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Abstract

Modern studies in hadron spectroscopy using for example the Born-Oppenheimer approx-

imation require accurate descriptions for heavy quark potentials. One type of relativistic

corrections are spin-dependent potentials, which cause the fine- and hyperfine splitting

in heavy quarkonia spectra. These corrections require colour field correlation functions

from lattice computations. Unfortunately, Monte Carlo simulations for these correlation

functions suffer from a small signal-to-noise ratio at intermediate and large loop sizes. For

Polyakov loops, the multilevel algorithm is already successfully in use and led to significant

improvements. In this thesis, we try to reproduce results from reference [1] and investigate

the multilevel algorithm for Wilson loops. We found, that the multilevel algorithm leads

to a small signal-to-noise ratio and gives access to large quark separations.
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Chapter 1

Introduction

Heavy quark potentials are important for a variety of modern studies, in particular for

tetra-quarks and hybrid mesons. These studies rely on accurate descriptions for heavy-

quark potentials, which are still not perfectly understood. Early experimental results have

shown, that heavy quarks fit into a non-relativistic picture. Soon after the discovery of

heavy-quark bound states J/ψ and Υ, the search for relativistic corrections to the static

potential has begun. An expansion of the qq̄-propagator in powers of the inverse mass

has led to corrections connected to spin effects at order O(m−2), which are referred to as

the Eichten-Feinberg-Gromes formulae [2, 3]. Velocity-dependent corrections have been

derived at this order as well [4]. Later, with the application of potential non-relativistic

QCD (pNRQCD), further corrections have been found at O(m−1) [5].

Heavy quark potentials find application in particular in mass spectroscopy, with different

methods in use. In the case of systems where both, heavy and light quarks are present, the

Born-Oppenheimer approximation finds application. In a system like this, heavy quarks

are approximately static in comparison to light quarks, due to the mass difference. This

allows to non-relativistic computations, in particular solving the Schrödinger equation for

the heavy quarks using heavy quark potentials. In references [6, 7], spectra for systems

consisting of bottom quarks and light quarks were computed in the Born-Oppenheimer

approximation, using static potentials from lattice QCD. The Born-Oppenheimer approx-

imation can also be used in form of an effective theory, in particular pNRQCD. Here,
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one simplifies the computation by integrating out energy scales ∼ m (what leads to non-

relativistic QCD, or NRQCD) and then ∼ mv in form of matching coefficients before

solving the Schrödinger equation [8]. Reference [9] applied a combination of the above

mentioned relativistic corrections to compute mass spectra of charmonium and bottomo-

nium states in pNRQCD. For both, bottomonium and charmonium states, this signifi-

cantly increased the accuracy of the results. Thus, relativistic corrections to the static

potential appear to be significant contributions for these computations. The full set of

the above mentioned relativistic corrections is also promising for computations involving

charm quarks.

Relativistic corrections to the static potential can be computed via time integrals over

colour-field correlation functions. These correlation functions can be computed numeri-

cally, using Monte Carlo methods from lattice QCD. In lattice QCD, the gauge field is

represented by so-called link-variables, elements of the group SU(N). Colour field corre-

lators can be constructed via inserting a combination of so-called plaquettes into a closed

loop of link-variables and taking the trace. In references [1, 10], results for spin-dependent

corrections in SU(2) and SU(3) are presented. A computation of the non-relativistic cor-

rections at O(m−1) is performed in reference [11].

Statistical errors in Monte Carlo simulations scale with the inverse square root of the

number of measurements. In the case of spin-dependent corrections to the static quark

potential, expectation values are affected by large signal-to-noise ratios [1, 10]. The error

increases exponentially with the spatial times temporal length of the loop, or the area

covered by a rectangular loop. Generating more configurations to improve errors is not an

effective way to face this problem, a better algorithm is needed. The multilevel algorithm

aims to improve these errors exponentially. The lattice is separated into several time slices

with fixed spatial boundaries. For each time slice, a number of sublattice configurations is

generated using a Monte Carlo updating algorithm. The part of an observable on a time

slice is averaged over a set of sublattices, after that, the full operator is constructed. Since

time slices can be updated independently, the number of sublattice updates increases the

total number of measurements in fact exponentially. This causes a more effective improve-

ment of the signal-to-noise ratio [12].
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This thesis investigates spin-dependent corrections to the static potential in SU(2) at

β = 2.74, as it was done in reference [1]. We improve the results of reference [1] by apply-

ing the multilevel algorithm for Wilson loops. Chapter 2 summarizes the theoretical basics

from the references and defines the notation. The main parts are the required correlation

functions, the spin-dependent corrections to the potential and the multilevel algorithm.

In chapter 3, the results for correlators, as well for the spin-potentials, are presented. The

conclusion and outlook for later works are discussed in chapter 4.
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Chapter 2

Theoretical Basics

2.1 Observables in Lattice Gauge Theory

2.1.1 Wilson Gauge Action and Wilson Loops

This subsection recaptures the basic ideas behind Wilson loops on the lattice and sets the

notation used in this thesis. It is based on reference [13].

In lattice gauge theory, one can compute vacuum expectation values of observables us-

ing path integrals. The notation is

〈O〉 =
1

Z

∫
D[U ]e−SG[U ]O[U ] (2.1)

where D[U ] is the gauge-invariant Haar-measure, SG[U ] the Wilson gauge action and O[U ]

the observable. Z is a partition function, which leads to 〈1〉 ≡ 1. To find an expression for

the action SG[U ], consider a lattice for Yang-Mills theory. The lattice Λ consists of L3
Λ ·TΛ

points with so-called link variables Uµ(n) for each direction ±µ attached to each point

n = (n0, n1, n2, n3). Uµ(n) are elements of the group SU(N). Since gauge fields Aµ(x)

are elements of the algebra to SU(N), one can identify Uµ(n) = exp(iaÂµ(n)), which

shows, that Uµ(n) in the continuum limit is identical to so-called gauge transporters. As
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2.1. OBSERVABLES IN LATTICE GAUGE THEORY

a consequence, one finds the identity U−µ(n) = U †µ(n − µ̂). The gauge transformation of

Uµ(n) takes the form

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω†(n+ µ̂) (2.2)

with Ω(n) ∈ SU(N). It is clear to see, that for products, the Ω’s between two neighbouring

U ’s becomes the identity, i. e. Ω(n−µ̂)Uµ(n−µ̂)Ω†(n)Ω(n)Uν(n)Ω(n+ν̂) = Ω(n−µ̂)Uµ(n−

µ̂)Uν(n)Ω(n + ν̂). The transformation cancels between the product of two neighbouring

link-variables. One can then see, that the trace of the product of link-variables along a

closed loop is a gauge invariant quantity. The non-Abelian nature of SU(N) prevents

transformation matrices of the left and right side of the product to cancel out. Taking

the trace allows to exploit cyclicity. The smallest loop one can construct in this fashion is

called a plaquette. The notation is

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ µ̂+ ν̂)U †ν (n+ ν̂) (2.3)

= exp(iaÂµ(n)) exp(iaÂν(n+ µ̂)) exp(−iaÂµ(n+ µ̂+ ν̂)) exp(−iaÂν(n+ ν̂))

= exp(ia2F̂µν(n) +O(a3))

Note, that we have identified the field strength tensor in the exponential.

