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Abstract

At small lattice spacing and fermion mass QCD simulations are expected to become

stuck in a single topological sector. Observables evaluated in a fixed topological sector

differ from their counterparts in full QCD, i.e. at unfixed topology, by volume dependent

corrections. These corrections are investigated in the two-flavor Schwinger model, which

is in several aspects similar to QCD, using Wilson fermions. The attempt is made to

remove these corrections by suitable extrapolations to infinite volume.
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Chapter 1

Introduction

At small values of the lattice spacing QCD simulations on the lattice are expected to

suffer from frozen topology independent of the quark discretization. The reason is that

gauge link configurations belong to different topological sectors, which are separated

by barriers of rather large Euclidean action. Choosing a smaller value for the lattice

spacing increases these barriers, until standard Hybrid Monte Carlo (HMC) simulation

algorithms are not anymore able to frequently tunnel through these barriers. Then a

simulation can get stuck in a certain topological sector for a long period of time. In this

case computed observables are plagued by corresponding systematic errors (cf. e.g. [1]

and references therein). When using overlap fermions topology freezing is even observed

at rather coarse lattice spacings [2]. A possible solution to these problems is to restrict

computations to a single topological sector, either by sorting the generated gauge link

configurations with respect to their topological charge or by directly employing so-called

topology fixing actions (cf. e.g. [3–5]). In a second step systematic effects due to topol-

ogy fixing need to be removed by suitable extrapolations. Corresponding expressions

have been derived [6, 7] and tested in simple models, i.e. in the Schwinger model [8] and

in quantum mechanics [9].

In this work computations are performed in fixed topological sectors in the Schwinger

model with Wilson fermions. In contrast to e.g. overlap fermions, they are computa-

tionally much cheaper and therefore allow to generate lattice results for many different

topological sectors and spacetime volumes. In addition to the pseudoscalar meson mass

the static qq̄ potential is also studied.
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2 Chapter 1 Introduction

This work is divided into 5 chapters and one appendix chapter. The main part of this

work starts in the second chapter which contains the theoretical foundations. At first

the most important points concerning the Schwinger model which are relevant for the

investigations are pointed out. Afterwards the theoretical concept of the topological

charge in the continuum, as well as on the lattice is explained which is one of the

basic principles the computations are based on. In the last section of the theoretical

foundations a method will be presented which allows to remove the aforementioned

systematic effects by extrapolations. Chapter three contains a concise presentation of

the Hybrid Monte Carlo (HMC) algorithm used for this work, including the implemented

optimization methods. Chapter four is about the computations, as well as the results

and ends with a discussion of the possible sources of errors. Chapter five concludes this

work and contains and a brief outlook on what can be done in order to improve the

method presented during the previous chapters. The Appendix contains the derivation

of the topological charge and of the equation which is central to this work. Furthermore

it will be explained in which way hadron masses have been computed.



Chapter 2

Theoretical Foundations

2.1 The 1 + 1−Dimensional Schwinger Model (QED2) with

Nf = 2 Flavors of Fermions

2.1.1 The Schwinger Model in the Continuum

The Schwinger Model is a well known toy model for QCD since the theories share

several interesting features with each other. In Euclidean space-time the Lagrangian of

the model reads:

L(ψ̄, ψ,Aµ) =

Nf∑
f=1

ψ̄(x)(f)
(
γµ(∂µ + igAµ(x)) +m

)
ψ(x)(f) +

1

4
Fµν(x)Fµν(x). (2.1)

In a 1+1-dimensional spacetime there are only three anti commuting γ - matrices which

can be realized in terms of the Pauli σ matrices:

γ1 = σ1 =

(
0 1

1 0

)
, γ2 = σ2 =

(
0 −i
i 0

)
γ5 = σ3 =

(
1 0

0 −1

)
. (2.2)

The U(1) gauge theory in two spacetime dimensions allows for topologically nontrivial

configurations which are similar to instantons in 4-D Yang-Mills theory. Its low lying

states contain a rather light iso-triplet which as ”quasi-Nambu-Goldstone bosons” can

be seen as the pions of this model [10]. One of the most important properties of the

model is fermion confinement [11, 12]. Furthermore the Schwinger model is a super

renormalizable theory which leads to an absence of the running coupling and hence the

bare coupling g does not need to be renormalized.

3



4 Chapter 2 Theoretical Foundations

2.1.2 The Schwinger Model on the Lattice

In this work the Schwinger model (2.1) is simulated on a periodic spacetime lattice

with N2
L lattice sites which corresponds to a spacetime extension of L = NLa where

a is the lattice spacing and V = L2 the spacetime volume. As usual all dimensionless

quantities are expressed in units of a and denoted by a ”ˆ” symbol, e.g. the dimen-

sionless gauge coupling reads ĝ = ga and the dimensionless mass is m̂ = ma. One can

approach the continuum limit by increasing NL while keeping the dimensionless ratios

gL = ĝNL and MπL = M̂πNL fixed (Mπ denotes the mass of the aforementioned quasi

Nambu-Goldstone bosons, i.e. the pion mass). This requires to decrease both ĝ and M̂π

proportional to 1/NL by sending a → 0 (for the latter m̂ has to be adjusted appropri-

ately). In the Schwinger model on the lattice usually the dimensionless squared coupling

constant β = 1/ĝ2 is used instead of the coupling ĝ.

Furthermore the Wilson plaquette gauge action has been employed for this work

SG[U ] = β
∑
P

[
1− 1

2
(UP + U †P )

]
= β

∑
P

[1− Re UP ] . (2.3)

UP denotes an elementary plaquette which is given by a product of link variables

UP = Un,1Un+1̂,2U
†
n+2̂,1

U †n,2, (2.4)

with the gauge links Un,µ ∈ U(1)

Un,µ = eiĝAn,µ , U †n,µ = Un+µ,−µ, (2.5)

where n labels the lattice sites with space-time coordinates (x, t) and µ = 1, 2 are the

directions on the two dimensional lattice. Using eq.’s (2.3) - (2.5) UP can be expressed

in terms of the discretized field strength tensor

UP = eiĝa
2F̂12 , (2.6)

with

F̂12 =
1

a

((
A2((n+ 1̂)a)−A2(na)

)
−
(
A1((n+ 2̂)a)−A1(na)

))
(2.7)

which is relevant for the definition of the topological charge on the lattice presented in

section 2.18.
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2.1.3 Wilson Fermions

As briefly mentioned in the introduction all the simulations were performed with Wilson

fermions which are quite cheap to simulate. The choice of Wilson fermions implies the

use of the Wilson-Dirac operator. The gauge invariant expression for Nf = 2 flavors

reads

Dn,m
W = (m0 + 2r)δn,m −

1

2

∑
µ

(
(r − σµ)Un,µδn,m−µ̂ + (r + σµ)U †m,µδn,m+µ

)
. (2.8)

Thus the following gauge invariant action is obtained:

SW =(m0 + 2r)ψ̄mψm

− 1

2

∑
µ,m

(
ψ̄m−µ̂(r − σµ)Um−µ̂,µ ψm + ψ̄m+µ̂(r + σµ)U †m,µ ψm

)
(2.9)

For this work the Wilson parameter was chosen as r = 1. Due to the Wilson term an

explicit chiral symmetry breaking occurs which causes the need for additive renormal-

ization of the fermion mass according to

mf = m0 −mc. (2.10)

The bare fermion mass m0 is the parameter to be chosen for simulations with Wilson

fermions. The critical mass mc can be obtained by suitable extrapolations [13].

2.2 Topology in QED2

2.2.1 Topological Charge in QED2

This section gives a short presentation of topological charge. A much more detailed

discussion, in particular for QED2, can be found in [12]. The topological charge Q

which is an integer valued functional for classical, differentiable gauge fields can be seen

as a winding number, carried by a pure gauge winding Q−times around a compactified

space at time equal plus infinity. In QED2 it is slightly different compared to the analog

in 4D Yang-Mills theory.
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The expression for the 2D U(1) version is

Q =
g

4π

∫
d2x εµν Fµν , (2.11)

with the field strength tensor

Fµν = ∂µAν − ∂νAµ , (2.12)

while the more complicated expression in the case of 4D SU(2) reads

Q =
g2

16π2

∫
d4xTr(FµνF̃µν) (2.13)

with F̃µν =
1

2
εµνρσFρσ and Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]. (2.14)

The reason for the different expressions of both theories will become clear in the deriva-

tion of eq.(2.11), given in appendix A.1.

