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Abstract

The aim of this work is to compute gluelump masses for hybrid static potentials in SU(3) Lattice

Gauge Theory. For this reason, the form of the gluelump correlation function is discussed in

large detail. While states with defined PC quantum numbers can be constructed, no unique

spin identification is possible. Creation operators are constructed such that they transform

like irreducible representations of the lattice form of SO(3), the cubic group. Twenty different

gluelump masses are computed this way. Computations are performed on four different lattice

spacings with β ∈ {6.000, 6.284, 6.451, 6.594}. Furthermore, the parameters of the multilevel

algorithm and APE-smearing are optimized at β = 6.284. The total number of APE-smearing

steps is chosen such that an optimal overlap for higher states is guaranteed. For the multilevel

algorithm, several different sublattice structures are compared. Besides that, computations

with and without the use of HYP-smearing are performed.

Two different mass extraction procedures, focusing on effective masses and correlation functions

respectively, are applied. The masses of the lightest gluelump T+−
1 at each lattice spacing are

compared with the hybrid static potentials Πu and Σ−u , which were previously computed in [1].

Mass differences are successfully extrapolated to the continuum and possible spin identifications

are given. Besides that, two different approaches for the subtraction of the divergent self-energy

are applied. One of these approaches focuses on the conversion of the lattice gluelump masses

into the RS scheme, which is required for the connection of gluelumps with pNRQCD hybrid

potentials.
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1 Introduction

The strong interaction is one of the four fundamental forces in nature. The correspondent

theory is Quantum Chromo Dynamics (QCD), which describes the interaction between quarks

and the gauge bosons of QCD, the gluons. The Lagrangian of QCD is derived, by postulating

the invariance under certain symmetry transformations, like local SU(3) gauge transforma-

tions. The non-abelian character of SU(3) leads to a self-interaction of gluons, which influences

the behavior of the coupling constant. At large distances and low energies, it reaches large

values, and therefore a perturbative description is not applicable. A possible framework to

solve this problem is given by lattice QCD, where quarks and gauge fields are discretized on a

four-dimensional hypercubic lattice. The computational estimation of observables via Monte-

Carlo-based simulations allows the study of further aspects of QCD.

In this work, gluelump masses are computed in pure SU(3) Lattice Gauge Theory, where quarks

are taken as static color sources. A gluelump is an object consisting of one quark in the ad-

joint representation and gluons. One of the first gluelump mass computations in SU(2) Lattice

Gauge Theory was performed by C. Michael in [2]. Later the spectrum was extended to ten

different SU(3) states in [3]. Two former bachelor theses ([4, 5]) focused on gluelump calcula-

tion in SU(2) and SU(3) Lattice Gauge Theory respectively. With similar operators like in [6],

twenty different gluelump masses are computed in this work. Besides Lattice Gauge Theory,

gluelump masses can be determined with different approaches: while [7] explores the spectrum

in a simple bag model, [8] and [9] perform computations in the QCD string model and Coulomb

gauge QCD respectively.

Even though gluelumps do not exist in full QCD, their masses find application in several differ-

ent fields. In [3], gluelump masses are identified as glueballino masses in the heavy limit, while

[10] estimates the string breaking distance of an adjoint potential, using the mass of the light-

est gluelump in the SU(2) pseudoparticle approach. Apart from this, [11] identifies gluelump

masses as the inverse of the correlation length of the vacuum. Another major application field

of gluelumps are hybrid mesons.

A hybrid meson is a state, consisting of a quark-antiquark pair and a non-trivial excited gluon

field, which contributes to the quantum numbers. This exotic structure can lead to quantum

numbers, that differ from the prediction of the constituent quark model. On the lattice, hybrid

static potentials approach certain gluelump masses for small qq̄-separation distances.

In [1], hybrid static potentials are computed in SU(3) Lattice Gauge Theory. After parametriz-

ing the results, the radial Schrödinger equation is solved with the derived potentials and quark

masses, which were taken from quark models, to obtain masses of hybrid mesons.

In [12], a more internally consistent approach is used. Starting from full QCD, a non-relativistic

effective field theory for heavy quarkonium hybrids, similar to potential non-relativistic QCD

(pNRQCD), is constructed. Symmetries are identified in the static limit, while corrections are
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obtained in an expansion in terms of the inverse mass of the heavy quark. For the perturbative

part of the potential, the RS (renormalon subtracted) scheme, is used. It has been worked out

for the heavy quark mass in [13] and subtracts the singularities in the Borel plane from the

matching coefficients. While working in the RS scheme, all used quantities have to be converted

to the RS scheme as well. Gluelump states are required for the construction of the theory and

their masses additionally determine the energy scale of hybrid potentials. Therefore, precise

mass computations and conversions to the RS scheme are necessary.