Using the plaquette, one can find for the Wilson gauge action

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re tr[id− Uµν(n)] (2.4)

=
a4

2g2

∑
n∈Λ

∑
µ,ν

tr[F 2
µν ] +O(a2)

In the continuum limit a → 0, one finds lima→0 SG[U ] = SG[A]. The technicalities of the

continuum limit of the Wilson action are elaborated in reference [13].

The Wilson loop is an observable which is commonly used, as it is simple to compute

and contains important information. It is a rectangular loop, consisting of two spatial

and temporal lines. With L̂(n, r/a) denoting a spatial line, starting at lattice point n, in

direction r/a and T̂ (n, t/a) denoting a temporal line at n of length t/a, the Wilson loop
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2.2. SPIN-DEPENDENT CORRECTIONS

can be written as

W (n, r/a, t/a) = tr[L̂(n, r/a)T̂ (n+ (0, r/a), t/a)L̂†(n+ tn̂0/a, r/a)T̂ †(n, t/a)] (2.5)

Bold faces indicate, that the quantity faces into a spatial direction, i. e. has vector-

character. When discussing the multilevel algorithm, T̂ (n + (0, r/a), t/a)αγ T̂
†(n, t/a)βδ

(colour indices α, β, γ, δ) are replaced with the two-link operator T̂(n, r/a, t/a)αβγδ.

The expectation value 〈W (r/a, t/a)〉 of the Wilson loop does not depend on the gauge.

Therefore, one can go into temporal gauge, where one can see that the Wilson loop is the

correlator between the two spatial lines L̂, L̂†. The spectral decomposition is

〈W (r/a, t/a)〉 =
∑
k

|〈0|L̂(r/a)ab|k〉|2e−(t/a)Êk (2.6)

∝ e−(t/a)V̂ (r/a)(1 +O(e−(t/a)∆Ê))

L̂(r/a) and L̂(r/a)† are the creation and annihilation operators of a quark-antiquark pair

with separation r/a in the static limit. Hence, one identifies Ê1 = V̂0(r/a) and ∆Ê

denoting the difference between V̂0(r/a) and the energy of the next excited state. Lattice

quantities, denoted by a hat symbol, are connected to physical quantities via a dimension

cancelling factor, e. g. V̂0(r/a) = aV0(r/a).

2.2 Spin-dependent Corrections

In systems containing heavy and light quarks, heavy quarks can be seen in a non-relativistic

picture. This is used, for example, in the Born-Oppenheimer approximation. Splitting the

computation for the heavy and light degrees of freedom, one perform the computation for

the heavy quarks using a Schrödinger equation. The standard for computations involving

heavy and light quarks was to treat the heavy quarks as static particles, realised with the

static potential. Adding relativistic corrections to the static potential is expected to lead

to significantly more accurate computations. Examples for computations, which use the

static potential and can benefit from these corrections, are references [6, 7]. In context

of the Wilson loop formalism, one can derive correction terms to the qq̄-potential around
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2.2. SPIN-DEPENDENT CORRECTIONS

the static limit by expanding the propagator in powers of 1/m. At order m−2, one can

find contributions which are connected to spin-effects. These spin-dependent contributions

cause fine- and hyperfine splitting of heavy quarkonia spectra [2].

We will briefly sketch, how one can expand the quark propagator in terms of m−1. Seeing

the propagator S(x, y;A) as the Green’s function to the Dirac equation

(γµDµ −m)S(x, y;A) = δ4(x− y) (2.7)

with covariant derivative Dµ = i∂µ + gAµ, its non-relativistic counterpart is defined via

(γ0D0 −m)S0(x, y;A) = δ(x0 − y0) (2.8)

for which the formal solution is proportional to e−m(x0−y0) can be found in reference [2].

From this, one can construct an integral equation for S(x, y;A):

S(x, y; A) = S0(x, y; A) +

∫
d4zS(x, z; A)~γDS(z, y;A) (2.9)

One can simplify the problem with projection operators P± = 1±γ0
2 , i. e. writing the

equation in terms of Sab(x, y;A) = PaS(x, y;A)Pb, a, b = +,−. This results in

S++(x, y;A) = S++
0 (x, y;A) +

∫
d4zd4wS++

0 (x, z;A)~γDS−−0 (z, w;A)~γDS++(w, y;A)

(2.10)

Equation (2.10) has an intuitive interpretation, the Feynman graph can be seen in figure

(2.1). The first term describes a particle propagating from x to y, only interacting non-

relativistically with the gauge field. In the second term, the particle propagates to z first,

where it scatters with the interaction kernel ~γD and travels backwards to point w. Both

propagations again include solely non-relativistic interactions. At point w, it scatters

again, this time propagating forward to y and interacting fully relativistically. One can

plug the full solution of S0 into this equation and perform integration by parts for the time

components. Each integration by parts takes the remaining integral to a higher order in

m−1. The full derivation of all terms proportional to m−2, as well as a scheme for higher

orders, is performed in reference [2].
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2.2. SPIN-DEPENDENT CORRECTIONS

Figure 2.1: Feynman graph to equation (2.10), taken from reference [2].

The computation of the spin-dependent correction terms can be performed in a formalism

which uses Wilson loops in the non-relativistic limit. In short, one can write the Wilson

loop expectation value in the continuum in terms of quark propagators S(x, y;A). By

substituting S(x, y;A) with the static propagator S0(x, y;A), one can find an expression

for the potential in the static limit. Likewise, one can instead insert an expansion of

S0(x, y;A) up to arbitrary power in m−1, in order to find an expression for relativistic

corrections to the static potential. Reference [2] presented this computation for spin-

dependent corrections in detail. For heavy quark masses M1, M2, one can write spin-

dependent contributions as

Vsd(r; L,S1,S2) =

(
LS1

M2
1

+
LS2

M2
2

)
V ′0(r) + 2V ′1(r)

2r

+
L(S1 + S2)

M1M2

V ′2(r)

r

+

(
(S1r̂)(S2r̂)

M1M2
− S1S2

3M1M2

)
V3(r)

+
S1S2

M1M2
V4(r) (2.11)

with spin-potentials V ′1(r), V ′2(r), V3(r) and V4(r) which only depend on the quark sep-

aration r. Equation (2.11) can also be defined in the context of an effective field theory

framework, such as NRQCD or pNRQCD, with the corresponding matching coefficients

8



2.2. SPIN-DEPENDENT CORRECTIONS

[10]. The spin-potentials can be determined from colour field correlation functions. For

colour fields Ê and B̂, the spin-potentials can be expressed in lattice units as

rk
r
V̂ ′1(r) = εijk lim

τ→∞

∫ τ

0
dt t〈〈B̂i(r1, t1)Êj(r1, t2)〉〉 (2.12)

rk
r
V̂ ′2(r) = εijk lim

τ→∞

∫ τ

0
dt t〈〈B̂i(r1, t1)Êj(r2, t2)〉〉 (2.13)

(
rirj
r2
− δij

3
)V̂3(r) +

δij
3
V̂4(r) = 2 lim

τ→∞

∫ τ

0
dt 〈〈B̂i(r1, t1)B̂j(r2, t2)〉〉 (2.14)

where t = t2 − t1 and r = r2 − r1. t1, t2 refer to the temporal and r1, r2 to the spatial

’start’ and ’end’ of the loop. V ′1 and V ′2 describe spin-orbit interactions, while V3 and