2.2.2 The Topological Charge on the Lattice

In order to investigate topological effects on the lattice a discretized version of the

topological charge needs to be introduced. A suitable expression of a lattice topological

charge is given by

Q =
1

2π

N∑
n=0

F̂12(n), (2.15)

where the sum runs over the vertices of the lattice. The field strength tensor (c.f.

eq.(2.7)) represents the plaquette angle which is the sum over the values of the gauge

field components assigned to an elementary plaquette with vertices labeled by n. This

expression vanishes for periodic boundary conditions. For this reason one considers the

imaginary part of the logarithm of the plaquette (c.f. eq.’s (2.4)-(2.7))

Q =
1

2π

∑
n

Im lnU12(n) =
1

2π

∑
n

f
((
An+1̂,2 −An,2

)
−
(
An+2̂,1 −An,1

))
, (2.16)

where

Im lnU12(n) = φP,n
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is the plaquette angle which is restricted to φP,n ∈ [−π, π] by the function f with

f(x) = x− floor

(
x+ π

2π

)
2π , x ∈ [−4π, 4π]. (2.17)

The function f(x) (”floor” means rounding to the next lower integer value) repeatedly

adds 2π to x until the result is in [−π, π]. This projection is visualized in figure 2.1.

]πx[1/
-4 -3 -2 -1 0 1 2 3 4

]π
f
(
x
)
[
1
/

-1

-0.5

0

0.5

1

Figure 2.1: The function f(x) = x − floor ((x+ π)/(2π)) 2π projects x ∈ [−4π, 4π]
into the interval [−π, π].

Thus the lattice version of the topological charge reads:

Q =
1

2π

∑
n

φP (n) , with − π < φP (n) < +π . (2.18)

This definition is also referred to as the geometrical definition [14, 15].
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2.3 Physical Hadron Masses from Computations in Fixed

Topological Sectors

As mentioned before (c.f. chapter 1) simulating at fine lattice spacings leads to fixed

topology. In this case a theory is non-local and has no Hamiltonian. Hence it does not

correspond to a physical theory. As a consequence observables are plagued by system-

atic effects. The dependency of observables on topological charge has been understood

analytically and a formulae has been derived which allows to reliably extrapolate to

the physical limit [6, 7]. As a starting point the path integral can be decomposed into

topological sectors. This can be done by introducing the θ parameter. In Appendix

A.2 it is shown how the θ-term leads to fixed topology. Besides the technical character,

the θ parameter has the more profound and physical meaning of a θ-vacuum which, as

a quantum state, is the superposition of topological sectors. A discussion about the

θ-vacuum in great detail can be found in [12].

A general 2-point correlation function CQ,V of hadron creation operators Oi at a fixed

topological sector reads

CQ,V = 〈O1O2〉 (2.19)

=
1

ZQ,V

1

2π

∫ π

−π
dθ eiθν

∫
D[U ]O1O2 e

−Seff [U ]−iθQ[U ] (2.20)

=
1

ZQ,V

1

2π

∫ π

−π
dθ Z(θ)C(θ) eiθQ, (2.21)

with

C(θ) =

∫
D[U ]O1O2 e

−Seff [U ]−iθν[U ]. (2.22)

For a sufficiently large space-time volume V a saddle point approximation can be used

and the correlation function

CQ,V (t) = AQ,V e
−MQ,V t (2.23)

can be expanded in the parameters M ′′(0) t/V χt , 1/V χt and Q2/V χt, in order to

obtain

MQ,V = M(0) +
1

2
M ′′(0)

1

V χt

(
1− Q2

V χt

)
+O

(
1

V 2

)
. (2.24)

This expression represents one of the central equations used in this work. For a detailed

derivation see appendix A.2.



Chapter 2 Theoretical Foundations 9

The expression contains the following quantities:

• MQ,V is the hadron mass excited by a suitable operator O at fixed topological

charge Q in a finite space-time volume V .

• M(0) is the θ-dependent physical hadron mass at infinite space-time volume V at

θ = 0.

• M ′′(0) is the second derivative of M(θ) with respect to θ, i.e.

M ′′(0) = d2M(θ)/dθ2|θ=0.

• χt is the topological susceptibility which is given by

χt = lim
V→∞

〈Q2〉
V

. (2.25)

Eq. (2.24) shows that fixing topology induces finite size effects. The infinite volume

limit V →∞ renders all topological sectors equally such there is no difference between

MQ,V and M(0). In order to determine physical hadron masses from fixed topology

computations a method will be presented in chapter 4 which has been proposed in [6]

and tested in [8, 9]. This method consists of two steps:

1. Perform simulations at fixed topology for different topological charges Q and space-

time volumes V , for which the expansion (2.23) and (2.24) is a good approximation.

This means the parameters M ′′(0) t/V χt , 1/V χt and Q2/V χt, must be suf-

ficiently small. From the simulations determine the masses MQ,V according to

(2.23).

2. By fitting (2.24) to the masses MQ,V obtained in step one the physical hadron

mass M(0), M ′′(0) and χt can be determined.





Chapter 3

The Simulation Algorithm

This chapter presents in a concise way the Hybrid Monte Carlo algorithm which has been

used in order to simulate the Schwinger model on the lattice. The presentation includes

a discussion of the implemented optimization methods which allow for significant speed

ups in terms of the simulation time. For a more detailed discussion on this particular

HMC and its optimizations see [13].

3.1 The Basic Principle of the HMC

The purpose of the simulations is to compute the expectation value of e.g. correlation

functions by averaging over a sufficiently large number of gauge link configurations. To

this end the Schwinger model with Nf = 2 flavors of fermions has been simulated by

using the HMC algorithm with pseudofermions and the conjugate gradient algorithm for

the inversion of the fermion matrix Q2 = γ5DWγ5DW which is hermitian and positive

definite.

The HMC algorithm combines the concepts of Molecular Dynamics and Monte Carlo

Simulations and is based on randomly generating gaussian distributed conjugate mo-

menta Pi to the field variables Xi such that the Hamiltonian of the system assumes the

form of

H(X,P ) =
1

2

∑
i

P 2
i + S[X], (3.1)

11



12 Chapter 3 The Simulation Algorithm

where H is conserverd under the equations of motion (EOM’s):

Ẋi =
∂H
∂Pi

, Ṗi = −∂H
∂X

. (3.2)

This approach is also known as molecular dynamics approach. By integrating the EOM’s

along a trajectory a global update (X,P ) −→ (X ′, P ′) is generated, where (X,P ) and

(X ′, P ′) are points on the surface of a subspace of a phase space. On the surface of this

phase space the energy is conserved and does only change by the reason of numerical

errors which occur due to the integration. The change in the energy which is given by

∆H = H−H′ depends on the step size ∆τ chosen for the integration along the virtual

time trajectory τ . Such a global update gets accepted with the probability of

P((X,P ) −→ (X ′, P ′)) = min
(

1, eH(X,P )−H(X′,P ′)
)
. (3.3)

For the simulations performed for this work the length of the trajectory was chosen as

τ = 1 and the step size ∆τ was adjusted such that each time an acceptance rate for the

new field configurations of approximately 80% could be reached.

3.2 Optimization Methods

Depending on the choice of the fermion mass m̂0, the value of β and the number of field

configurations being generated, the invested computation resources of the simulations

can be considerably non-negligible even for a more simple theory such as QED2. There-

fore the HMC being used works with several optimization methods. These will briefly

be explained below. For more details on this topic see [13, 26].

3.2.1 The Integration Scheme

The first noteworthy technicality is the Leapfrog integration scheme which is not just

implemented in particular in the HMC used for this work but usually in this type of

Monte Carlo algorithms in general. The Leapfrog integration scheme has the property

of symplecticity which implies reversibility and area preservation. Furthermore this

property causes the change in the energy to be independent of the trajectory length.

Instead the change in the energy does only depend on the step size. The process of this

integration consists of two types of update steps

TA(∆τ) : An,µ → A′n,µ = An,µ + ∆τPn,µ , (3.4)

TS(∆τ) : Pn,µ → P ′n,µ = Pn,µ −∆τ
∂S[A, η]

∂An,µ
, (3.5)
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resulting in a basic Leapfrog time evolution step

TLi = TS(∆τ/2)TU (∆τ)TS(∆τ/2). (3.6)

Hence for a trajectory length τ the time evolution step T gets successively applied NMD

times where NMD = τ/∆τ denotes the number of steps done along a trajectory τ .

3.2.2 Multiple Time Scale Integration

Further performance optimizations can be achieved by integrating the action (see eq.(3.1))

on multiple time scales. This is based on the idea of splitting the action into several

components:

H =
1

2

∑
n,µ

P 2
n,µ +

k∑
i=0

Si[U ]. (3.7)

Each Si must be integrated separately whereat the integration of Si depends on the

integration of Si−1. The time evolution step for S0 reads

TL0 = TS0(∆τ0/2)TU (∆τ0)TS0(∆τ0/2), (3.8)

whereas the time evolution steps Ti for the components Si with i 6= 0 are defined

recursively:

Ti = TSi(∆τi/2) [Ti−1]Ni−1 TSi(∆τi/2). (3.9)

The step sizes ∆τi are given by

∆τi =
τ∏k

j=iNj

=
τ

NMDi

. (3.10)

The choice of the Nj individually depends on the cost of the application of TSi and also

on the absolute value of the force defined by

Fi =

√√√√∑
n,µ

∣∣∣∣∂Si[A, η]

∂An,η

∣∣∣∣2. (3.11)

In ref.[13] a splitting of the force into three components S0 := SG, S1 := SPF1 , S2 :=

SPF2 with two time scales was considered a good choice and is adopted for the simulations

performed in this work. The values for the time scales were set to N1 = 1 and N0 = 12.

