = (2nt−1)π

T , nt = 1, 2, . . . , Nt.

We want to apply a density for the degrees of freedom (dofs) ρ = number of dofs
lattice size

= 1
in the spatial direction. To have the same density in temporal direction, we choose a mo-
mentum cuto� wcut = π, implying the relation T = 2Nt. As the inverse temporal extent
corresponds to the temperature we have to take more and more modes in account for
computation when wanting to calculate lower temperatures. The coupling constant λ is
set after calculating the temperature θc for µ = 0 and a �xed parameter Nt,c and varying
the coupling until the phase boundary, determined with the second derivative in sigma
of the action as presented in 3.1, occurs at θc. With setting λ for this given parameters,
we ensure a scaling for our temperature computation via modes about the assignment
of Nt,c to θc. This parameter Nt,c that must be set in the code gives the number of
modes, that are used in the computation for this critical temperature, and therefore,
gives the precision of whole temperature computation within the phase diagram. The
lattice spacing at is then given by θc divided by the temporal lattice extent. Later (4) we
will investigate at which choice of parameters facilitate an accurate calculation is possi-
ble. Also it is important to have a spatial volume larger than in time direction, because
in the search for inhomogeneous phase we could get incommensurability e�ects with the
spatially dependent condensate for too small spatial volumes [dFW06, Figure 1]. These
incommensurability e�ects occur besides the standard �nite volume e�ect caused by the
�nite extent of our lattice.

As usual in lattice computation we work in dimensionless units. Thus, at the start
of a computation we go to a small temperature at µ = 0, corresponding to a large cuto�
number for modes Nt,0, minimize the e�ective action and get the value of the chiral
condensate σ0. In the phase diagram we will work in units of this σ0.
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3. Implementation and numerical methods

3.1. Determination of homogeneous boundary

For a �rst investigation we want to produce a homogeneous phase diagram, therefore
we only allow spatially constant values for the chiral condensate. In this case we can
compute the determinant of the Dirac operator via solving the eigenvalue equation with
lattice discretization in spatial direction and a plane wave expansion in time direction as
it has already been presented for the three-dimensional case in 2.2.2. So we can simply
compute the e�ective action (2.5) by implementing this analytical solution. The chiral
condensate has the value σ, that minimizes the e�ective action for given µ and θ. For the
phase diagram we will decide between �rst order boundary, where a discontinuity in the
order parameter occurs, and second order phase boundary, where the order parameter
goes continuously against zero. This di�erence can be visualized by a investigation of
the e�ective action near the phase boundary. Thus, we plot the e�ective action of the
1 + 1-dimensional GN model against the value of the chiral condensate for parameters
corresponding to both phases 3.1. In the chirally broken phase the e�ective action looks
like a Mexican hat function, this means the minimum is located clearly at a �nite value
of σ while Se� (σ = 0) is a maximum. However, in the restored phase we have a parabola-
like behavior with a minimum at vanishing σ. The distinction between the both orders
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(b) Chirally restored phase

Figure 3.1: E�ective actions of 1 + 1-dimensional GN model in each phase

of boundaries is obtained by plotting the action nearby the left side of the boundary,
because we have to expect di�erent behavior of the e�ective action for �rst and second
order. This follows from the physical value of σ being computed via minimization of Se�.
At the �rst order boundary in the Mexican hat form a maximum emerges (�g 3.2(a)).
The maximum gets closer to the minimum when raising the chemical potential from the
chirally broken phase to the restored phase until the functional behavior changes to a
parabola, which is when σ suddenly changes from a �nite value to zero at the boundary.
At second order boundary we obtain a continuous deforming of the Mexican hat (�g
3.1(a)), when raising chemical potential, so that the minima moves continuously against
zero guaranteeing the continuity of the condensate at the boundary.
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Figure 3.2: E�ective actions of 1 + 1-dimensional GN near phase boundary