V4 correspond to spin-spin interactions. Equations (2.12) to (2.14) can be considerably

simplified by choosing r ≡ (0, 0, r). Then,
rirj
r2

= δij ,
rk
r = δ3k and εij3BiEj = B1E2 −

B2E1. For the correlators, one can also find for r = (0, 0, r) the relations

〈〈B̂1(0, 0)Ê2(0, t)〉〉 = −〈〈B̂2(0, 0)Ê1(0, t)〉〉 (2.15)

〈〈B̂1(0, 0)Ê2(r, t)〉〉 = −〈〈B̂2(0, 0)Ê1(r, t)〉〉 (2.16)

〈〈B̂1(0, 0)B̂1(r, t)〉〉 = 〈〈B̂2(0, 0)B̂2(r, t)〉〉 (2.17)

Using this, the spin-potentials become

V̂ ′1(r) = 2 lim
τ→∞

∫ τ

0
dt t〈〈B̂1(0, 0)Ê2(0, t)〉〉 (2.18)

V̂ ′2(r) = 2 lim
τ→∞

∫ τ

0
dt t〈〈B̂1(0, 0)Ê2(r, t)〉〉 (2.19)

V̂3(r) = 2 lim
τ→∞

∫ τ

0
dt〈B̂3(0, 0)B̂3(t, r)〉〉 − 〈B̂1(0, 0)B̂1(t, r)〉〉 (2.20)

V̂4(r) = 2 lim
τ→∞

∫ τ

0
dt2〈B̂1(0, 0)B̂1(t, r)〉〉+ 〈B̂3(0, 0)B̂3(t, r)〉〉 (2.21)

Making use of the spectral representation of correlators 〈〈F̂1(0)F̂2(t)〉〉, one can integrate

analytically. A necessary assumption is, that one can approximate the spectral decompo-

sition for 〈〈F̂1(0)F̂2(t)〉〉 in equation (2.45) with
∑

mD
12
m e
−∆V̂mt ≈∑mmax

m=0 D̃12e−∆Ṽmt (see
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2.2. SPIN-DEPENDENT CORRECTIONS

reference [1]). In this case, one finds

∫ ∞
0

dt t〈〈F̂1(0)F̂2(t)〉〉 ≈
∫ ∞

0
dt t

mmax∑
m=1

D̃12
m e
−∆Ṽmt

=

mmax∑
m=1

∫ ∞
0

dt tD̃12
m e
−∆Ṽmt

=

mmax∑
m=1

D̃12
m

(∆Ṽm)2
(2.22)

∫ ∞
0

dt〈〈F̂1(0)F̂2(t)〉〉 ≈
∫ ∞

0
dt

mmax∑
m=1

D̃12
m e
−∆Ṽmt

=

mmax∑
m=1

∫ ∞
0

dtD̃12
m e
−∆Ṽmt

=

mmax∑
m=1

D̃12
m

∆Ṽm
(2.23)

Reference [1] argues, that D12
0 = 0 and as a consequence, all correlation functions decay

exponentially. The arguments for this are, that included operators project onto spaces

which are orthogonal to each other. Therefore, the sums start at m = 1. Additionally, for

V ′1 and V ′2 , one finds by demanding invariance under time inversion, that
∑

m D̃
12
m = 0.

The coefficients D̃12
m and ∆Ṽm can be extracted from fit curves to the lattice data.

The functions for the spin-potentials are related to each other and to the static potential V0.

An exact relation V ′2(r)−V ′1(r) = V ′0(r) was derived by Gromes, by demanding invariance

under Lorentz transformations. Reference [10] lists the expected compositions of the spin-

potentials in terms of interaction kernels (see table (??)). These contributions are later

useful to determine and discuss suitable parametrizations for each spin-potential. Vice

versa, the quality of the fit curves might give hints to whether the underlying assumptions

to the interaction types are correct. If V ′1 has a purely scalar interaction kernel and if

pseudo-scalar contributions can be neglected for each spin-potential, one finds [1]

V3(r) =
V ′2(r)

r
− V ′′2 (r) (2.24)

V4(r) = 2∇2V ′2(r) (2.25)
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2.3. COLOUR FIELD CORRELATORS

Tree-level results from perturbation theory, combined with the non-perturbative linear

contribution, are

V0(r) = −CFαs
r

+ κr (2.26)

V ′1(r) = −κ (2.27)

V ′2(r) =
CFαs
r2

(2.28)

V3(r) =
3CFαs
r3

(2.29)

V4(r) = 8πδ3(r) (2.30)

We want to emphasize, that there are more known corrections to the static potential,

than the spin-dependent corrections. At order O(m−1), a correction term appears, which

is linked to self-interactions of gluons, i. e. three-gluon vertices [9]. At order O(m−2), one

finds not only spin-spin and spin-orbit interactions, but also corrections corresponding

orbit-orbit interactions [1, 10, 14, 9]. All these corrections are important parts for an

accurate description of systems containing heavy quarks.

2.3 Colour Field Correlators

Similar to electric and magnetic fields in electrodynamics, one defines colour fields in

SU(N) using the field strength tensor

Ei = F0i (2.31)

Bi = εijkFjk (2.32)

Equation (2.3) shows us, that colour fields can be constructed on the lattice using com-

binations of plaquettes. The so-called clover definition of colour fields uses the following
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2.3. COLOUR FIELD CORRELATORS

combinations:

F̂µν(n) =
1

2i
(Ûµν(n)− Û †µν(n)) (2.33)

Êi(n) =
1

2
(F̂0i(n) + F̂−i0(n)) (2.34)

B̂i(n) =
1

8
εijk(F̂jk(n) + F̂k−j(n) + F̂−k−j(n) + F̂−kj(n)) (2.35)

F̂µν , Êi, B̂i are the dimensionless lattice counterparts to Fµν , Ei, Bi from the continuum.

One might notice here, that the electric field is defined in Euclidean space and is connected

to the Minkowski definition via a factor i. To form a correlation function, Ê and B̂ can

be inserted into the temporal lines of a Wilson loop of temporal size tW . For purposes

which become clear later, colour fields should be inserted ’far’ from the spatial lines of the

loop. The smallest temporal distance between a field and a spatial line will be denoted

by ∆t in the following. For a single colour field, one would place it in the center of a

temporal line and let tW → ∞. To avoid effects coming from the finite temporal lattice

size, tW should be smaller than TΛ/2 and TΛ sufficiently large. One can now construct the

correlator between two colour fields F̂1(0), F̂2(t/a) at times 0 and t/a (F̂1,2 can both be

either a Ê- or a B̂-field). Inside a Wilson loop with tW = t+ 2∆t, we place F̂1, F̂2 inside

the temporal lines and include it in the path ordering. To make formulas more readable,

the lattice spacing a will be omitted in the following. In other words, t = t/a and r = r/a.