In certain cases a reduction by approximately a factor of three of the simulation time

could be observed.
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3.2.3 Mass-Preconditioning

By decreasing the quark mass the condition number κ of the fermion matrix Q2 increases

which leads to a larger number of iterations in the CG process. This effect can be

counteracted by rewriting the squared determinant of the Dirac operator (appears when

the fermonic part of the action is integrated out for Nf = 2 flavors of fermions) according

to:

(det(DW ))2 = det(Q2) = det(W+W−)
det(Q2)

det(W+W−)
. (3.12)

W+ and W− are fermonic fields being chosen such that W+W− approximates Q2 but

is less expensive to convert for the CG algorithm. For the HMC being used in this work

these fermonic fields were chosen as W+ = Q + iµ and W− = (W+)† = Q − iµ [13].

Hence the product of the fields is W+W− = Q2 + µ2. An appropriate choice for µ2 in

order to keep the condition number of both operators small is µ2 =
√
λmax(Q)λmin(Q)

which leads directly to

C
(
Q2 + µ2

)
≈ λmax(Q)

µ2
=
√
C (Q2). (3.13)

as well as

C
((
Q2 + µ2

)−1
Q2
)
≈ µ2

λmin(Q)
=
√
C (Q2). (3.14)

By using the method of mass-preconditioning the simulation performance can be directly

increased to a large degree by a proper adjustment of the parameter µ2. Instead of

determining the eigenvalues of Q2 , which is quite complicated, the value for µ2 is

chosen such that the ratio of the absolute values of the forces caused by S1 and S2 is

similar to the ratio of the corresponding applied operators. For the simulations done in

this work a value for the ratio of the forces of F1/F2 ≈ N1 = 1 is obtained (c.f. section

3.2.2). For most of the simulations which were performed for values of β = 3.0 , 4.0

and of pion masses M̂π ≈ {0.2, ..., 0.3} the values chosen for µ2 were closely distributed

around µ2 = 1.



Chapter 4

Computations and Results

4.1 Topology Freezing

Using the HMC algorithm presented in the previous chapter simulations at various values

of β, m̂ and NL were performed. In figure 4.1 the probability for a transition to another

topological sector per HMC trajectory is plotted versus ĝ = 1/
√
β and m̂/ĝ = m̂

√
β,

while gL = ĝNL = NL/
√
β = 24/

√
5 is kept constant. ĝ is proportional to the lattice

spacing a. m̂/ĝ is proportional to m̂/a and, therefore, proportional to m, the bare quark

mass in physical units. As expected there are frequent changes of the topological sector

at large values of the lattice spacing a (large values of ĝ), while at small values of a

(small values of ĝ) topology freezing is observed. The dependence of the probability for

a transition on the bare quark mass m̂/ĝ is rather weak.

g/m
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Figure 4.1: The probability for a transition to another topological sector per HMC
trajectory as a function of ĝ = 1/

√
β and m̂/ĝ = m̂/

√
β.
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4.2 Computations at Fixed Topology

In the following discussion only dimensionless quantities are included. For reasons of

convenience and readability the ”ˆ” symbol will be omitted throughout the subsequent

sections.

The hadron masses being investigated are the mass of the light isotriplet (will be con-

sidered as the pion mass Mπ) and the static potential Vq̄q(r) (the ground state energy of

a static quark antiquark pair at separation r). The Operator used for the light isotriplet

is

Oπ =
∑
x

ψ̄(u)(x)γ1ψ
(d)(x) (4.1)

(
∑

x denotes a sum over space and u and d label the two degenerate fermion flavors). In

order to compute the corresponding correlation function the so called ”one-end trick”

method has been used [20]. For the static potential a suitable hadron creation operator

is

Oq̄q = q̄(x1)U(x1, x2)q(x2) , r = |x1 − x2|, (4.2)

where q̄ and q represent scalar static color charges and U(x1, x2) is the product of spatial

links connecting x1 and x2 for which the implementation is straightforward.

The hadron masses MQ,V ≡Mπ,Q,V and MQ,V ≡ Vq̄q,Q,V (r) (c.f. eq.(2.24)) are obtained

at fixed topology by first determining the topological charge Q on each gauge link con-

figuration according to (2.18). Then independent computations of the pion mass and

the static potential are performed using only gauge link configurations with the same

absolute value of Q. The pion mass as well as the ground state energy from the static

potential have been computed by fitting effective mass plateaus. For a more detailed

explanation on how the masses are extracted and computed from correlation functions

see A.3.

To check the quality of the results presented in the subsequent sections, it will be neces-

sary to have a reference value for the hadron mass and for the dimensionless topological

susceptibility χt. These will be obtained in the conventional way. For the hadron mass

M conv this means i.e. computing the corresponding temporal correlation function on all

available gauge link configurations (i.e. as an average over all topological sectors) at a

single sufficiently large V (to avoid ordinary finite size effects). The topological suscep-

tibility is computed from the topological charge distribution according to eq.(2.25).
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The computations are performed for a choice of β = 3.0 , m0 = −0.07 and β = 4.0 , m0 =

−0.03, which assures sufficiently many transitions between different topological sectors

(c.f. figure 4.1), to safely determine the hadron mass and the topological susceptibility in

the conventional way. In this case the topological charge distribution must be gaussian

[21] which is fulfilled for the considered choice of parameters. For β = 3.0 the topological

charge distribution has been visualized by a histogram and is shown in figure 4.2. The

error of χt has been computed by using the Jackknife method.

top. charge
-15 -10 -5 0 5 10 15
0

10000

20000

30000

40000

50000

60000  0.00006± = 0.00454 
V

〉 Q^2〈
 = 

t
χ

Figure 4.2: The topological charge distribution for β = 3.0 , m0 = −0.07 , NL = 52.
χt has been computed according to χt = limV→∞〈Q2〉/V . The vertical axis corresponds
to the number of configurations. The horizontal axis corresponds to the topological

sectors.

For the computation of the hadron masses all of the configurations generated during

the simulations have been used. Autocorrelation effects are rather weak for the chosen

parameters which is consistent with the fact that there are sufficiently many topological

charge transitions. To fully avoid these effects at first the integrated autocorrelation

time has been computed according to

τ =
1

2
+

∑
n Γ(n)

Γ(0)
, (4.3)

Γ(n) =
1

N − n

N−n∑
i=1

(Ci(t)− 〈C(t)〉 ) (Ci+n(t)− 〈C(t)〉 ). (4.4)
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In this expression Ci(t) is the correlation function computed from configuration i. 〈C(t)〉
is the mean value which is obtained by averaging over all N configurations. Afterwards

the configurations are binned with a sufficiently large bin size which is ≥ τ .

4.2.1 The Strategy

In the following the lattice results of the masses MQ,V ≡Mπ,Q,V and MQ,V ≡ Vq̄q,Q,V (r)

are plotted against 1/V = 1/N2
L. The hadron mass M(0) in the infinite volume limit

at limV→∞ 1/V = 0 as well as the topological susceptibility χt are obtained according

to the description given in section 2.3 and eq.(2.24). As discussed before eq.(2.24) is an

expansion in M ′′(0)t/χtV , 1/χtV and Q2/χtV . Therefore, only fixed topology masses

MQ,V with sufficiently small values of 1/χtV and Q2/χtV should be included in the

fit. In the presented fits the information about the expansion parameters is included by

computing the following expression for each topological sector:

xQ = min

(
1

V Q
min χt

,
Q2

V Q
min χt

)
(4.5)

The parameter 1/V Q
min χt is considered in the case of Q = 0 whereas the parameter

Q2/V Q
min χt is considered for Q 6= 0. Only the lowest volume Vmin in xQ is of particular

interest since this is the delimiting factor for the accuracy of the fit. A first illustration

for such a fit of the pion mass is shown in figure 4.3. In this figure each curve Mπ,Q(V )

represents a different topological sector. The corresponding volumes are marked on

the 1/V -axis. Consider, for example, the point Mπ,Q=3

(
V = 242

)
in figure 4.3. The

corresponding xQ = 3.44 is computed according to eq.(4.5). In this example the values of

the discussed parameters are rather large and therefore the validity is quiet questionable.