Modern literature still uses the RS scheme gluelump masses, which were computed in [13]. The

conversion was performed using the lattice results obtained in [3] in the year 1999. The use

of the modern clusters FUCHS- and GOETHE-CSC allows more extensive computations on

modern lattice spacings and the application of complex optimization algorithms. Therefore,

one aim of this work is to increase the number of computed gluelump masses and enhance

the results, especially with the application of the multilevel algorithm [14]. Additionally, this

thesis aims to investigate the connection between gluelumps and hybrid static potentials. For

this reason, all computations are performed in the same lattice setup, as [1]. Furthermore,

mass differences are extrapolated to the continuum, while the mass of the lowest gluelump was

estimated via two different approaches.
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1.1 Outline

This thesis is organized as follows.

First of all, basic concepts of Lattice Gauge Theory are outlined in Chapter 2. The general

introduction is followed by a description of important lattice quantities and the main concepts

of Monte Carlo simulations.

Chapter 3 focuses on hybrid static potentials and gluelumps. After an overview of the respec-

tive corresponding quantum numbers, continuum gluelump creation operators are discussed.

Finally, the lattice gluelump correlation function is presented, while the subsequent discussion

focuses on the form of gluelump operators on the lattice.

To achieve more precise results, several different optimization algorithms are applied. HYP-

smearing, the multilevel algorithm and APE-smearing are discussed in Chapter 4.

The first half of Chapter 5 focuses on the optimization of the parameters of the multilevel

algorithm and APE-smearing. Followed by this, two different mass extraction procedures are

applied to the twenty gluelump spectra, computed on each of the four lattice spacings. Finally

the mass of the T+−
1 gluelump is compared with the hybrid static potentials, computed in [1].

Last but not least, in Chapter 6 mass differences are extrapolated to the continuum. For

the derived continuum masses, possible spin identifications are given and the results are com-

pared with [3]. Additionally, the mass of the lightest gluelump is determined via two different

approaches. In the end, the results are summarized, followed by an outline.

1.2 Notation

Calculations in this thesis are performed in natural units (~ = c = 1). Thus, velocities are

given in units of the speed of light c and actions in units of ~. In addition, Einstein’s sum

convention is used, which implies the summation over duplicate indices.

As common in lattice QCD, the euclidian formulation of QCD is used, where the real time treal

is substituted by the complex time τ = i · treal. This changes the metric to gµν = diag(1, 1, 1, 1),

which results in the equality of covariant and contravariant vectors/tensors (Aµ = Aµ). In

order to establish a better comparability with the literature, in the following the letters τ, t and

x0 are used for the complex time.
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2 Lattice Gauge Theory

This section outlines the general idea behind Lattice Gauge Theory and discusses several im-

portant lattice quantities. The discussion is based on reference [15].

The vacuum expectation value of an operator O in the euclidian formulation of SU(3) gauge

theory is given as

〈Ω| O(A) |Ω〉 =
1

Z

∫
DA O(A) e−SG(A) (1)

Z =

∫
DA e−SG(A), (2)

where |Ω〉 is the vacuum state,
∫
DA denotes the integration over all possible gauge field

configurations and SG(A) is the gluonic part of the QCD-action. Since only static quarks are

used, the fermionic part of the action is not needed. SG can be constructed with the gauge fields

Aµ = Aaµλ
a/2 by postulating the invariance under local SU(3) gauge transformations. Where

λa are the Gell-Mann matrices, which are the generators of SU(3) and a ∈ {1, 2, . . . , 8}. The

action is defined as

SG =
1

2g2

∫
d4xTr(Fµν(x)Fµν(x)), (3)

with the coupling g and the field strength tensor Fµν(x), which is given as

Fµν(x) = −i[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)]. (4)

In SU(3) Lattice Gauge Theory, the gauge fields are discretized on a four-dimensional hyper-

cubic lattice Λ

Λ = {n = (n0, n1, n2, n3)| n0 = 0, 1, . . . , NT − 1 ;ni = 0, 1, . . . , N − 1}. (5)

The lattice consists of NT lattice points in temporal direction and N lattice points in each

spatial direction, with lattice spacing a. Computations are performed on periodic lattices,

which means that ni + N = ni and n0 + Nt = n0. On the lattice, the continuum gauge fields

are replaced by link variables Uµ ∈ SU(3), which are visualized in figure 1. They are build from

Aµ(n) via

Uµ(n) ≈ exp(iaAµ(n)), (6)

with the transformation law

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)† , Ω ∈ SU(3). (7)
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U−µ(n) Uµ(n)

(n− µ̂) (n) (n+ µ̂)

Figure 1: Illustration of the forward link Uµ(n) and backward link U−µ(n).