For F̂1(0) at (n0 + ∆t,n) and F̂2(t) at (n0 + t+ ∆t,n + r) this reads as

〈F̂1(0)F̂2(t)〉W = 〈tr[Γ̂(n, r)T̂ (n+ (0, r),∆t)F̂1(n+ (∆t, r))

× T̂ (n+ (∆t, r), t+ ∆t)Γ̂†(n+ (t+ 2∆t)n̂0, r)

× T̂ †(n+ (∆t+ t)n̂0,∆t)F̂2(n+ (t+ ∆t)n̂0)T̂ †(n, t+ ∆t)]〉 (2.36)

A graphic for equation (2.36) is given in figure (2.2). Here, F̂1(0) is connected to the lower

Wilson line via a temporal line of length ∆t and to the upper Wilson line via a temporal

line of length t+∆t. Depending on the notation, one might need F̂ † in the loop, or switch

the spatial positions. However, as seen from equation (2.33), this only changes the sign of
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2.3. COLOUR FIELD CORRELATORS

Figure 2.2: Schematic picture of a correlation function, as it is given in equation
(2.36). The small rectangles represent the insertions F̂1, F̂2.

the operator. Finally, one divides 〈F̂1(0)F̂2(t)〉W by a plain loop:

〈〈F̂1(0)F̂2(t)〉〉 =
〈F̂1(0)F̂2(t)〉W

〈W 〉 (2.37)

In the following, 〈〈...〉〉W denotes 〈...〉W /〈W 〉.

The lattice formulation of colour field correlators contains discretization errors, for which

renormalization has to be applied. A commonly used renormalization procedure is the

one by Huntley and Michael. It uses F̄µν = 1
2(Ûµν + Û †µν) to define Ēi and B̄i analogue

to equations (2.34,2.35). The procedure is perturbatively derived, so lattice artefacts will

not entirely be removed. For each colour field F̂ , one applies a factor of ZF̄ = 1/〈〈F̄ 〉〉

multiplicatively. In the case of colour-field correlators, one has

〈〈F̂1(0)F̂2(t)〉〉 =
〈F̂1(0)F̂2(t)〉W 〈W 〉
〈F̄1〉W 〈F̄2〉W

(2.38)

The quantity 〈〈·〉〉 can be also computed in the context of other loop structures, with

similar results in the limit t→∞. Reference [10] for instance uses Polyakov loops.

Later analysis will require a suitable parametrization for colour field correlators. Reference

13



2.4. MULTILEVEL ALGORITHM

[1] computed the spectral representation

〈〈F̂1F̂2〉〉W =
∑
m

D12
m e
−∆V̂mt × (1 + E12

m e
−∆V̂1∆t + ...) (2.39)

D12
m =

Re(f1
0mf

2
m0)

g1
00g

2
00

(2.40)

E12
m =

Re[(d1/d0)(f1
1mf

2
m0 + f1

0mf
2
m1)]

Re(f1
0mf

2
m0)

− Re[(d1/d0)g1
10]

g1
00

− Re[(d1/d0)g2
10]

g2
00

(2.41)

dm = 〈0|Γ̂(r)|m, r〉 (2.42)

f imn = 〈m, r|F̂i|n, r〉 (2.43)

gimn = 〈m, r|F̄i|n, r〉 (2.44)

Where |0〉 is the ground state of the vacuum and |n, r〉 the nth eigenstate of a qq̄-pair with

separation r. One can see, that a large ∆t and a small E12
m allow to approximate

〈〈F̂1F̂2〉〉W ≈
∑
m

D12
m e
−∆V̂mt (2.45)

2.4 Multilevel Algorithm

This section focuses on the idea behind the multilevel algorithm and the way it is im-

plemented in praxis. It is based on reference [12], which first introduced the method.

Wilson loops, as well as Polyakov loops, are computed as statistical expectation values.

From a Monte Carlo simulation, where one generates a set of lattice configurations from

random numbers, the expectation value is approximated via the mean value of the N

measurements. To reduce errors, a straight-forward method would be to increase the

statistics, as errors scale with 1/
√
N . On the other side, relative errors of Wilson loops

scale exponentially with rt for long distances, so the approach to simply increase N will

fail eventually for large loop sizes. One example are colour field correlators, used to com-
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2.4. MULTILEVEL ALGORITHM

pute spin-dependent corrections to the static potential. The signal-to-noise ratio can be

several magnitudes smaller for colour field correlators than for Wilson loops.

The multilevel algorithm splits operators on the lattice into time slices 1. For those time

slices, one generates a number of so-called sublattices and computes averages.

A loop on the lattice can be separated into slices along the temporal axis as follows. For

a Wilson loop, a spatial line can be written in (colour-)index-notation:

L(x0)αβ = {Ui(x) · ... · Ui(x+ (r − a)n̂i)}αβ (2.46)

with x = (x0, an̂i). In temporal direction, a so-called two-link operator can be defined as

T(x0)αβγδ = U0(x)∗αβU0(x+ an̂i)γδ (2.47)

Multiplication of two-link operators then takes the form

{T(x0)T(x0 + a)}αβγδ = T(x0)αλγεT(x0 + a)λβεδ (2.48)

and Wilson loops become

W (C) = L(0)αγ{T(0) · ... ·T(t− a)}αβγδL(t)∗βδ (2.49)

Monte Carlo updates using the Wilson action (2.4) are performed locally. The locality

of the action can be exploited, to define a substructures of the lattice and simulate it

independently. Along the temporal axis, the lattice can be split into time slices of variable

thickness. Spatial hypercubes on the boundaries between time slices are held fixed. Be-

tween boundaries, the gauge links are dynamical degrees of freedom. The whole structure

is called the sublattice.

In the two-link operator notation, a loop can be decomposed, such that its parts fit into

the time-slices. The locality of the plaquette allows now to perform Monte Carlo updates

of the sublattice and take the sublattice average of two-link operators. For time-slices with

1Be aware that reference [12] and [10] refer to different quantities, when they say sublattice
and time slice. Here, the definition from reference [12] is taken, where a time slice consists of the
lattice points in the time interval [x0, y0], whereas reference [10] calls this the sublattice.
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2.4. MULTILEVEL ALGORITHM

thickness 1, a sublattice average, denoted by [...], takes the form

[T(x0)...T(x0 + t/a− 1)] =
1

Zsub

∫
D[U ]subT(x0)...T(x0 + t/a− 1)e−SG[U ]sub (2.50)

As for operators on the whole lattice, Zsub is the partition function, such that [1] = 1.

Note, that sublattice expectation values are well-defined objects of link variables on a

time-slice with its boundaries, but the respective regions do not depend on each other.

With the global configuration on the top level and a sublattice on the next level, one can

substitute two-link operators with their sublattice expectation values

〈W 〉 = 〈L(0)αγ{[T(0)...T(t− a)]}αβγδL∗βδ〉 (2.51)

This scheme can be taken to further levels. If the time slice thicknesses of the sublattice

are large, another sublattice can be defined on the next lower level. As an example, a time

slice of thickness 2 can fit two time slices of thickness 1. The corresponding expectation

values then satisfy the identity

[T(x0)T(x0 + a)] = [[T(x0)][T(x0 + a)]] (2.52)

As long as time slices on lower levels fit into those of the higher level, time slice patterns

can be almost arbitrary. However, one might find exceptions, where thin time-slices can

cause problems (see discussion on confinement in reference [12]).

2.4.1 Exactness of the stochastic Mean Value

This section recaptures arguments for the exactness of lattice expectation values computed

with the multilevel algorithm, as it is presented in reference [12]. It also pictures, how the

algorithm reduces statistical errors.