This is reflected by the mass M(0) = 0.2650(1) obtained from the fit which deviates

from the reference value M conv
π = 0.2664(2) by 12σ and hence is inconsistent. The

fit parameter χt = 0.00161(16) deviates from the reference value χt
tcd = 0.00454(6)

(”tcd” denotes ”topological charge distribution”) computed from the topological charge

distribution (c.f. figure 4.2) by ≈ 18σ leaving the result inconsistent, too. The expansion

parameters have to be further restricted to smaller values.
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Figure 4.3: Hadron mass extrapolation for β = 3.0 , m0 = −0.07 , V = {162, . . . , 522}.
xQ is not sufficiently small in order to guarantee the validity of the fit. Reference
value for the pion mass M conv

π = 0.2664(2) and for the topological susceptibility χt =
0.00454(4).

Though it cannot be said a priori what exactly ”small” or ”large” means concerning

the value of xQ and |M ′′(0)|t/V χt. For the latter this seems quite unproblematic and

it can be checked by simply computing |M ′′(0)|t/V χt for each data point MQ,V . The

parameter |M ′′(0)| was never ≥ 0.09. The smallest volume taken into account for the

fits is V = 282 and the corresponding maximal time for fitting a mass plateau to obtain

MQ,V is nt = 13. The value of χtcd
t for β = 4.0 and m0 = −0.03 is χtcd

t ≈ 0.00353. This

leads to a value for the expansion parameter of M ′′(0)t/V χt ≈ 0.42 which seems to be

sufficiently small.

For xQ the investigations have shown that in most of the cases a value of xQ ≈ 2.5

should not be exceeded because then the results become inconsistent. Further lowering

of this value should improve the fit results since the expansion given by eq.(2.24) be-

comes more precise. Lowering this value can be achieved by excluding masses Mπ,Q,V .

It seems reasonable to choose a certain value xb
Q that should not be exceeded. Then the

fit will be repeated multiple times and for each subsequent fit the masses Mπ,Q,V are

excluded as follows:
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1. Consider the curve Mπ,Q(V ) describing the mass in the topological sector Q as a

function of the space-time volume V .

2. Start by excluding the mass Mπ,Q,Vmin belonging to the minimum volume and

perform the fit.

3. Repeat steps (1) and (2) for each curve Mπ,Q(V ) as long as xQ > xbQ.

Applying these steps for the fit done in figure 4.3 leads to the result shown in figure 4.4.
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Figure 4.4: Hadron mass extrapolation for β = 3.0 , m0 = −0.07 , V = {362, . . . , 522}.
Certain Mπ,Qi,Vmin

were excluded such that xQ is restricted to xQ . 2.0. Reference
value of the pion mass M conv

π = 0.2664(2) and of the topological susceptibility χt =
0.00454(4)

Now the mass M(0) and the topological susceptibility show consistency with the ref-

erence values. A further discussion about the results will be given in the subsequent

chapters. However, for many cases it turned out that rigidly following the description

given above can be disadvantageous. For some fits this means trying to lower the value

of xQ by excluding masses MQ,V from the fit yields no additional improvement or even

worsens the fit results. The reason for this might be systematic errors which can occur

during the determination of the masses Mπ,Q,V by fitting a constant to an effective mass

plateau with large statistical errors (see section 4.3 about error discussion).

Another issue is the value of the fit parameter χt which due to the mentioned sys-

tematic errors can strongly fluctuate when excluding the masses MQ,V from the fit.

Then computing xQ with the fit parameter χt can result in a larger xQ, instead of a
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lower one. In order to estimate the systematic errors different heuristic methods for

choosing the data points will be tested and compared.

The basic strategy will be to perform the fit while keeping xQ below certain values.

As upper limits the values xb
Q = {0.5, 1.0, 1.5, 2.0, 2.5} are explored. In this sense per-

forming a fit for e.g. xb
Q = 1.5 means trying to keep xQ . 1.5. For the fitting procedure

four different strategies will be adopted:

a) Using the fitted parameter χt for the determination of xQ.

b) Using χtcd
t for the computation of xQ, making it independent of the fitted χt.

c) A rather heuristic approach which describes a strict selection rule of the masses

MQ,V to be included in the fit and has proved to yield acceptable results: The

topological sectors included in a fit shall be denoted by Q0, . . . , QN with (Q1 ≤
Qi < QN ) and the volumes included for each topological sector by V

(Qi)
0 , . . . , V

(Qi)
N

with (V
(Qi)

0 ≤ V (Qi)
n < V

(Qi)
N ). The parameter xQi is chosen such that

V
(Qi+1)

0 = V
(Qi)

0+1 and V
(Q1)

0 = V
(Q0)

0 . This approach has already been used for the

fits of figure 4.3 and 4.4.

d) Using strategy c) and additionally using χt computed from the topological charge

distribution as a fixed fit parameter in order to see if a further stabilization of the

fit can be achieved.

In the following sections, fit results for the pion mass and for the static qq̄ potential with

two different sets of parameters each are summarized in tables. The results obtained by

adopting strategies a) - d) for the fits will be discussed in detail for the pion mass and

the parameters β = 3.0 , m0 = −0.07 , NL = {28, ..., 52}.
For the subsequent discussions about the results the strategies a) and b) are dropped

since the results seem to have a bad precision.

The presented tables are structured in the following way: The fits are labeled by numbers

and the corresponding strategies (c.f. 4.2.1: Strategies a-d). xmax
Q denotes the largest

xQ of the fit. Further quantities that are given in the table are M(0) (obtained from

the fit; corresponds to the hadron mass at unfixed topology), M conv, χt (obtained by

the fit) and χtcd
t .

In many cases no further restriction on the value of xQ is imposed because this leads

to significantly worse results. The reason for this might be the errors of MQ,V or the

absence of a sufficient number of data points. This issue will be discussed in section 4.3.
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4.2.2 Results for the Pion Mass

In table 4.1 it can be seen that for strategies a) and b) the restriction of xQ tends to

bring M(0) closer to M conv
π . For the case of b) the value of xmax

Q must be restricted to

0.9 until a fit result could be reached which is consistent with the reference value within

1σ. In order to reach the same deviation for b) the value of xmax
Q had to be restricted to

xmax
Q = 0.38. Further lowering of xmax

Q as it is done for fit no. 7 preserves the consistency

of the result but the statistical error is quite large. This can be explained by the smaller

number of masses Mπ,Q,V taken into account for the fit. The discrepancy between a)

and b) concerning the values of xQ seems not surprising since, as explained above, for

a) the value of xQ depends on the fit parameter χt which is strongly fluctuating among

the different fits which is a drawback compared to b).

For both approaches the fitted χt cannot reach consistency with the reference value

χtcd
t = 0.00454(6). For a) the fitted value deviates by ≈ 5σ (fit no. 4) and for b) by

≈ 4σ (fit no. 6). Even for low values of xQ (e.g. when a consistency of the hadron mass

is achieved) method a) and b) seem not to be suited for the determination of χt. The

reason for this remains unclear but it can be assumed that the low precision is caused

by systematic errors.

strategy Nr. χ2/dof xmax
Q M(0) M conv

π χfit
t χtcd

t

a)

1 0.92 2.15 0.2652(2)

0.2664(2)

0.00182(24)

(no input)
2 0.93 1.75 0.2656(2) 0.00190(23)

3 0.51 1.45 0.2655(3) 0.00173(22)

4 0.39 0.90 0.2662(4) 0.00229(43)

b)

1 1.64 2.39 0.2654(2)

0.2664(2)

0.00226(23)

0.00454(6)

2 1.21 2.04 0.2654(2) 0.00214(26)

3 1.01 1.53 0.2656(2) 0.00223(28)

4 0.79 1.02 0.2651(2) 0.00176(23)

5 0.70 0.55 0.2657(3) 0.00184(22)

6 0.33 0.38 0.2659(6) 0.00192(67)

7 0.33 0.17 0.2671(14) 0.00189(101)

Table 4.1: Pion mass results for β = 3.0, fermion mass m0 = −0.07 and N =
{28, . . . , 52}

In table 4.2 for the case of c)-1 and 2, M(0) of the first fit is slightly more precise

compared to fit nr. b)-6 whereas c)-2 comes with a slightly larger statistical error.

There is no huge improvement compared to a) and b), if at all.
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Though what can be observed is that results of similar precision are already obtained at

larger xQ. The fitted χt is much closer to the reference value compared to the fitted χt

from a) and b) but with a very large statistical error with an average of approximately

60%. Having tested strategies a) - d) the low precision suggests that for the used oper-

ators the method is not suited for the determination of χt by performing fits on single

data sets (one observable at a time).

Nevertheless the selection of Mπ,Q,V used in order to perform these fits could be in-

teresting for the simultaneous fitting of multiple data sets (data of different observables)

which will be discusses in section 4.2.4 where the idea is to stabilized the fit and hence

to reduce the statistical error on χt by fitting a larger data set.

Since χt seems to be very problematic and influences the results for M(0) (c.f. eq.(2.24)),

the question arises if further improvements for the fitted hadron mass can be achieved.