The forward link Uµ(n) connects the lattice sites (n) and (n + µ̂), while the backward link

U−µ(n) = Uµ(n − µ̂)† reaches from (n) to (n − µ̂). For the computation of path integral

expectation values on the lattice, one has to express the continuum action (3) in terms of

lattice quantities:

SG =
β

3

∑
n∈Λ

∑
µ<ν

Re Tr[1− Uµν(n)] ; β =
6

g2
(8)

This possible discretization is called Wilson plaquette action and it approaches equation (3) for

a→ 0 with discretization errors of O(a2). It is built from a sum of plaquettes Uµν

Uµν(n) = Uµ(n) Uν(n+ µ̂) Uµ(n+ ν̂)† Uν(n)†. (9)

2.1 Collection of important lattice quantities

A convenient, but not unique, possible discretization of the field strength tensor is the clover

definition [15]

Fµν(n) = − i

8a2
(Cµν(n)− Cνµ(n)), (10)

where Cµν is a so-called cloverleaf sum of plaquettes Uµν in the µ-ν-plane, defined as

Cµν(n) = Uµν(n) + Uν−µ(n) + U−µ−ν(n) + U−νµ(n). (11)

The Wilson loop W (r, t) is an important quantity for the computation of static potentials. It

is built from four pieces, two so-called Wilson lines S(nt,m,n), S(0,m,n) and two temporal

transporters T (nt,n) , T (nt,m). Each Wilson line connects two spatial lattice points m and n

along a path Cm,n/Cn,m at fixed time nt and 0, respectively:

S(nt,m,n) =
∏

(k,j)∈Cm,n

Uj(nt,k), & S(0,n,m) =
∏

(k,j)∈Cn,m

Uj(0,k) (12)

Each temporal transporter is the product of nt link variables U0 in time direction along a

straight path at fixed spatial position n and m, respectively:

T (nt,n) =
nt−1∏
i=0

U0(i,n) & T (nt,m) =
nt−1∏
i=0

U0(i,m) (13)
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By putting the four parts together and taking the trace, the following equation is obtained:

W (|m− n|, nt) = Tr
[
S(nt,m,n)T (nt,n)†S(0,m,n)†T (nt,m)

]
. (14)

If the path Cm,n is a straight line, so if n and m lie on the same axis, W (r, t) is called a planar

Wilson loop, otherwise non-planar.

2.2 Correlation functions

The correlation function of an operator O, creating a state with certain quantum numbers from

the vacuum, is given by

C(τ) = 〈Ω| O†(τ)O(0) |Ω〉 . (15)

This equation can be rewritten by time-evolving the operators and inserting the identity via

the completeness of energy eigenstates (
∑

n |n〉 〈n| = 1):

C(τ) =
∑
n

| 〈n| O(0) |Ω〉︸ ︷︷ ︸
cn

|2 · e−(En−EΩ)·τ

τ→∞∼ |c0|2 · e−(E0−EΩ)·τ (16)

Therefore, the correlation function is an infinite sum of exponential functions of energy dif-

ferences. For large times one expects the sum to be dominated by the lightest state, i.e. the

ground state, with mass m = E0 − EΩ. The prefactors |cn|2 denote the overlap of the state,

created by the operator O from the vacuum, with the n-th state. One possible way to extract

masses from correlation functions is by examining the effective mass meff(τ), which reads as

ameff(τ) = ln

(
C(τ)

C(τ + 1)

)
. (17)

The expected approach of a plateau for large times can be used to extract the mass of the

ground state.

2.3 Monte Carlo simulation and statistical analysis

Even for small lattices and “simple” systems (e.g. Ising spin systems) a direct numerical com-

putation of path integrals is in practice mostly impossible, due to the exponentially increasing

number of possible configurations with the lattice volume. For this reason, Monte Carlo simu-

lations are performed, where N gauge field configurations Un are generated with a heat-bath-

algorithm following a probability that is proportional to exp(−S[Un]). In this thesis, the gauge

12



field generation started with a so-called hot start, where all gauge fields are chosen randomly.

After this, the configuration is updated Ntherm times until it approaches an equilibrium, which

means that the configurations follow indeed the desired distribution. Nearby configurations are

not completely uncorrelated and therefore do not produce statistically independent results. Be-

cause of this, every heath-bath update is followed by Nor overrelaxation steps, which is expected

to minimize correlations between subsequent configurations. Additionally, every measurement

is separated by Nsep updates. Further details about the general ideas of the above-described

algorithms and their implementation are given in [15].

The path integral is then evaluated by averaging over all generated configurations.