Assume a system S with a finite number of states s ∈ S, where every s can be written as

a vector (s0, ..., sn). For simplification, let s0, ..., sn be discrete variables. A state s ∈ S
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2.4. MULTILEVEL ALGORITHM

has a stochastic weight p(s), which can be factored as

p(s) = p0(s0)
n∏
k=1

pk(s0, sk) (2.53)

with

∑
s0

p0(s0) = 1 =
∑
sk

pk(s0, sk) (2.54)

p0(s0) is the probability, to find the value s0 in the 0th entry of s. pk(s0, sk) is the

probability to find the value sk in the kth entry, given s0. For a lattice with two levels

(global and one lower level), s0 relates to the fixed boundaries between time slices on the

lower level, while sk’s are the dynamic degrees of freedom. An observable measured in a

state s factors as

O(s) = O0(s0)

n∏
k=1

Ok(s0, sk) (2.55)

and one can write the expectation value

〈O〉 =
∑
s0

p0(s0)O0(s0)
n∏
k=1

[Ok](s0), (2.56)

[Ok](s0) =
∑
sk

pk(s0, sk)Ok(s0, sk) (2.57)

One can show, that mean values computed via the multilevel algorithm, are indeed de-

scribed by this factorization. A proof is given in reference [12]. The factorization of the

mean value of an observable hints on how the application of the multilevel algorithm

improves statistical errors. s1, ..., sn, which are the areas between the fixed time slice

boundaries, are updated independently from each other at a given s0. As a consequence,

the conditional probability pk(s0, sk) distribution is simulated. The N (0) updates on the

global configuration, as well as the sequence of N (0) global updates and N (1) sublattice

updates, simulate p(s). A closer look to the sublattice reveals, that the algorithm actu-

ally performs (N (1))n updates on the sublattice. This is because the n areas between the

boundaries do not depend on each other and updates are performed separately.
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Chapter 3

Results

For this thesis, we investigated a lattice with parameters given in table 3.1. Further lattice

spacings were not investigated.

For the Monte Carlo simulations, C++ programs provided by Christian Reisinger were

used to generate gauge field configurations and compute correlation functions with the

multilevel algorithm. The multilevel program takes a file, in which structure of the sub-

lattice for every correlator is defined, i. e. how the full lattice is split into time slices. A

composition for every two-point function at every t of interest has to be found. This made

the search for suitable compositions more complicated and, especially for odd t, compro-

mises had to be made. As an example, a lattice with T/a = 32 would fit 32 time-slices of

thickness 1. Unfortunately, the program does not allow us to place an Ê-field at the edges

of a time-slice, since in the clover definition, gauge links from the upper and the lower

time slice are needed. This limits the options significantly. Mean values from multilevel

computations were found to be equal to conventional computations within errors.

The evaluation of results from the Monte Carlo simulation was performed with Python.

Table 3.1: Parameters for the investigated lattice. The lattice spacing a is taken
from reference [1].

Inverse coupling Volume Lattice spacing Spatial size # Configs

β (T/a) · (L/a)3 a [fm] L [fm] N
(0)
c

2.74 32 · 323 0.041 1.30 1000
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3.1. MULTILEVEL AND APE-SMEARING PARAMETERS

For error estimates, a script which uses the single-elimination Jackknife method according

to reference [15] was written. Fit parameters for curves were computed via the function

curve fit from the library Scipy.

3.1 Multilevel and APE-Smearing Parameters

To optimize multilevel and smearing parameters, N
(0)
c = 100 thermalized, independent

lattice configurations were used. We were looking for sets of multilevel parameters, which

minimize the quantity σ2τ , i. e. the square of the standard deviation times the computation

time. The investigation of multilevel parameters can be very time consuming. Therefore,

in some cases, the set of multilevel parameters was only crudely determined. Neverthe-

less, we found parameters which were very effective and an improvement to conventional

methods.

Previous computations by Christian Reisinger found for the used lattice parameters, that

the optimal time slice thickness is about one lattice spacing. The study for SU(3) can be

found in reference [16], for SU(2), results were similar. Time slice thickness of two lattice

spacings was preferred in this study, since it did not significantly affect results, but led

to more convenient sublattice compositions. For Correlators at uneven t/a, we replaced

several time slices of thickness 2 with time slices of thickness 3, which led to a reduced

number of positions in the lattice on which we could evaluate the correlator. With a fixed

sublattice composition using two levels, the only parameters to optimize are the number

of sublattice measurements N
(1)
c and number of Monte Carlo updates N

(1)
iupd in between.

N
(0)
iupd is conventionally chosen large, such that the correlation between measurements on

global configurations is as small as possible. On a sublattice however, N
(1)
iupd can be small,

compared to N
(0)
iupd, since the correlation between sublattice measurements is not relevant,

if global configurations are uncorrelated. We start the multilevel parameter optimization

with N
(0)
iupd. For fixed N

(0)
c , N

(1)
c , a correlation function was evaluated for different values

of N
(1)
iupd and search for a minimum in σ2τ . This was the case for N

(1)
iupd = 10. To opti-

mize N
(1)
c , N

(0)
c , N

(1)
iupd were then held fixed and one tries to find the minimum of σ2τ . We

found the minimum for correlators at even times and intermediate distances up to r/a = 7
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3.1. MULTILEVEL AND APE-SMEARING PARAMETERS

Table 3.2: Multilevel parameters used for all correlators for various r and t. The
number of evaluated Ntsl refers to the number of time slices on the sublattice on
which we were able to compute a correlator.

r/a t/a #Evaluated Ntsl N
(1)
c N

(0)
iupd

2− 7 even 16 40 10
2− 7 odd 4 120 10
8− 10 even 16 120 10
8− 10 odd 4 360 10

to be at N
(1)
c = 40. For the investigated correlators at r/a = 10, a minimum was not

found up to N
(1)
c ≈ 160. Instead, σ2τ had a flat slope with only a very small difference

between N
(1)
c = 100 and N

(1)
c = 160. Due to time limits, we had to restrict N

(1)
c to

120 measurements. Nevertheless, the computation was in total significantly more effective

than conventional computations. Correlators at uneven t/a could crudely be optimized

by tripling N
(1)
c . The parameters are shown in table 3.2.

An APE-smearing step is the substitution

Ui(n)→ PSU(N)

(
(1− αAPE)Ui(n) + αAPE

∑
j=±1,±2,±3

j 6=i

Uj(n)Ui(n+ n̂j)U
†
j (n+ n̂i)

)
(3.1)

for link-variables in all spatial hypercubes on the lattice with projection on SU(N) PSU(N)

and a free parameter αAPE (here chosen as αAPE = 0.5). One can perform this step

recursively for NAPE iterations. APE smearing is used to increase the overlap between the

ground state of a qq̄-pair and the vacuum. This is important to the spectral decomposition

of both, Wilson loops in equation (2.6) and colour field correlators in equation (2.39), in

order to suppress excited states. The investigated colour field correlation functions use

Wilson loops with shortest temporal size of tW = 6. The effective static potential is

plotted for various numbers of APE-smearing steps. For r/a = 10, Veff(t/a) is shown in

figure (3.1). NAPE = 200 seemed to be the appropriate choice.
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3.2. STATIC POTENTIAL

Table 3.3: Fitparameters for V0(r)

aVc c1 a−1c2 a2κ χ2/NDF

Conventional 0.48(73) 0.22(78) 0.03(5) 0.0078(15) 0.99
Multilevel 0.489(6) 0.254(5) 0.02(0) 0.00784(0) 0.05

3.2 Static Potential
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Figure 3.1: V̂eff(t) at r/a = 10 for different numbers of APE-smearing steps, com-
puted without the multilevel algorithm.