Therefore strategy d) is tested, for which χt is used as a fixed parameter for the fit.

The masses Mπ,Q,V are excluded as in c). The first two fits for d) show indeed a slight

improvement with a lower statistical error compared to the results achieved by using

strategies a), b) and c). For lower values of xQ (see fits nr. 3-5) they stay consistent

but the statistical error increases which again can be explained by the smaller number

of masses being fitted.

strategy Nr. χ2/dof xmax
Q M(0) M conv χfit

t χtcd
t

c)

1 0.42 2.39 0.2662(5)

0.2664(2)

0.00352(99)

0.00454(6)

2 0.27 2.04 0.2665(9) 0.00390(155)

3 0.15 1.30 0.2657(16) 0.00292(396)

4 0.17 0.73 0.2669(27) 0.00498(251)

5 0.05 0.33 0.2683(28) 0.00500(341)

d)

1 0.44 2.39 0.2666(2)

0.2664(2) (fixed) 0.00454(6)

2 0.26 2.04 0.2668(4)

3 0.15 1.30 0.2662(8)

4 0.15 0.73 0.2667(11)

5 0.04 0.33 0.2681(26)

Table 4.2: Pion mass results for β = 3.0, fermion mass m0 = −0.07 and N =
{28, . . . , 52}

From the foregoing discussion it can be concluded that the approaches c) and d) are

most promising. Therefore the following discussion will be restricted to these ones. In

table 4.3 the fits c)-1 and d)-1 show quite precise results. c)-1 is slightly superior to d)-1.
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In both cases after lowering xQ, the value of M(0) is less precise but due to an increase

in the statistical error the consistency with the reference value M conv
π is preserved. For

the fit performed with c) the value of M(0) is very close to the reference value and the

statistical error is quiet small, too. For the case of β = 4.0 there is no improvement in

the precision for χt compared to β = 3.0.

strategy Nr. χ2/dof xmax
Q M(0) M conv χfit

t χtcd
t

c)
1 2.03 3.07 0.2742(4)

0.2743(3)
0.00314(34)

0.00353(14)
2 0.96 2.62 0.2749(10) 0.00403(133)

d)
1 0.93 1.68 0.2743(2)

0.2743(3) (fixed) 0.00353(14)
2 0.21 0.94 0.2748(7)

Table 4.3: Pion results for β = 4.0, fermion mass m0 = −0.03 and N = {28, . . . , 52}

4.2.3 Results for the Static QQ̄ Potential

In the case of the static qq̄ potential, determining the hadron mass at unfixed topology is

done exactly in the same way as the pion mass. The static qq̄ potential will be considered

at the quark separations of r = {1a, . . . , 4a} which gives four different energy levels that

can be interpreted as hadron masses. The results for all separations r are summarized in

one table for each set of parameters. In order to determine M(0) and χt the strategies

c) and d) are applied for all fits. In summary, it can be said that qualitatively similar

results are obtained as for the pion mass.

It is noticeable that in particular for β = 3.0 at separations of r = 3a, 4a the sta-

tistical precision of the results is quite low. In particular for r = 4a it can be observed

that M(0) obtained by applying c) with xmax
Q = 5.38 is closer to the reference value and

has a lower statistical error compared to d) with xmax
Q = 0.73. This contradicts the fact

that the method becomes less precise for larger values of xQ. The reason for this behav-

ior might be found in the fitting of the effective mass plateaus of the static qq̄ potential.

From figures 4.7 and 4.6 it can be seen that determining the masses Vqq̄,Q,V (3a) and

Vqq̄,Q,V (4a) was problematic due to large statistical errors. Larger statistics would likely

solve this problem. For further discussion on this issue see section 4.3. It seems like the

value χ2/dof is a bit more problematic in the case of the static qq̄ potential compared to

the case of the pion mass. The reason for this remains unclear but it is very likely that

it stems from systematic errors which occur during the aforementioned determination

of the masses Vqq̄,Q,V (r).
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strategy r χ2/dof xmax
Q M(0) M conv χfit

t χtcd
t

c) a 4.97 2.84 0.17102(8)
0.17083(5)

0.00424(34)
0.00454(6)

d) a 1.11 0.73 0.1713(3) (fixed)

c) 2a 0.32 1.30 0.2927(19)
0.2931(3)

0.00301(305)
0.00454(6)

d) 2a 0.52 0.73 0.2923(13) (fixed)

(c)
3a 1.73 3.44 0.3742(67)

0.3741(7)

0.00199(54)

0.00454(6)3a 0.63 2.39 0.3759(17) 0.00354(35)

(d) 3a 0.25 0.73 0.3757(36) (fixed)

(c) 4a 1.62 5.38 0.4263(10)
0.4272(18)

0.00252(52)
0.00454(6)

(d) 4a 0.11 0.73 0.4295(46) (fixed)

Table 4.4: Static qq̄ potential results for r = {1a, . . . , 4a} , β = 3.0, fermion mass
m0 = −0.07 and N = {28, . . . , 52}

In the case of β = 4.0 (see table 4.5) it can be observed consistently for all separations

r that setting the value of χt to the one of χtcd
t and fixing it yields more precise re-

sults compared to using the fitted χt. For a separation of r = a and approach d) the

extrapolation is shown in figure 4.5.

strategy r χ2/dof xmax
Q M(0) M conv χfit

t χtcd
t

(c) a 4.27 2.62 0.12545(8)
0.12551(4)

0.00351(45)
0.00353(14)

(d) a 2.07 1.11 0.12551(9) (fixed)

(c) 2a 5.39 3.07 0.2246(3)
0.2247(2)

0.00349(27)
0.00353(14)

(d) 2a 5.16 3.07 0.2246(1) (fixed)

(c) 3a 1.69 2.62 0.3003(12)
0.3008(4)

0.00497(191)
0.00353(14)

(d) 3a 1.53 2.62 0.3002(5) (fixed)

(c) 4a 1.98 2.62 0.3566(26)
0.3577(9)

0.00713(774)
0.00353(14)

(d) 4a 0.47 0.94 0.3576(2) (fixed)

Table 4.5: Static qq̄ potential results for r = {1a, . . . , 4a} , β = 4.0, fermion mass
m0 = −0.03 and N = {28, . . . , 52}
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Figure 4.5: Hadron mass extrapolation for β = 4.0 , m0 = −0.03 , V = {322, . . . , 522}.
Reference value of the hadron mass M conv = 0.12551(4) and of the topological suscep-

tibility χt = 0.00353(14)

4.2.4 Simultaneous Fitting

As already mentioned in the previous section the idea of simultaneous fitting is to reduce

the statistical errors by taking into account a larger amount of data points corresponding

to different observables and a single set of parameters. This can be done by creating a

combined data set consisting of masses Mh1,Q,V , . . . ,MhN ,Q,V with hi denoting a specify

hadron. With Mhi,Q,V ≡Mi,Q,V one obtains

Mi,Q,V ≈Mi(0) +
1

2
M ′′i (0)

1

V χt

(
1− Q2

V χt

)
. (4.6)

χt is a common parameter which is simultaneously fitted among all data sets. Hence

for N hadrons the total number of parameters to be fitted is given by P = 2N + 1. In

the case of the pion and the static qq̄ potential with quark separations r = {1a, . . . , 4a}
the masses Mhi,Q,V of five different hadrons can be combined in a single fit which yields

P = 2 · 5 + 1 = 11 fit parameters. The combined data sets were created from the

selection of MQ,V for Mπ,Q,V , Vqq̄,Q,V (r) with (r = {1a, . . . , 4a}) which have produced

the fit results considered the most precise, meaning a value of M(0) which is close to

the reference value and a small statistical error.
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4.2.4.1 β = 3.0, fermion mass m0 = −0.07 and N = {28, . . . , 52}

In the case of β = 3.0 (see table 4.6) except for the separation r = 4a of the static qq̄

potential the mass M(0) for each observable is more consistent to the corresponding

reference value than compared to the single fits. The result for χt deviates by 2.3σ from

the reference value with a statistical error of about 11% which is still not very precise.

As it has been shown in the previous section the masses Vqq̄,Q,V (3a) and Vqq̄,Q,V (4a) are

quite problematic because of the large errors on their effective mass curves.

Removing the problematic data and only keeping the data for Mπ,Q,V , Vqq̄,Q,V (a) and

Vqq̄,Q,V (2a) leads to the result shown in table 4.7. A further lowering of the statistical

error and a closer value of M(0) to the reference value can be observed. χt is now

consistent with the reference value within the error but the size of its statistical error

has not changed. Due to the consistency it can be considered a fair agreement with the

reference value.