Given this analysis of e�ective action for both boundaries we can implement methods
to identify whether a �rst or a second order boundary occurs. The determination of
the phase boundary always starts at a given temperature, so we have to search for the
chemical potential at which the phase boundary is located. The second order phase
boundary can be determined via calculating the second derivative with respect to sigma
of the e�ective action at σ = 0. At the phase boundary ∂2

∂σ2Se�
∣∣
σ=0

will change sign,
as zero is the minimum of Se� in the chirally restored phase, but a maximum in the
chirally broken phase, so we can determine the phase boundary via a bisection where we
calculate ∂2

∂σ2Se�
∣∣
σ=0

iterative. The calculation of the second derivative has been done
analytically, because we already computed Se� like in 2.2.2, due to better precision of
the result. If we have found a second order phase boundary at µb, we will check for �rst
order boundary. Therefore we use a minimization algorithm for Se� of GSL to �nd the
physical value of σ for a tuple (µ, T ). As a condition for �rst order boundary we can now
determine whether σ(µb − ε) 6= 0 and σ(µb + ε) = 0, with properly chosen ε. For a solid
proposition of the choice of ε more research is needed.

3.2. Instability analysis for inhomogeneous boundary

Computing the inhomogeneous phase boundary takes a lot more e�ort than for the ho-
mogeneous, as we allow spatially dependent σ (~x). To produce the exact inhomogeneous
phase boundary, we have to treat the chiral condensate as a spatially dependent func-
tion. Putting it on the lattice, the in�nite amount of degrees of freedom is reduced to a
�nite number of independent variables σi, where i = 0, 1, . . . , Ld− 1, when d is the num-
ber of spatial dimensions. Consequently, the e�ective action on the lattice is a function
working on the space of independent variables σi. For the correct phase boundaries we
would therefore need a minimization in these σi. This minimization in several variables
is a huge numerical (and analytical) task that is addressed in the mathematical �eld of
optimization and has not been applied yet.
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3. Implementation and numerical methods

In following studies an implementation of such an minimization algorithm will be re-
quired. Instead we do an instability analysis for σi = 0 ∀i to determine the boundary
between chirally restored and inhomogeneous phase. Due to the requirement on huge
computation power of this analysis, most inhomogeneous results presented have been
conducted on FUCHS-CSC high performance computers.

As a �rst step for the analysis we need to be able to compute the second derivative
of the e�ective action, which leads to the second derivative of ln(det(Q)) in σ. For
ln(det(Q)) we compute each matrix element of Q numerically and then use GSL for a
LU-decomposition, that is useful for calculating ln(det(Q)) directly via the libraries func-
tions. The Dirac operator is in this computation represented by a product of matrices,
as we factorize out the number of modes Nt, since our condensate is not time dependent.
We need the Hessian matrix Hij with matrix elements ∂2

∂σi∂σj
Se� to investigate instability

of the vanishing chiral condensate. A derivative ∂
∂σi

working on ln(det(Q)) can be calcu-

lated via the method of �nite di�erences, where we vary the value of σ at the lattice point
i in positive and negative direction and calculate the di�erential quotient in ln(det(Q)).

As this computation is very expensive in runtime due to the several calls of the ln(det(Q))-
function, we want to exploit symmetries in the Hessian to save some time. For a detailed
discussion of computation time and exploitation of symmetries for 1 + 1- and 1 + 2-
dimensional GN model see 3.3.2. Now we are able to calculate the Hessian matrix, so
we can do an instability analysis via calculation the eigenvalues of Hij for σi = 0 ∀i.
This is also done with the functionalities of GSL. If we �nd one negative eigenvalue in
this procedure, this means σ = 0 is not a stable minimum and we are able to �nd a
direction in the space of σi, of which the e�ective action is a function that leads to a
lower e�ective action. The form of this vector can be read of the eigenvectors that cor-
respond to the negative eigenvalue. Keeping this in mind, we are able to �nd the phase
boundary between the chirally restored phase and the inhomogeneous phase. For two
dimensions it is a little bit easier to evaluate the result of this method as we are aware
of the analytical solution 4.1. As for small chemical potential we �nd the chirally broken
phase, we can �nd the value of µ where σ = 0 starts to be a stable minimum giving us
the phase boundary between the spatially dependent and the chirally restored phase via
bisection for given temperature. We are not able to �nd the other phase boundary from
the chirally broken to the inhomogeneous phase, since the instability analysis can only
be done for vanishing chiral condensate, which is not a stable solution in both phases.
This recquires the development of better techniques. Nevertheless, as we are able to
compute the homogeneous phase diagram, we can at least compute one arm of the phase
boundary and estimate the region of the inhomogeneous phase.
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3. Implementation and numerical methods