Using conventional methods and the multilevel algorithm, Wilson loops have been com-

puted for a number of values of NAPE. The results for r/a = 10 are shown in figure (3.1).

We checked the multilevel results by comparing to conventional computations. Here, con-

ventional results are denoted with index conv, multilevel results with index mlevel. The

ratio was for all r and t equal to 1 within errors, an example is given in figure (3.2) for

a Wilson loop. Effective potentials Veff(r, t) were investigated for plateaus, to extract

values of the static potential V0(r). To properly describe the static potential in the small

distance region, we used the parametrization from reference [1], which uses an additional

1/r2-term, so in total one has

V0(r) = Vc − c1/r + c2/r
2 + κr (3.2)

The extracted string tension κ and shift Vc for both, multilevel and conventional results,
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Figure 3.2: Ratio of conventional (conv) and multilevel (mlevel) results for 〈W 〉 at
r/a = 7.
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Figure 3.3: V̂0(r/a) computed without the multilevel algorithm. The lines shown
are the fit curve to the data points (green) and the curve using fitparameters from
reference [1] (yellow).
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at all NAPE’s, is equal to the one from reference [1], but c1 and c2 are different. The differ-

ence can be seen at small distances in figure (3.3). We tried to simulate our Wilson loops

with the same set of parameters as in reference [1], the only difference was the application

of link integration in this reference. However, it is unlikely that link integration is the

source for this deviation, since it is a technique which only reduces statistical noise, but

leads to an exact expression. It remains unclear, where this deviation comes from.

The static potential was also computed with Wilson loops results from the multilevel

computations. Conventional and multilevel results from our computations are in agree-

ment with each other. The multilevel algorithm led also to slightly improved statistical

errors. Figure (3.3) shows the plot for V̂0(r/a). Table 3.3 shows fitparameters for both

computations.
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3.3. CORRELATION FUNCTIONS

3.3 Correlation Functions

Equations (2.18-2.21) show, how one can compute the spin-potentials from colour field

correlation functions. The approach to compute the spin-potentials is to parametrize data

points with a suitable ansatz, which can be integrated analytically. This way, parame-

ters from fit curves to our data can be inserted into the analytical expression for each

spin-potential (see equations (2.22), (2.23)). In the following, a correlation function Ci(t),

i = 1, 2, 3, 4 denotes the combination of colour field correlation functions needed to com-

pute the corresponding spin-potential. Equation (2.45) shows the spectral decomposition

for our correlation functions in the limit ∆t → ∞, which is an infinite sum of exponen-

tials. An additional constraint comes for C1(t) and C2(t). Due to invariance under time

inversion, these two correlators have to vanish at t = 0. We discussed in section 2.2, how

we can cut off the multi-exponential at mmax, in order to fit this ansatz to our results.

mmax is chosen, such that χ2/NDF is of order 1 and fits are stable. Especially at larger

distances, a two-exponential fit turned out to be unable to properly describe the data for

both, small and large t. Fits were found to be highly unstable and χ2/NDF was often of

order 100− 1000. Three exponentials were in much better agreement with the data, with

χ2/NDF being close to 1.0 and only few exceptions. Different sets of initial parameters

also did not change the results, which implies that the fits were stable.

Figure (3.4) shows the results for the correlator C2(t) at r/a = 4 with mmax = 2, 3.

Even though the curves show significant differences in the plot, the resulting values for

the potential are roughly equal. What is important for C1 and C2 is the behaviour for

t/a ∈ [5, 10], where C1 and C2 have non-vanishing contributions. The potentials V ′1 , V ′2

are computed by integrating t ·C1, or t ·C2 over time, hence contributions in this interval

are significant. In this example, both fits coincidentally show similar behaviour for large

t, hence the values for V ′2 are similar. In most cases, however, a two-exponential fit ap-

proaches 0 too soon, cutting off important contributions. This can be seen in figure (3.5).

A third exponential with a small exponent and small amplitude is able to compensate for

this.
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Figure 3.4: Two- and three-exponential fits to the data of C2(t) at r/a = 4. The
derived values for V ′2(r) are similar, but the two-exponential fit has a much larger
value for χ2/NDF.
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Figure 3.5: Two- and three-exponential fits to the data of C1(t) at r/a = 10. The
curve with two exponentials vanishes too soon, cutting off contributions at large t.

We fitted the data for the correlation functions C1(t), C2(t), C3(t) and C4(t) for all dis-

tances from r/a = 2 to r/a = 10, using a three-exponential fit. Various correlation

functions are shown in figures (A.1-A.8) in appendix A. As mentioned above, C1(t) and
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Table 3.4: χ2/NDF for the three-exponential fits to correlation functions Ci(t).

r/a χ2/NDF for C1(t) C2(t) C3(t) C4(t)
2 0.95 2.94 0.72 0.97
3 0.28 27.30 0.09 0.99
4 1.28 0.79 1.95 0.42
5 0.66 1.12 3.16 1.14
6 0.23 0.87 4.39 1.11
7 0.50 1.19 1.43 1.87
8 1.73 1.50 0.85 0.26
9 1.58 0.39 1.46 1.42
10 1.21 2.06 0.79 1.01

C2(t) can be shown to vanish at t = 0, therefore, we only computed C1(t/a ≥ 1) and

C2(t/a ≥ 1). This is not the case for C3(t) and C4(t). χ2/NDF is listed for each correla-

tion function in table 3.4.
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Table 3.5: Fitparameters for V ′2(r)− V ′1(r).

Parametrization a2κ c1 a−1c2 χ2/NDF

κ+ c1
r2

0.00686(7) 0.236(3) 4.35
κ+ c1

r2
− 2c2

r3
0.00628(6) 0.285(3) 0.06(9) 0.58

3.4 Spin-dependent Corrections

In this section, we have finished the integrals from equations (2.18-2.21) and present the

results for the spin-dependent potentials.

3.4.1 Gromes Relation

Before presenting the spin potential results, we would like to investigate Gromes’ relation

V ′0(r) = V ′2(r) − V ′1(r). It is the only exact prediction for the potentials, which holds

beyond the short distance regime [10]. V ′0 is computed via fitparameters derived from the

static potential. Results for V ′2(r) − V ′1(r) deviate from the static force and the derived

string tension is noticeably smaller. This can be seen in figure (3.6), table 3.5 shows the

derived fitparameters. To make the difference more visible, figure (3.7) shows the ratio for

the fit curves V ′2(r)− V ′1(r) and V ′0(r). At r/a = 10, the spin-potentials show a difference

of more than 10% from the static force. Reference [10] found for the Gromes relation

similar results. Discretization can be a possible source for this deviation. On one hand,

the relation is derived in the continuum by demanding Lorentz invariance. Reference [10]

suggests, that deviations are expected due to a finite cut-off a for relations which are

derived in the continuum. In the limit a → 0, Lorentz invariance should be restored.

On the other hand, we used a formulation for colour fields which is affected by lattice

artefacts. Equation (2.33) makes use of the Taylor expansion of the plaquette in order

to define the field-strength tensor. Huntley-Michael renormalization factors led to more

accurate expressions for colour fields, but a finite contribution from the lattice cut-off a is

still present. The effect of discretization on the Gromes relation should be tested in the

continuum limit in future studies.
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Figure 3.6: Data points for V ′2(r)− V ′1(r) and the static force. For the static force,
the two parametrizations are shown, as well as the result from reference [1].