Mass Mπ Vqq̄(1a) Vqq̄(2a) Vqq̄(3a) Vqq̄(4a)

M(0)prev 0.2665(9) 0.17102(8) 0.2927(19) 0.3759(17) 0.4263(10)

χprev
t 0.00390(155) 0.00424(35) 0.00301(305) 0.00354(35) 0.00252(52)

M(0)new 0.2662(2) 0.17073(8) 0.2931(3) 0.3752(5) 0.4258(17)

χnew
t 0.00358(39)

M(0)ref 0.2664(2) 0.17083(5) 0.2931(3) 0.3741(7) 0.4272(18)

χref
t 0.00454(6)

Table 4.6: Simultaneous fit results for five data sets: Mπ,Q,V , Vqq̄,Q,V (1a),
Vqq̄,Q,V (2a), Vqq̄,Q,V (3a), Vqq̄,Q,V (4a), parameters: β = 3, fermion mass m0 = −0.07

and N = {28 . . . 52}.

Mass Mπ Vqq̄(1a) Vqq̄(2a)

M(0)prev 0.2665(9) 0.17102(8) 0.2927(19)

χprev
t 0.00390(155) 0.00424(35) 0.00301(305)

M(0)new 0.2664(2) 0.17081(9) 0.2933(3)

χnew
t 0.00411(49)

M(0)ref 0.2664(2) 0.17083(5) 0.2931(3)

χref
t 0.00454(6)

Table 4.7: Simultaneous fit results for three data sets: Mπ,Vqq̄,Q,V (1a), Vqq̄,Q,V (2a),
parameters: β = 3, fermion mass m0 = −0.07 and N = {28 . . . 52}.
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4.2.4.2 β = 4.0, fermion mass m0 = −0.03 and N = {28, . . . , 52}

For β = 4.0 already the single fit results in the previous section 4.2.3 were quite precise.

When doing a simultaneous fit this precision can even be improved (see table 4.8).

The value for χt is in agreement with the reference value while the uncertainty on χt

with approximately 4% is much smaller compared to the case of β = 3.0. Removing

the larger separations of Vqq̄ with r = 3a, 4a the changes in the results are of order

10−5 − 10−6 which cannot be seen anymore on the listed values. This suggests that

either the determination of the masses MQ,V = Vqq̄,Q,V (3a) and MQ,V = Vqq̄,Q,V (4a)

from the mass curves was already quite precise or that the statistical errors too large

and hardly change the fit results. Also the value of χt merely changes.

Mass Mπ Vqq̄(1a) Vqq̄(2a) Vqq̄(3a) Vqq̄(4a)

M(0)old 0.2749(10) 0.12545(8) 0.2246(3) 0.3003(12) 0.3566(26)

χold
t 0.00403(133) 0.00352(45) 0.00349(27) 0.00497(191) 0.00713(714)

M(0)new 0.2747(2) 0.12551(4) 0.2247(2) 0.3005(3) 0.3581(7)

χnew
t 0.00340(14)

M(0)ref 0.2743(3) 0.12551(4) 0.2247(2) 0.3008(4) 0.3577(9)

χref
t 0.00353(14)

Table 4.8: Simultaneous fit results for five data sets: Mπ,Q,V , Vqq̄,Q,V (1a),
Vqq̄,Q,V (2a), Vqq̄,Q,V (3a), Vqq̄,Q,V (4a), parameters: β = 4, fermion mass m = −0.03

and N = {28 . . . 52}.

Mass Mπ Vqq̄(1a) Vqq̄(2a)

M(0)prev 0.2749(10) 0.12545(8) 0.2246(3)

χprev
t 0.00403(133) 0.00352(45) 0.00349(27)

M(0)new 0.2747(2) 0.12551(4) 0.2247(2)

χnew
t 0.00341(15)

M(0)ref 0.2743(3) 0.12551(4) 0.2247(2)

χref
t 0.00353(14)

Table 4.9: Simultaneous fit results for three data sets: Mπ,Vqq̄(1a), Vqq̄(2a),
parameters: β = 4, fermion mass m = −0.03 and N = {28 . . . 52}.
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4.3 Discussion of Error Sources

In this section the errors are discussed which are considered to affect the results of the

infinite volume extrapolations listed in sections 4.2.2 to 4.2.4. The following errors could

be identified:

1. Statistical errors (on the effective mass curves):

The masses MQ,V are obtained by fitting a constant to an effective mass curve

which can have large statistical errors, in particular for large temporal separations

nt (c.f. figures 4.6 to 4.9).

2. Systematic errors:

2.1. Choice of a fitting range for the effective mass plateau:

This is assumed to be the most influential source of errors. As it can be

seen in figures 4.6 to 4.9 it can be quite unclear at which range the effective

mass plateaus should be fitted. The choice of the fitting range can easily

affect the value of MQ,V up to the order of 10−4 and in some cases of mass

plateaus with a larger statistical error even up to the order of 10−3. This

order is already very relevant for the infinite volume extrapolations since the

precision of the results in sections 4.2.2 to 4.2.4 is considered up to the order

10−4 (for the pion mass) and also in some cases up to 10−5 (for the static

potential). However the statistical errors of MQ,V are of the same order which

implies an evening out of the errors allowing for a proper fit.

2.2. Topology effects (on the effective mass curves):

It should be mentioned that the topological charge might influence the be-

havior of the effective mass curves, too. This has already been shown for a

quantum mechanical model in [9]. It was observed that the effective mass

curves deviate from a plateau at fixed topology. This effect cannot be seen

for the mass curves considered in this work. E.g. figure 4.10 shows an ef-

fective mass curve at fixed topology with Q = 2. No particular behavior

can be observed. Just for ntmax the curve increases but this could also be

explained by the statistical error. Further mass curves from different simula-

tions have been examined with respect to effects described in [9] for volumes

V = 282, . . . , 522 but no such behavior could be found. The reason could be

that either effects are small and larger statistics are needed or that the mass

curves have a qualitative different behavior in the Schwinger model.
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2.3. Ordinary finite size effects

(occurs for lattices of V < 442 for the considered parameters β = 3.0 and β = 4.0):

Besides statistical and systematic errors ordinary finite size effects should not

be neglected. The pion mass is determined by using the operator given by

eq.(4.1). For this operator the finite size effects on the mass MQ,V for a

space-time volume of V = 282 is restricted to 0.4% and decrease rapidly, van-

ishing completely for V = 442. A finite size effect of 0.4% influences the mass

up to the order 10−3. As explained above, this order is already relevant for

the considered precision. The errors stemming from finite size effects can be

evened out by statistical errors. However, after restricting xQ only few points

at larger volumes V ≤ 282 are kept in and serve to stabilize the fit.

2.4. Values of xQ:

Another issue is the choice of the values of xQ, in particular the upper limit.

It seems like this cannot be defined clearly which might be linked to the errors

on MQ,V . For the different approaches a)-d) given in section 4.2.1 the largest

values of xQ are different. Hence xQ can rather be considered an estimate

for the precision of the method. In order to make clear statements about xQ

larger statistics would be needed.

One more remark should be made on statistical and systematic errors which seem to

be closely linked in the following way. As it can be seen from figures 4.6 to 4.9, the

larger the statistical errors are on the effective mass curves the more difficult it becomes

to determine a proper fitting range. This makes the process of fitting a constant to

an effective mass curve much more prone to systematic errors. Having discussed these

points one can consider the errors on the results presented in table 4.4 which seem to

be quite large for separations of r = 3a, 4a. Especially for time separations nt > 10

(c.f. figure 4.6) the statistical errors become quite large, making it difficult to clearly

identify a plateau. For this reason it is likely that the masses Vqq̄,Q,V determined by

fitting such plateaus are not very reliable. As it can be seen from table 4.5 the problem

is less distinct for β = 4.0, for which the errors start to become large at approximately

nt > 13 (c.f. figure 4.7). This can be understood by considering the different size of the

lattice spacing for β = 3.0 which is larger by the factor
√

4/3 ≈ 1.15. For both values of

β the same volumes were used (V = 202, . . . , 522) for the computations which leads to

a larger physical volume for the case of β = 3.0. This explains why the statistical errors

for the case of β = 3.0 are larger at smaller nt compared to the case for β = 4.0.
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Conclusions and Outlook

In this work the pion mass and the static potential in the Schwinger model have been

successfully determined from computations at fixed topology using a method proposed

and equations derived in [6]. The generalization of the method to QCD seems to be

straightforward. There it might be used to circumvent problems associated with topol-

ogy freezing expected at small values of the lattice spacing or when using e.g. overlap

fermions.

The method being considered is based on fitting eq.(2.24) to the hadron masses MQ,V

at fixed topological sectors and finite volumes. Then the hadron mass in the infinite

volume limit (which corresponds to the hadron mass at unfixed topology) is given

by the fit parameter M(0) at θ = 0. Eq.(2.24) is an expansion in the parameters

M ′′(0) t/V χt , 1/V χt and Q2/V χt, which must be sufficiently small in order to en-

sure the validity of this method, though it is difficult to define what exactly ”sufficiently

small” means. The parameters 1/V χt and Q2/V χt were referred to as xQ throughout

the results section. For a quantum mechanical model investigated in [9] it was found

that xQ should be < 0.5.