3.3. Runtime analysis

3.3.1. Discussion of computation time

As we want to receive accurate results arose from large enough lattice parameters while
avoiding huge runtimes, we explore the computation time behavior. We have to di�er-
ence between the homogeneous and inhomogeneous phase diagram, since they work with
totally di�erent methods. The homogeneous calculations work basically with arithmetic
operations iterated with loops, whose length depend on our parameters Nt and L as the
eigenvalues of the Dirac operator depend on spatial and temporal momenta. In conse-
quence, computation time depends linear on spatial extent and mode number Nt in two
dimensions and in the three-dimensional case linear on the mode number and quadratic
on the lattice extent. Obviously, we need to compute the same number of points to
compare the computation time directly, but it can also be interesting to see di�erences
when going further to large mode numbers corresponding to low temperatures. Nt,max is
the maximum number of modes, for which a boundary is calculated.

We see from the data in table 1 that the calculation of large mode cuto� takes not
much more time than for small mode cuto�, for example halving the number of modes
for critical temperature. But for set critical mode number it takes signi�cantly more time
to calculate the half of points, that corresponds to a lower temperature. The expected,
linear dependence on the spatial extent for the 1+1-dimensional model is nearly ful�lled.

Nt,c Nt,max Spatial
extentL

Computation time [sec]

8 24 240 3.11 · 100

8 48 120 8.04 · 100

8 48 240 1.69 · 101

8 48 480 3.25 · 101

16 56 240 1.70 · 101

Table 1: Computation time for homogeneous phase diagram for 1 + 1-dimensional GN
model

From table 2 we obtain the quadratic dependence on the spatial extent of our lattice
in good approximation. Also the calculation including larger mode numbers increases
considerably compared to smaller mode number at �xed critical mode number Nt,c. We
save a small amount of time, when calculating the same amount of boundaries with a
smaller critical mode number, but the computation time saved is minor to the possible
loss in precision of our computation.
For the inhomogeneous case, we conducted some calculations on FUCHS-CSC high per-
formance computers and others on regular desktop computers. For the work on FUCHS-
CSC we parallelize our code in computing single phase points and run tasks parallel on
di�erent CPU cores to produce a phase diagram. To make a comparison between both
methods possible, we compare computation time of single phase points.
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3. Implementation and numerical methods

Nt,c Nt,max Spatial
extentL

Computation time [sec]

10 60 60 8.36 · 102

10 60 360 2.98 · 104

10 30 60 1.83 · 102

4 24 60 1.61 · 102

4 24 120 6.30 · 102

Table 2: Computation time for homogeneous phase diagram for 1 + 2-dimensional GN
model

For more detailed runtime analysis for the computation of the Hessian matrix look at
the following section. Of course, we use in every computation the same accuracy for the
bisection determining the boundary.

Nt,c Nt Spatial
extentL

Computation time [sec]

4 16 80 7.60 · 102

8 20 80 9.05 · 102

8 20 160 2.32 · 104

8 20 240 1.24 · 105

8 40 160 4.57 · 104

8 40 240 2.48 · 105

Table 3: Computation time of one phase point for 1 + 1-dimensional GN model

We see a linear dependence in the mode number Nt in both tables 3 and 4, that could be
expected as the determinant factorizes into a product, where each factor corresponds to
one mode. The values show an order of dependence on the lattice extent between O

(
L4
)

and O
(
L5
)
in the data of the two-dimensional model. For table 4 we could guess an

approximate dependence of O
(
L8
)
. This would su�ciently �t our expectation described

in detail for the computation of a single Hessian matrix in 3.3.2. Because the data shows
no clear order of dependence, a more solid investigation is needed.