2 3 4 5 6 7 8 9 10

r/a

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1
−

(V
′ 2
(r

)
−
V
′ 1
(r

))
/V
′ 0
(r

)

Figure 3.7: Percentaged deviation between the fit for V ′2(r) − V ′1(r) and the static
force V ′0(r).

3.4.2 Spin-Potentials

In the following, we will try to find a suitable ansatz for each spin-potential, in order

to parametrize them. From perturbation theory, one can derive approximate relations

28



3.4. SPIN-DEPENDENT CORRECTIONS

between the spin potentials V ′2 , V3 and V4 and in total, the shape of each spin-potential.

The static potential and the spin-potentials take the following form [1, 10]:

V0(r) = S(r) + V (r) (3.3)

V ′1(r) = −S′(r) (3.4)

V ′2(r) = V ′(r) (3.5)

V3(r) =
V ′(r)

r
− V ′′(r) (3.6)

V4(r) = 2∆V (r) (3.7)

S(r) = κr (3.8)

V (r) = −c1

r
(3.9)

S(r) and V (r) are motivated by the static potential. The static potential and V ′1(r)

do not show terms including κ in leading order perturbation theory (i. e. V ′1(r) = 0).

These terms are added in order to match numerical results for the static potential from

lattice QCD. Equations (3.4-3.7) with the given S(r) and V (r) will lead to the expressions

from equations (2.27-2.28). Our ansatz for the static potential in section 3.2 included an

additional term c2/r
2, which will also be included in the following discussions. For V3 and

V4 one also expects further contributions, which are relevant at short distances r [10]:

V3(r) =
V ′(r)

r
− V ′′(r) + P ′′(r)− P ′(r)

r
(3.10)

V4(r) = 2∆V (r) + ∆P (r) (3.11)

P (r) = −g′e−mgr (3.12)

The term P (r) is motivated by the exchange of pseudo-scalar particles.

For a long time, results from numerical computations for spin-potentials were found to

be in agreement with equations (3.4-3.7) [1, 10]. However, precise computations in SU(3)

from reference [10] found deviations from these expectations. In particular, V ′2(r) does

not seem to vanish for r → ∞ and −V ′1(r), which should be equal to the string tension,

is smaller than expected. This is what we will investigate in the following. Fit results for

all investigated parametrizations can be found in table 3.6.

The expectation for the potential V ′1(r) is, that it is constant −κ. Reference [10] suggests
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that data points at r/a = 2 are affected by lattice artefacts. We took this into account and

performed the fits in the regions r/a ≥ 3. The derived string tension, however, is different

from the one derived from the Gromes relation, as well as the static force. In total, we do

not find the data consistent with a constant value within our accuracy. Though this result

contradicts the expectation, it is in agreement with a result from reference [1], where V ′1(r)

was not found to be constant either. Approaching this in a similar way to reference [1],

by adding a term c1/r
2 to our ansatz, is more consistent with our data, but performed fits

come with a large χ2/NDF. This is shown in figure (3.8). Adding yet another term from

the static force, −2c2/r
3, allows to also include the point at r/a = 2. For consistency, in

the shown fit the point at r/a = 2 was omitted. The parameter κ from the fit to V ′1(r) is

not in agreement with the one derived from the static force V ′0(r), or the Gromes relation

V ′2(r)− V ′1(r). Since this suggests, that κ from our ansatz for V ′1(r) is not the same κ as

in our ansatz for V ′2(r) − V ′1(r), we will for now denote all fit parameters with an index

corresponding to the respective potential (e. g. κv1, c1,v1, c2,v2 for V ′1(r)).

Figure (3.9) shows the results for V ′2(r). We found the potential to approach a constant

for large r and included a term κv2 in our ansatz. Similar to V ′1(r), we also included a term

−2c2,v2/r
3. This parametrization is able to describe the data at r/a = 2, even though

it was omitted in the fit range. The parameters c1 and c2 here were smaller than the

parameters extracted from the static force and Gromes relation. Nevertheless, the sum of

the respective parameters are within errors consistent with the Gromes relation, i. e.

κGromes = κv1 + κv2 (3.13)

c1,Gromes = c1,v1 + c1,v2 (3.14)

c2,Gromes = c2,v1 + c2,v2 (3.15)

One fitparameter can compensate for deviations of other fitparameters within statistic

accuracy. Therefore, in general, parameters from two separate fits are not necessarily

similar to parameters from the combined fit, like V ′1 , V ′2 and V ′2 − V ′1 here. However,

the fitparameters from table 3.5 (Gromes relation) and table 3.6 (V ′1 , V ′2) are in good

agreement with each other. This suggests that constant and 1/r2-contributions mix in V ′1

and V ′2 , where the constant part dominates in V ′1 and the 1/r2-part in V ′2 . We also tested
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the effective ansatz from reference [10], V ′2(r) = κ + c′/rp with free parameters c′ and p.

The resulting curve is identical to our ansatz within errors inside the respective fit range.

0 2 4 6 8 10

r/a

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

−
a

2
V
′ 1
(r

)

c1/r
2 + κ

c1/r
2 − 2c2/r

3 + κ

Figure 3.8: Results for V ′1(r), fit curves include linear, 1/r2 and 1/r3-contributions.
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Figure 3.9: Same as figure (3.8) with V ′2(r). An additional curve, which is covered
almost entirely the yellow curve, shows the effective parametrization used in refer-
ence [10]. The red curve presents a parametrization using fit parameters from V3(r).
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Figure 3.10: Results for V3(r), with fit curves that include vector and scalar contri-
butions, but neglects pseudo-scalars. The yellow line shows results for the effective
parametrization used in reference [10] for a fit range including r/a = 2. The green
curve presents a parametrization using fit parameters from V ′2(r).
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Figure 3.12: Results for V ′4(r), fit curves include vector, as well as pseudo-scalar
contributions.

Our results for V3(r) are shown in figure (3.10). The relation V3(r) = V ′(r)
r − V ′′(r) is

modified to include a possible constant in V ′2(r). We also tested the effective parametriza-

tion used in reference [10], V3(r) = c′/rp with free parameters c′ and p. Again, the curves

show identical results within the fit range r/a ∈ [3, 10]. Even though the results for both

parametrizations are very similar, χ2/NDF is much higher for the effective parametrization.

χ2/NDF assumes high values, when including r/a = 2, but it is not clear, if the problem

is lattice artefacts, which affect our data, or a bad parametrization. Furthermore, one

can investigate V3(r) for a possible additional contribution, which can be seen in equation

(3.10). In this case, we would have

V3(r) = V Vec
3 (r) + V PS

3 (r)

=
κv3

r
+ 3

c1,v3

r3
− 8

c2,v3

r4

− g′(m2
gr

2 + 3mgr + 3)
e−mgr

r3
(3.16)

This ansatz requires a large number of fit parameters and did not provide a stable fit for

our data. However, an additional term like this would lower the value of V3 at small dis-

tances r and presumably cover the data point at r/a = 2. Reference [10], which suggested
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this term, plotted V Vec
3 (r) and V PS

3 (r) with g′, mg and κ (there it is σ) from the fit to V4(r)

and c1 taken from the static potential V0(r). There, the resulting curve V Vec
3 (r) + V PS

3 (r)

was in good agreement with all shown data points, in particular those at small r. We

tested this parametrization as well, with parameters from V4(r) (c1 from V0(r)). The

result is shown in figure (3.11). Unfortunately, the chosen parameters were not sufficient

to describe the data. Nevertheless, this does not contradict a behaviour according to

equation (3.16). It is interesting to see in future studies, which results a more detailed

investigation of V3(r) for a possible contribution V PS
3 (r) can bring.