However a complete correspondence between the models concerning the values of the

expansion parameters can not be assumed. Moreover it turned out that the restriction

of xQ depends on the particular selection of the masses MQ,V to be fitted which seems to

be quite arbitrary. For this reason four different ways (c.f. 4.2.1: a-d ) for the systematic

selection of the masses MQ,V have been considered. For two of these strategies xQ had

to be restricted to values < 1 whereas for the the remaining two strategies xQ could

be unexpectedly large . 2.5. It is likely that this discrepancy is linked to statistical

and systematic errors (see section 4.3). More precise data are necessary to study this

problem in detail.

33
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Altogether it was observed during the investigations that the method works quite well in

particular for the determination of hadron masses, whereas the method is not well suited

for determining the topological susceptibility χt precisely. For the presented strategy d)

in some cases the fitted χt was consistent with the reference value but had an average

error of ≈ 60% leaving the value unusable. Therefore in section 4.2.4 χt was tried to be

determined from a simultaneous fit taking into account several sets of data belonging

to different observables. This approach proved to yield very good results for the hadron

masses as well as quite good results for χt. The approach seems to be very promising

and attractive for future investigations.

In order to achieve further improvements for this method, eq.(2.24) must be expanded

to higher orders. Another way which might lead to improvements is directly fitting the

correlation function using an exponential model containing eq.(2.24) and higher orders

of it. The idea is to obtain a more systematic approach for choosing the fitting range

and being able to directly obtain the hadron mass M(0) at unfixed topology, instead of

determining MQ,V from effective mass plateaus (which is highly prone to human errors)

and trying to obtain M(0) from fitting eq.(2.24) to the masses MQ,V . This work is in

progress.
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Theoretical Appendix

A.1 Derivation of the Topological Charge in 1+1-Dimensions

Consider gauge fields with a finite action which gauge equivalent to Aµ = 0 on the

border of the 1+1 dimensional space-time. A gauge transformation

Aµ → A′µ = gAµg
−1 − i

e
(∂µg)g−1, g ∈ U(1) (A.1)

yields, for gauge fields on the border of the 1+1 dimensional space-time with Aµ = 0 :

A′µ = −i1
e

(∂µg)g−1. (A.2)

Inserting the parametrization g(φ) = exp(iΛ(φ)) with Λ(φ) ∈ R leads to

A′µ =
1

e
∂µΛ(φ) , ⇒ eA′µ = ∂µΛ(φ) . (A.3)

Consider g(φ), which is 2π−periodic: g(φ+ 2π) = g(φ), accordingly

g(Λ(φ+ 2π)) = g(Λ(φ) + 2πn) (A.4)

⇒ Λ(φ+ 2π) = Λ(φ) + 2πn (A.5)

⇒ Λ(φ+ 2π)− Λ(φ) = 2πn (A.6)

35
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Since ∂φΛ is 2π-periodic the left hand side of eq.(A.6) can be rewritten into

∫ 2π

0

∂Λ

∂φ
dφ = 2πn ⇒ 1

2π

∫ 2π

0
∂φΛ dφ = n . (A.7)

The partial derivative ∂φΛ can be reformulated into

∂φΛ = ∂φx
µ ∂µΛ . (A.8)

Inserting this expression into eq.(A.7) yields

1

2π

∫ 2π

0
∂φx

µ ∂µΛ dφ = n ⇒ 1

2π

∫ 2π

0
∂φx

µ dφ︸ ︷︷ ︸
=dxµ

∂µΛ = n (A.9)

In this expression ∂µΛ can be replaced by the left hand side of eq.(A.3) in order to obtain

e

2π

∫ 2π

0
dxµAµ = n . (A.10)

This expression can be considered a line integral over the border of the 1+1-dimensional

space-time. Finally Stoke’s theorem can be applied:

n =
e

2π

∮
∂S
d~s · ~A (A.11)

=
e

2π

∫
S
d~S
(
~∇× ~A

)
(A.12)

=
e

2π

∫
S
d2x(∂xAy − ∂yAx) (A.13)

=
e

2π

∫
S
d2xF12, (A.14)

with n defining the topological charge n := Q.

A.2 The Q−Dependent Hadron Mass

This section contains a detailed derivation of Eq.(2.24). Principally it is based on what

has been done in a concise form in [6, 8]. The main part of the derivation, which will take

place in section A.2.2, deals with finding an expression for the topological charge and

space-time volume dependent correlation function CQ,V which allows for an appropriate

expansion in its exponential form. The starting point for the derivation is considering

the partition function ZQ,V at fixed topological charge Q.
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A.2.1 The Partition Function

Assuming the fermion fields are integrated out an effective gauge action Seff[U ] remains

in the partition function which contains the fermion determinant. The partition function

then reads:

Z =

∫
DU eSeff[U ]. (A.15)

This form will be kept throughout the calculation for convenience. In order to separate

gauge configurations analytically from different topological sectors a Kronecker delta is

inserted into the partition function for filtering gauge configurations which do not belong

to a certain topological sector:

δQ,Q[U ] =
1

2π

∫ π

−π
dθ eiθ(Q−Q[U ]). (A.16)

The partition function then becomes topological charge dependent. Inserting the Kro-

necker delta and rearranging the terms in the following manner gives rise to the θ−dependent

partition function.

ZQ =

Z︷ ︸︸ ︷∫
DU eSeff[U ]

δQ,Q[U ]︷ ︸︸ ︷
1

2π

∫ π

−π
dθ eiθ(Q−Q[U ] (A.17)

=
1

2π

∫ π

−π
dθ eiθQ

∫
D[U ] e−Seff[U ]−iθQ[U ]︸ ︷︷ ︸ (A.18)

=
1

2π

∫ π

−π
dθ eiθQ Z(θ), (A.19)

Note that in this expression Z(θ = 0) = Z and Z(θ) = Ze−iθQ[U ]. Hence the second

derivative of Z(θ) with respect to θ at θ = 0 equals the expectation value of the squared

topological charge:

−∂Z(θ)

∂θ2

∣∣∣∣
θ=0

= 〈Q2〉, (A.20)

which is related to the topological susceptibility and the space-time volume by

〈Q2〉 = V χt. (A.21)
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This leads to the suggestion that Z(θ) can be expressed as follows:

Z(θ) =

∫
DU eSeff[U ]︸ ︷︷ ︸ e−

1
2
V χtθ2

, (A.22)

= Z e−
1
2
V χtθ2

. (A.23)

Substituting this expression into eq.(A.19) results in

ZQ =
1

2

∫ π

−π
dθ eiθν

∫
D[U ] e−Seff[U ]− 1

2
V χtθ2

. (A.24)

Note that now the V dependence of ZQ becomes obvious and for this reason from now

on ZQ = ZQ,V will be used. Rearranging the terms gives

ZQ,V =
1

2

∫ π

−π
dθ

∫
D[U ] e−Seff[U ] eiθQ−

1
2
V χtθ2

(A.25)

=
1

2

∫ π

−π
dθ Z eiθQ−

1
2
V χtθ2

. (A.26)

This integral can be evaluated by applying a saddle point approximation. Substituting

the argument of the exponential by

u(θ) = −V χt
2
θ2 + iQθ, (A.27)

a stationary phase of the integral in eq.(A.26) can be found by minimizing u(θ):

∂u(θ)

∂θ
= 0→ θs = i

Q

V χt
. (A.28)

Reformulating u(θ) by completing the square yields

u(θ) = −V χt
2
θ2 + iQθ, (A.29)

= − Q2

2V χt
− 1

2
(θ − θs)2 V χt, (A.30)

Inserting this expression into eq.(A.26) a Gaussian integral is obtained:

ZQ,V =
1

2π

∫ π

−π
dθ Z e

− Q2

2V χt e−
1
2

(θ−θs)2V χt . (A.31)

Applying the substitution s = (θ − θs)
√
V χt gives

ZQ,V =
1

2π
√
V χt

∫ s(π)

s(−π)
dsZ e

− Q2

2V χt e−
s2

2 . (A.32)
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For finite limits of the integral the result can be expressed in terms of two error functions:

ZQ,V = −Z e
− Q2

2V χt

2πV χt

√
π

2

[
erf

(
θs − π

√
V χt√

2

)
− erf

(
θs + π

√
V χt√

2

)]
︸ ︷︷ ︸

cerf

. (A.33)

For sufficiently large values of V χt � 1 the value of cerf is a good approximation for
√

2π. Using the fact that θs = iQ/V χt, a further property which is favorable for this

approximation, is a small absolute value of the topological charge |Q|. This should be

noted as the central point of this derivation.