Nt,c Nt Spatial
extentL

Computation time [sec]

4 12 6 9.93 · 101

4 12 8 8.02 · 102

4 6 10 6.64 · 102

4 6 16 1.55 · 105

4 12 16 3.10 · 105

4 6 20 8.66 · 105

Table 4: Computation time of one phase point for 1 + 2-dimensional GN model

14



3. Implementation and numerical methods

3.3.2. Application of symmetries to the Hessian matrix

The computation of the Hessian matrix, that is iterated several times in our code for the
calculation of the phase diagram, takes a large amount of computation time. Compared
to this huge computational e�ort the calculation of eigenvectors and eigenvalues is quite
fast. Therefore, saving as much runtime as possible via exploiting all symmetries of our
system is required. For every entry in the Hessian matrix we have to calculate the second
derivative of ln(det(Q)) via �nite di�erence. The calculation of ln(det(Q)) works with a
LU-decomposition, which has a computation time behavior of third order of matrix size.
For the two-dimensional case this means O

(
L3
)
, for three dimensions O

(
L6
)
. Now we

will explore the dependence on lattice size of the amount of calls of the function, that
calculates the second derivative of ln(det(Q))). For one spatial dimension the exploited
symmetries are parity and the translation invariance of the Hessian matrix. So we have
to only really compute half of the �rst row of the Hessian and match the rest of its
entries with the computed values. This reduces the dependence of call time on the
lattice size from O

(
L2
)
to O (L). In two spatial dimensions we are also able to apply

the translational and parity invariance for both spatial directions. Additionally we can
use the isotropy of the system that halves our runtime. Here we �nd a reduction from
O
(
L4
)
to O

(
L2
)
for the call time of the ln(det(Q))-function.

Concluding, the whole runtime for the Hessian has a dependence of O
(
L5
)
reduced to

O
(
L4
)
via symmetries in the two-dimensional model and of O

(
L10
)
reduced to O

(
L8
)

for three dimensions. In three dimensions, this leads to huge computation times for
lattice sizes, that could produce a phase transition nearby the continuum case. Hence,
we have to accept signi�cant �nite volume e�ects according to the current situation. For
illustration we compare the runtime of one Hessian matrix in both models at the same
phase point for various lattice sizes without and with making use of symmetries. The

Dimension Lattice size Computation time
without exploiting
symmetry [sec]

Computation time
with exploited sym-
metry [sec]

1 + 1 40 1.07 · 102 1.42 · 100

1 + 1 60 6.62 · 102 5.61 · 100

1 + 1 80 2.50 · 103 1.58 · 101

1 + 2 4 1.93 · 101 3.26 · 10−1

1 + 2 6 6.69 · 102 4.48 · 100

1 + 2 8 9.59 · 103 3.57 · 101

1 + 2 16 4.68 · 103

Table 5: Comparison of computation time for Hessian matrix for both GN-models
Nt,c = 4, µ = 0.2σ0, θ = 1

12∗σ0

data in table 5 shows the theoretically expected behavior within some deviation in the
three-dimensional case, that results from the small test parameters causing lower orders
of L to also make a signi�cant contribution. These list of our �rst measurements shows
that the computation time and power can exceed many weeks easily when increasing
lattice parameters. To avoid this, we have to consider several options as mentioned in 5.
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4. Results

In this section we will present the results of our investigation on the phase diagrams
of 1 + 1- and the 1 + 2-dimensional version of the GN model in the (θ, µ)-plane. Both
models will be studied �rst in translationally invariant calculation and examined in a
precision test with continuum results. Then the inhomogeneous result and the form of
spatially dependent condensates will be presented. First, we show the two-dimensional
results used as a test on our numerical methods.