For V4(r), the expected result under negligence of pseudo-scalar contributions was a delta

function and older studies confirmed this within accuracy [1]. Preciser measurements nev-

ertheless have found for larger r, that a delta function and also a pseudo-scalar correction

was not sufficient, to describe the data. Reference [10] found again, that including a term

which corresponds to the finite tail in V ′2(r) was able to handle this problem. Our results

can be found in figure (3.12). Without r/a = 2, this was a suitable parametrization. We

also tried to include the c2/r
2-term from V ′2(r), which resulted in a parametrization which

could cover the point at r/a = 2. In both cases, κv4, g′ and mg were equal within errors.

The parametrizations for the spin-dependent potentials we discussed are motivated by

perturbative computations and we had to modify them, in order to be in agreement with

our data. . The respective sets of parameters for V ′2 , V3 and V4 do not necessarily have

to be identical, since deviations in one parameter between the potentials can be compen-

sated by other parameters. To cross-check our parametrizations and results, we applied

fit parameters from one potential to curves from other potentials. In particular for V3,

we found that parameters extracted from V ′2 are not suitable to describe the data points

and vice versa. This can be seen in figures (3.9,3.10), where the respective curve is shown.

It is unclear, if this difference is due to a bad fit, or due to other error sources, e. g.

discretization. Equation (2.24) is also not an exact relation, but derived in perturbation

theory and leaves space for deviations. For future works, this finding has to be revisited

in order to find a definitive answer.
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Table 3.6: Spin-potential fit parameters for different parametrizations.

Potential Fit range (r/a) Parametrization, χ2/NDF

parameters
−V ′1(r) κv1 + c1,v1

r2

3− 10 a2κv1 = 0.00557(3), c1,v1 = 0.0344(7) 1.42

κv1 + c1,v1
r2
− 2 c2,v1

r3

3− 10 a2κv1 = 0.00523(7), c1,v1 = 0.062(8), 0.22

a−1c2,v1 = 0.04(0)

V ′2(r) κv2 + c1,v2
r2

3− 10 a2κv2 = 0.00129(4), c1,v2 = 0.201(8) 6.20

κv2 + c1,v2
r2
− 2 c2,v2

r3

3− 10 a2κv2 = 0.00104(9), c1,v2 = 0.222(5), 1.44

a−1c2,v2 = 0.02(9)

κv2 + c′

rp

3− 10 a2κv2 = 0.00095(4) ap−2c′ = 0.185(8), 1.93

p = 1.9(1)

V3(r) κv3
r

+ 3 c1,v3
r3

3− 10 a2κv3 = 0.00243(5), c1,v3 = 0.140(9) 20.60

κv3
r

+ 3 c1,v3
r3
− 8 c2,v3

r4

3− 10 a2κv3 = 0.00077(0), c1,v3 = 0.177(0), 0.33

a−1c2,v3 = 0.03(5)

V4(r) κv4
r
− g′m2

g
e−mgr

r

3− 10 a2κv4 = 0.00099(7), 6.87

g′ = 0.31(9), amg = 0.9(0)

κv4
r

+ 4c2,v4
r4
− g′m2

g
e−mgr

r

2− 10 a2κv4 = 0.00095(9), a−1c2,v4 = 0.03(8), 4.44

g′ = 0.41(1), amg = 0.8(8)

35



Chapter 4

Conclusions

4.1 Summary

We computed the static potential and spin-dependent corrections in SU(2), using the

multilevel algorithm for Wilson loops. Comparison has shown, that results computed

using the multilevel algorithm are equal to results from conventional methods. Wilson

loops at intermediate distances and large t have shown an error reduction of factor 10,

with an increase in computational effort of 40 sublattice updates N
(1)
c . In particular,

correlation functions at large r, t could be accessed in a much more effective way. Since

spatial lines of loops were placed on fixed boundaries, APE-smearing was only needed on

the global configurations, which also reduced the computational effort. The multilevel

algorithm has therefore proven itself to be well applicable on Wilson loops.

The required correlation functions were computed with high accuracy and led to stable

fits for distances up to r/a = 10. From fit parameters, the spin-dependent potentials

were computed and parametrizations, as well as the Gromes relation were tested. The

Gromes relation deviated by ten percent, which might be due to discretization. Similar

to reference [10], we found, that the expected parametrizations in equations (2.27-2.28)

were not sufficient to describe all results. V ′1 and V ′2 were found to be a mix of a 1/r-term

and a constant, with one contribution dominating respectively. For V3(r), we found that

the ansatz derived from identities involving V ′2 is sufficient to describe the data, when one
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includes a constant contribution in V ′2 . However, inserting parameters derived from V ′2

into the ansatz for V3 does not properly describe our results for V3 and vice versa. It is

suspected, that V3 also contains an additional pseudo-scalar contribution, which could not

be properly tested here due to the large number of parameters and the low number of

data points to fit. Testing this ansatz with parameters derived from V4(r) and the static

potential V0(r) was not in agreement with the data points of V3(r). Finally, potential V4,

which was expected to result in a delta function, was found to have additional contributions

which are in agreement with finite tail of V ′2 and exchange of pseudo-scalars.

In total, a statistically more precise computation of the results from reference [1] led to

the same findings in SU(2), as in reference [10] for SU(3).

4.2 Outlook

Studies on exotic particles, such as hybrid mesons and tetra quarks, rely on an accurate

descriptions of heavy quark potentials. Reference [6] studied heavy-light meson decay

channels in the Born-Oppenheimer approximation, using the static potential from lattice

QCD for heavy quarks. Further studies on systems with bottom and light quarks are

given in reference [7]. Both references expect improvements from relativistic corrections,

such that preciser computations can be performed and e. g. excited meson-meson channels

can be studied. Improvements have already been achieved in SU(3) with corrections at

order O(m−1) and spin-dependent corrections at O(m−2) (see reference [9, 14]). Spin-

independent corrections, however, remain mostly unexplored. Furthermore, it will be

interesting to see, if a combination of all relativistic corrections to order O(m−2) would

give accurate results for BO-computations involving charm quarks. Concerning colour

field correlation functions, large discretization errors could still be present, since methods

like the HM-renormalization are only a perturbative approach. An improved solution to

this problem is desirable. Reference [16] provides a discussion on this topic focusing on

electric fields.
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Figure A.1: C1(t) at r/a = 2. The blue line is the fit curve, which uses the ansatz
from equation (2.45) with cut-off mmax = 3.
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Figure A.2: Same plot as in figure (A.1) at r/a = 8.
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Figure A.3: Same plot as in figure (A.1) with C2(t) at r/a = 2.
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Figure A.4: Same plot as in figure (A.3) at r/a = 8.
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Figure A.5: Same plot as in figure (A.1) with C3(t) at r/a = 2.
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Figure A.6: Same plot as in figure (A.5) at r/a = 8.
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Figure A.7: Same plot as in figure (A.1) with C4(t) at r/a = 2.

0 2 4 6 8 10

t/a

−6

−4

−2

0

2

4

6

C
4
(t

)

×10−5

Figure A.8: Same plot as in figure (A.7) at r/a = 8.
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