A.2.2 Correlation Functions at Fixed Topological Sectors

The starting point shall be the Q and V dependent correlation function, cf. eq.(2.21)

CQ,V =
1

ZQ,V

1

2π

∫ π

−π
dθ Z(θ)C(θ) eiθQ, (A.34)

Reformulating eq.(A.34) completely analogous to (A.19 - A.33) one arrives at

CQ,V =
Z e
− Q2

2V χt

ZQ,V 2π
√
V χt

∫ s(π)

s(−π)
dsC

(
θs +

s√
V χt

)
e−

s2

2 . (A.35)

At this point it is possible to almost fully cancel the factor in front of the integral by

inserting ZQ,V from eq.(A.33) and assuming cerf = 2π (c.f. eq.(A.33)). The correlation

function reduces to

CQ,V =
1√
2π

∫ s(π)

s(−π)
dsC

(
θs +

s√
V χt

)
e−

s2

2 . (A.36)

In order to evaluate the integral a development around s = 0 is done:

C

(
θs +

s√
V χt

)
= C(θs) +

C ′(θs)√
V χt

s+
C ′′(θs)

2V χt
s2 +O(s3). (A.37)

Because of the symmetry C(θ) = C(−θ) the odd orders of the derivative of C(θs) vanish.

The assumption of V χt � 1 leads to

C

(
θs +

s√
V χt

)
≈ C(θs) +

C ′′(θs)

2V χt
s2. (A.38)
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Inserting this approximation into eq.(A.35) gives

CQ,V =
1√
2π

[∫ s(π)

s(−π)
dsC(θs) e

− s
2

2 +

∫ s(π)

s(−π)
ds
C ′′(θs)

2V χt
s2 e−

s2

2

]
(A.39)

=
1√
2π

[√
2π C(θs) +

√
2π

C ′′(θs)

2V χt

]
(A.40)

= C(θs) +
1

2V χt
C ′′(θs), (A.41)

At this point a crucial simplification is carried out. Once again the saddle point θs =

iν/V χt is used as in section A.2.1. This is only a good approximation if the condition

is fulfilled that the value of M ′′(0)t/V χt is sufficiently small. Searching for the correct

saddle point for the right side of eq.(A.36) would lead to a rather lengthy calculation

but under certain approximations the same result would be obtained as in the following

section A.2.3. For reasons of simplicity the rather lengthy derivation is left out here.

A.2.3 The Particle Mass at Fixed Topological Sectors

In order to find an expression for the particle mass the next step is to insert expressions

for C(θs) and C ′′(θs) into eq.(A.41). The expression for the correlation function can

be derived by following the description given in A.3. In the following the θ-dependent

correlation function is considered at the saddle point θs = iQ/(V χt), hence

C(θs) = |〈0, θs|O|1, θs〉|2︸ ︷︷ ︸ e−M(θs) (t) (A.42)

= A(θ) e−M(θs) (t). (A.43)

In this expression M(θs) can be expanded:

M(θs) = M(0) +
1

2
M ′′(0) θ2

s +O
(
θ4
s

)
. (A.44)

Using this expansion and computing the second derivative of C(θs) the insertion into

eq.(A.41) leads to

CQ,V =

(
A(θs) +

A′′(θs)

2V χt
− A(θs)M

′′(0) t

2V χt

)
e−(M(0)+ 1

2
M ′′(0) θ2

s+O(θ4
s)) t (A.45)

−
(
A2(θ)M ′′(0)

V χt
θ t+

A(θ)(M ′′(0))2

2V χt
θ2t2

)
e(M(0)+ 1

2
M ′′(0) θ2

s+O(θ4
s)) t,
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where the second term on the right hand side is put into an error term:

CQ,V =

(
A(θs) +

A′′(θs)

2V χt
− A(θs)M

′′(0) t

2V χt

)
e−(M(0)+ 1

2
M ′′(0) θ2

s+O(θ4
s)) t (A.46)

+O
(

1

V 2

)
. (A.47)

A rearrangement of the terms leads to

CQ,V = A(θs)

(
1 +

A′′(θs)

2A(θs)V χt
− M ′′(0) t

2V χt

)
e−(M(0)+ 1

2
M ′′(0) θ2

s+O(θ4
s)) t (A.48)

+O
(

1

V 2

)
. (A.49)

Approximating the expression in the parenthesis as an exponential yields

CQ,V = A(θ) e
A′′(θs)

2A(θ)V χt
−M

′′(0) t
2V χt e−(M(0)+ 1

2
M ′′(0) θ2

s+O(θ4
s)) t +O

(
1

V 2

)
. (A.50)

A further rearrangement and the use of θ2
s = (iQ/(V χt))

2 then gives

CQ,V = A(θ) e
A′′(θs)

2A(θ)V χt︸ ︷︷ ︸ e−
(
M′′(0)
2V χt

+M(0)+
M′′(0)
2V χt

Q2+O(θ4
s)

)
t︸ ︷︷ ︸+O

(
1

V 2

)
. (A.51)

= AQ e−MQ t +O
(

1

V 2

)
. (A.52)

which finally leads to

MQ = M(0) +
1

2
M ′′(0)

1

V χt

(
1− Q2

V χt

)
+O

(
1

V 2

)
. (A.53)

which represents the central equation of this work.

Principally higher orders of this expression could be computed but in this case the

effective mass Mν would become time dependent. The reason for this is given by the

property of nonlocality of QCD at fixed topological charge. In this case the theory would

not even have a Hamiltonian [6].
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A.3 Extraction of the hadron masses

In order to determine the pion mass the expectation value of a two point correlation

function must be evaluated. In general the expectation value of a Euclidean two point

correlation function can be expressed in terms of path integrals in the following way:

C(t1 − t2) = 〈O1(t1)O2(t2)〉 (A.54)

=

∫
D[U ]O1(t1)O2(t2) e−Seff[U ]. (A.55)

=
1

Z

∑
m

〈m|e−Ĥ (T−t1+t2)O1 e
−Ĥ (t1−t2)O2|m〉 (A.56)

=
1

Z

∑
m,n

e−Em (T−t1+t2)〈m|O2|n〉 e−En (t1−t2) 〈n|O1|m〉. (A.57)

Where the general pair of operators

O1 = ψ̄t2Γ1ψt2 and O2 = ψ̄t1Γ2ψt1 (A.58)

creates an up-quark and a down-antiquark at t1 and annihilates them at t2. In the case

of two point correlation functions the operators O2 and O1 are the complex conjugates

of each other and hence the expression can be written as

C(t1 − t2) =
1

Z

∑
m,n

|〈m|O|n〉|2 e−Em T e−[En−Em ] (t1−t2). (A.59)

The difference En−Em can be measured experimentally. For sufficiently large temporal

volumes T � 1 only the vacuum state with Em = E0 survives and for large time

separations (t1 − t2) the higher energy contributions with En − E0 with n > 1 become

very small. Defining ∆En = En − E0 eq.(A.59) becomes

C(t1 − t2) =
e−E0 T

Z
|〈0|O|1〉|2 e−[ ∆E1 ] (t1−t2)

(
1 +O

(
e∆E2 (t1−t2)

))
. (A.60)

The effective particle mass is now given by the ground state Energy of the hadron with

Meff = ∆E1. The exponential containing the ground state energy is canceled by the

factor 1
Z due to
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Z =

∫
D[U ] e−Seff[U ] =

∑
n

〈n|e−H T |n〉 (A.61)

=
∑
n

e−En T
T�1
= e−E0 T . (A.62)

Substituting t = t1 − t2 the expression for the meson correlator reads

C(t) = Ae−∆E1 (t)
(

1 +O
(
e∆E2 (t)

))
, (A.63)

where ∆E2 is the energy difference to the first excited state. By expressing the time t in

units of the lattice constant a via t = nt a (nt denotes the lattice sites in time direction)

an effective mass can be defined:

Meff

(
nt a+

1

2
a

)
= ln

(
C(nt a)

C(nt a+ a)

)
. (A.64)

At this point the lattice spacing a can be dropped and C(nt) can be considered at the

lattice sites nt. As soon as the correlation function C(nt) is dominated by the ground

state ∆E1 the higher energy contributions from the sub-leading exponentials can be

neglected - the effective mass Meff becomes constant. Due to the periodical boundary

conditions of the lattice and the symmetry properties of the correlation function, the

exponential function must be replaced by a cosh-function:

e−∆E1 (nt) −→ 1

2

(
e−∆E1 (nt) + e−∆E1 (NT−nt)

)
. (A.65)

Therefore eq.(A.64) assumes the more complicated form of

Meff

(
nt +

1

2

)
= ln

(
C(nt)

C(nt + 1)

)
= ln

(
cosh(Meff(nt −NT /2))

cosh(Meff(nt + 1−NT /2))

)
. (A.66)

In order to extract the effective mass eq.(A.66) has to be solved for Meff at each time

slice. Then a curve is plotted with the values of Meff for each time slice. Afterwards

a constant fit has been done in the region where Meff has become constant which is

considered as the effective mass plateau.
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