4.1. 1+1-dimensional Gross-Neveu model

In the two-dimensional version of the problem the full phase diagram has already been
computed analytically in 2003 [Th03]. This solution we will use as a test for our nu-
merical computation methods. The order parameter m in this diagram breaks the chiral
symmetry dynamically and therefore, corresponds to our chiral condensate.

0

0.2

0.4

0.6

0 0.4 0.8 1.2

Figure 4.1: Phase diagram of the two-dimensional GN model, with the dashed line
being the former solution for the homogeneous case [Th03]

From point A to B we have a second order boundary between the translationally invariant
and the chirally symmetric phase. B is called tricritical point, because the three phases
are at equilibrium at B. The dashed line is the old phase boundary from a earlier transla-
tionally invariant calculation of the phase diagram and symbolizes a �rst order boundary
to the chirally symmetric phase. The crystal phase mentioned here is the spatially de-
pendent phase found in 2003, in which the condensate's shape has a kink-antikink shape.
The same solution with some �nite size artifacts was also found by [dFW06].
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4. Results

4.1.1. Precision of mode calculation

First, we will investigate the precision of our mode computation in dependence on our
lattice parameters. This is done by a comparison of the critical temperature θc of the
phase boundary at vanishing chemical potential with the analytical value. In conse-
quence, we can investigate the precision of our temperature calculation via comparison
with the analytical value θc, analytical = 5.66933 · 10−1σ0.

Nt,c coupling con-
stant λ

lattice distance
at[σ0]

θc [10−1σ0] Percentage deviation
from θc, analytisch

4 0.611 7.15 · 10−2 5.71997 0.893
6 0.526 4.76 · 10−2 5.70741 0.671
8 0.480 3.56 · 10−2 5.69623 0.474
10 0.449 2.84 · 10−2 5.68932 0.353
12 0.427 2.37 · 10−2 5.68484 0.274
16 0.396 1.77 · 10−2 5.67946 0.178
32 0.337 8.90 · 10−3 5.67260 0.058

Table 6: Precision of mode calculation for 1 + 1-dimensional GN-model with spatial
lattice extent L = 480

As a check, we do a linear approximation on the behavior of θc on dependence on the
lattice spacing in time at. This approximation is used to calculate the expected value for
at = 0, which is the limit to the continuum space-time, to compare with the analytical
value of 4.1.
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Figure 4.2: Continuum limit for critical temperatur at µ = 0, the black points are the
data from 6, the red line shows the linear �t to the data
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With this limit we can evaluate whether our discretization of space-time has e�ected
the physics of our theory. The constructed value from the linear approximation of data
di�ers from the analytical solution within 0.09%.

4.1.2. Homogeneous phase diagram

In the translationally invariant case we can apply, compared to the inhomogeneous case,
a big lattice size both in time and spatial direction, because we only have to minimize in
one variable and use our analytical simpli�cation as presented in 2.2.2 . This leads to a
relatively small runtime (see 3.3.1 ).
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Figure 4.3: Phase diagram of the two-dimensional GN model, numerical results in
comparison the homogeneous case from 4.1

As the blue line is the data extracted from the analytical solution, we see that the correct
phase diagram is reproduced. We left out some data around the blue point that is the
analytically found tricritical point to show that we also reproduced the exact same point.
Above it was also explained why we cannot cover the phase boundary at θ = 0, because
the number of modes we have to include in our calculation goes asymptotically against
in�nity for θ → 0. Hence, measured by our expectation the test of our implemented
functionalities for �nding the homogeneous phase boundary was successful.
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4.1.3. Inhomogeneous phase boundary

As the inhomogeneous phase diagram's computation time depends a lot on the lattice
extent, we need to scale down the external parameter L and Nt,c, because already for
smaller lattice sizes the calculation requires a lot more computation power and time (see
3.3.1 ). To ensure that the numerical errors do not emerge, the calculation have been
conducted on the FUCHS-CSC high performance computers.
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Figure 4.4: Inhomogeneous phase boundary of the two-dimensional GN model between
chirally restored and inhomogeneous phase via instability analysis

Although the computation has been parallelized for each phase point, we �nd small in-
commensurability e�ects in regions of higher chemical potential, as described by [dFW06],
from the �nite spatial volume with the current setup resulting in small �uctuations in
the boundary. Nevertheless, we can at least reproduce a phase limit nearby analytical
solution. If we applied an even larger L, the rest of these incommensurability e�ects
would vanish and we get a phase boundary identical with the analytical solution up to
small errors in temperature calculation caused by our mode calculation with �nite mode
number. We also want to investigate the form of our chiral condensate in this region. Al-
though we have not minimized the e�ective action, we can guess a direction which leads
to a smaller action than the σ = 0 solution by the form of the eigenvectors corresponding
to the negative eigenvalues.
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Figure 4.5: Eigenvector of Hessian matrix corresponding to negative eigenvalue

In di�erent regions the eigenvectors have a wave form but the wavelength di�ers with the
chemical potential. In �gure 4.5 (a) we obtain a wavelength of 48at, while for µ = 1.2σ0
we get a wavelength of 22at. Since we obtain several eigenvectors at one point, we also
get di�erent wavelengths. But in general, our investigations reveal that the wavelength
gets shorter when increasing the chemical potential.

We also check the form of eigenvectors in regions that cross the phase boundary of the
inhomogeneous to the chirally broken phase. Here we obtain eigenvectors that contain
the same value, but also vectors that behave like 4.5 with various wavelengths. As we
can now use the eigenvectors as input for a computation of the action, we can compare
the e�ective actions of both forms. At a certain chemical potential, the vectors with
the same entries will have a lower action. This is no method to produce the missing
boundary, as the eigenvectors only give a direction in the σ-vectorspace, that lowers the
value of the e�ective action. They are not the solution of an exact minimization of the
problem and therefore, are not suitable to compute the correct phase boundary. A true
minimization is necessary to obtain the exact same phase boundary as [Th03]
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4.2. 1+2-dimensional Gross-Neveu model

For the three-dimensional there also exists an analytical solution for the translationally
invariant condensate from [Url03], that we can compare with our computation.
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Figure 4.6: Phase diagram of the three-dimensional GN model for translationally
invariant condensate in units of vacuum-fermion-mass (corresponds our σ0) [Url03]

Because the original data from [Url03] is not available, we will compare our homogeneous
solution via measurement in relation to the diagrams size to check our data with the
diagram. As mentioned by [Url03, page 35], we �nd that the tricritical point, at which
the order of boundary changes for �nite chemical potential for two dimension, is located
at µ = 0. Consequently, the whole boundary is of �rst order besides the tricritical point,
where we �nd a boundary of second order.

4.2.1. Precision of mode calculation

Again we investigate the precision of our mode calculation via the analytical solution
of the critical temperature at µ = 0 and a continuum limit. Therefore, we compare
to [Url03]

θc, analytical =
1

2 ln(2)
≈ 0.721348σ0.

Applying an adequate continuum limit for the data in table 7 is not possible, because it
behaves not like a linear or quadratic function in the lattice distance. This is a result
of several numerical errors, such as non-trivial cuto� e�ects, rounding error and other
numerical errors, that have not been investigated yet. For sure, these errors have to
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Nt,c coupling con-
stant λ

lattice distance at θc [10−1σ0] Percentage deviation
from θc, analytisch

4 1.02 · 100 8.97 · 10−2 7.17305 0.560
6 9.85 · 10−1 6.06 · 10−2 7.24820 0.481
8 9.67 · 10−1 4.54 · 10−2 7.26053 0.652
10 9.57 · 10−1 3.63 · 10−2 7.26006 0.646
12 9.50 · 10−1 3.02 · 10−2 7.25658 0.597
16 9.42 · 10−1 2.27 · 10−2 7.25033 0.511
24 9.29 · 10−1 1.51 · 10−2 7.23824 0.343

Table 7: Precision of mode calculation for 1 + 2-dimensional GN-model with spatial
lattice extent L = 300

be studied to ensure a more precise calculation. However, we see that for all setups in
table 7 the calculation is within one percent of the analytical solution which should be
su�cient for our purposes, since we want to explore the phase diagram at �rst.

4.2.2. Homogeneous phase diagram
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Figure 4.7: Phase diagram of the three-dimensional GN model for translationally
invariant condensate, numerical result

By comparison with 4.6 we see the same phase diagram reproduced within numerical
errors of around 1% in both chemical potential and temperature. This was tested by
measuring the position of the boundary in relation to the size of both diagrams for several
points resulting in a precision within one percent due to measuring errors. Notice that the
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second order disappears completely except to the µ = 0 point and a �rst order transition
dominates the boundary. This is of interest, as in the two-dimensional case we see that
the �rst order boundary disappears completely, when allowing spatial dependence for
the condensate, and instead a boundary to the inhomogeneous phase comes up. With an
instability analysis we can provide a �rst investigation of inhomogeneous phases in three
dimensions.

4.2.3. Inhomogeneous phase boundary

For these computations we work with less precision in our bisection to save some compu-
tation time. The calculated value of the chemical potential, where the boundary occurs,
is within a precision of 0.05σ0. Due to the enormous requirement of our code on compu-
tation power and time the diagram su�ers from �nite volume e�ects anyway, that result
from small spatial and temporal extent. To justify that the discovery of instability for the
chirally restored solution at large chemical potential is not just an artifact of our small
lattice, we explored several lattice con�guration. Nevertheless, the results should not
be considered as exact phase diagrams, but as a �rst investigation of the region, where
inhomogeneous phases occur. We confront the inhomogeneous result with the homoge-
neous ones for each setup to get a better idea of the form of the inhomogeneous phase in
the (θ, µ)-plane. As we want to have a impression of the region, where inhomogeneous
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Figure 4.8: Inhomogeneous phase boundary of the three-dimensional GN model
between chirally restored and inhomogeneous phase via instability analysis

phases occur, we also plot the homogeneous boundaries for the same lattice. Working on
small lattice sizes also the homogeneous results su�er from �nite volume e�ects that also
cause a change in the order of the boundary at some points. For slightly larger spatial
extent the instability analysis also yields a phase boundary in the same region as in 4.8.
(b). Since we are only able to work on small volumes, it is an important task to ensure
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Figure 4.9: Inhomogeneous phase boundary of the three-dimensional GN model between
chirally restored and inhomogeneous phase via instability analysis for 4× 16 lattice

that the found inhomogeneous structures are no pure artifacts of lattice discretization
and the small volume box. Thus, we look at the eigenvectors corresponding to negative
eigenvalues. This is done on the 4× 16 lattice. We �nd di�erent types of con�gurations
that lower the action compared to its value for vanishing σ. We examine the eigenvec-
tors at both phase boundaries and in the middle of the region that we suspect be the
inhomogeneous phase. We suspect some of the found eigenvectors to be lattice artifacts
as they jump from their maximum value to their minimum between adjacent points.
Here we present some eigenvectors we suspect to survive in a continuum calculation.
The selection of this con�gurations is based on avoidance of modulations, in which the
condensates value changes in a way that seems unlikely to be realized in a continuous
space, and the knowledge of previous work [Url07, page 42], where a one-dimensional
stripe ansatz has been found to have the same energy as the translationally invariant
ansatz. This choice is also made out of intuition and should be con�rmed with a real
minimization algorithm in the future. Our �gures visualize the value of the condensate
in a map, where the color, that a point shows, corresponds to the value in units of σ0.
All con�gurations are plotted in the appendix A.1.
The �gure 4.10 (a) shows a one dimensional modulation, that probably corresponds to
the analytical stripe ansatz mentioned above. Also we �nd some two-dimensional mod-
ulations, where the condensate forms some sort of cupolas. For lower chemical potential
the eigenvalues di�er a bit. The stripe form appears in smaller wavelength 4.11 and
some of the more complicated structures do not occur anymore. The cupola modulations
disappears near the boundary to the broken phase.
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(a) stripe modulation

Nt = 6 L = 16 µ = 6σ0
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(b) cupola modulation

Figure 4.10: Candidates for the form of the chiral condensate in the inhomogeneous
phase
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Figure 4.11: Stripe modulation, smaller µ
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5. Conclusion and Outlook

We start to develop numerical methods for the investigation of phase diagrams on the
two-dimensional Gross-Neveu model. The implemented phase boundary determination
works well in the homogeneous case. The inhomogeneous phase is determined by an
instability analysis of the chirally restored solution, since we are well aware of the homo-
geneous phase boundary and therefore, could perfectly identify the boundary between
chirally restored and inhomogeneous phase. The other boundary to the chirally broken
phase could not be calculated but one can guess its position out of the eigenvectors oc-
curring in the instability analysis in this region. For the three-dimensional model we
could reproduce the same phase diagram with translationally invariant condensate as
in [Url03]. Allowing translationally asymmetric con�gurations for the chiral condensate
we �nd indications of a new inhomogeneous phase. In this region spatially dependent
con�gurations, for example one-dimensional and cupola shaped modulations, that are
found by instability investigation, lead to lower actions than the vanishing condensate.
These results su�er from �nite volume e�ects, since calculations with larger lattice pa-
rameters exceed a computation time of many weeks.

First of all, it is important to con�rm our inhomogeneous boundary results in the 1 + 2-
dimensional GN model with larger lattice extent. Hence, we have to reduce the order
of dependence on the lattice size with better implementation methods to enable more
realistic calculations. This could be done by restricting to the one-dimensional modula-
tion of the condensate, although we would ignore several modulations depending on both
spatial directions. It is very important to implement a minimization algorithm in the
homogeneous phase. This would allow us to compute the real phase boundary and at the
same time to study the physical con�guration of the condensate in the inhomogeneous
phase. After �nding this con�guration we would like to explore its behavior for variation
of chemical potential and temperature within the phase.

When these investigations are �nished, we would like to extend our studies of inho-
mogeneous phases to other models, for example in consideration of isospin or strangeness
chemical potential. Another model of interest is the Nambu-Jona-Lasinio (NJL) model.
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A.1. Inhomogeneous eigenvectors of Hessian matrix for 1 + 2 dimensions

In the three-dimensional GN model the instability analysis via Hessian matrix of the chi-
rally restored solution delivers several possible directions that lower the action compared
to the vanishing condensate. Some of these eigenvectors seem to be lattice artifacts, oth-
ers could also survive in a continuum calculations. For completeness all types of found
eigenvectors for Nt = 6 and µ = 1.5σ0, 4σ0, 6σ0 are presented here. Our �gures visualize
the value of the condensate in a map, where the color, that a point shows, corresponds
to its value in units of σ0.
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(a) stripe modulation, long wavelength
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(b) waves in one direction, jumping from
maximum to minimum value on the other
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(c) huge absolute values are together, jumping
from maximum to minimum value
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(d) stripe modulation
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(e) probably a lattice artifact
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(f) waves shifted against each other

Figure A.1: Form of the chiral condensate in the inhomogeneous phase implied by the
eigenvectors of the Hessian matrix, �gures a, b, c for µ = 1.5σ0 & d, e, f for µ = 4.5σ0
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(a) waves in one direction, shifted against each
other
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(b) complex structure, jumping from maximum to
minimum value on neighbored points
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(c) complex structure

Nt = 6 L = 16 µ = 6σ0
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(d) sort of diagonally shifted waves huge value
di�erences in neighbored points
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(e) points with huge absolute value collected
together
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(f) jumping from maximum to minimum value,
probably lattice artifact

Figure A.2: Form of the chiral condensate in the inhomogeneous phase implied by the
eigenvectors of the Hessian matrix, µ = 6σ0
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