〈O〉 =
1

Z

∫
D[U ]e−SG[U ]O[U ] ≈ 1

N

∑
Un

O[Un] (18)

If the configurations are independent, the errors are proportional to (1/
√
N). Thus, quadru-

pling N will double the precision. The statistical error of effective masses and correlation

functions, in the following general denoted as y, is estimated, using the jackknife method :

A sample of measurements consists of N elements yi, where yi ∈ {y1, y2, . . . , yN}. The average

ȳ of the full measurement is then given as

ȳ =
1

N

N∑
i=1

yi. (19)

One can construct N new values y′i, by deleting the i-th element of the whole dataset and

calculating the average:

y′i =
1

N − 1

N∑
j=1
j 6=i

yj (20)

The error estimate of the observable is then given as

σy =

√√√√N − 1

N

N∑
i=1

(ȳ − y′i)2. (21)

The previously described methods provide the necessary basis for the computation of physical

observables, such as hybrid static potentials and gluelump masses.
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3 Hybrid static potentials and gluelumps

This short introduction about quantum numbers of hybrid static potentials and gluelumps is

mainly based on [1], [13] and [16].

The ordinary static potential, which describes the potential between an infinitely heavy quark-

antiquark pair separated by a distance r, can be computed on the lattice via Wilson loops

W (r, t) (cf. eq. (14)). In the case of hybrid static potentials, the string connecting the qq̄ pair

is excited. Therefore, one has to replace the spatial transporters in a planar Wilson loop W (r, t)

with more complex link paths. Thus, it is possible to take the additional contributions to its

quantum numbers into account. These quantum numbers are typically classified as follows:

• Λ = Σ(= 0),Π(= 1),∆(= 2),Φ(= 3), . . . is the total angular momentum with respect to

the quark-antiquark axis.

• η = g(= +), u(= −) is defined as the behavior under the combination of parity and charge

conjugation P ◦ C.

• ε = +,− denotes the eigenvalue of a reflection Px along a coordinate axis perpendicular

to the qq̄ pair separation axis.

In this notation, the ordinary static potential is classified as Σ+
g . Because states with Λ ≥ 1

are degenerated with respect to ε, the subscript is usually omitted for Λ 6= Σ. The belonging

symmetry group is the group of cylindrical rotations with reflection D∞h.

A point-like QCD state is characterized by the JPC 1 of the rotation groupO(3)⊗C and the gauge

group representation of the source. States created by operators in the singlet representation

are called glueballs, while octet states are called gluelumps.

Because D∞h ⊂ O(3) ⊗ C, in the limit r → 0 certain hybrid levels must become degenerated

[13]. The expected degeneracies of hybrid potentials at short distances are shown in table 1.

In section 5.4.3 the behavior of Σ−u and Πu is shown, which belong to a JPC = 1+− state with

Jz = 0 and Jz ± 1, respectively. In this limit, source and anti-source will be at the same lattice

site and their color can be combined in a gauge-invariant way (3 ⊗ 3∗ = 8 ⊕ 1) creating an

octet (gluelump correlator) and a singlet (glueball correlator) [17]. Thus, for a Wilson loop

corresponding to the correlator of a hybrid static potential in the small separation limit, the

following manner is expected:

lim
r→0

Whybrid(r, t) = c1 · e−mgl·t + c2 · e−mgb·t (22)

Here, mgl and mgb correspond to the mass of a gluelump/glueball. The correlator given in

equation (22) is dominated by the lighter state for large t. In most cases of present interest,

1J denotes the angular momentum of the point-like state.
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gluelumps with given JPC are lighter than glueball states. Hence, the gluelump state is expected

to dominate the given correlator for large times. Therefore, it is necessary to measure the

gluelump spectrum to predict the behavior of hybrid static potentials for small r’s. In section

6.2.2, the connection between gluelump masses and hybrid potentials in the RS scheme is shown.

Point particle JPC Hybrid potential Λε
η

1+− Σ−u ,Πu

1−− Σ+′
g ,Πg

2−− Σ−g ,Π′g,∆g

2+− Σ+
u ,Π′u,∆u

3+− Σ−
′

u ,Π′′u,∆
′
u, Φu

0++ Σ+′′
g

Table 1: Expected degeneracies of hybrid potentials at short distance, based on the level
ordering of the gluelump spectrum. Taken from [13].

3.1 Gluelumps in the continuum

It is not possible to build a gauge-invariant operator consisting of one quark/color source in the

fundamental representation and gluons. The transformation behavior of a color source reads

as  Q1

Q2

Q3

→ g(α)

 Q1

Q2

Q3

 , g(α) = exp

(
iαa

λa

2

)
∈ SU(3). (23)

A possible way of avoiding this problem is to choose a color source in the adjoint representation.

For this case, the color source is mapped into the adjoint representation (Qa = Q3
a → Q

(8)
a )

resulting in not just having N = 3, but N2 − 1 = 8 degrees of freedom. Therefore, the adjoint

representation of SU(2) is three-dimensional, SU(3) has eight dimensions, and so on.

Equation (23) then has the following form
Q

(8)
1

Q
(8)
2
...

Q
(8)
8

→ g(α)


Q

(8)
1

Q
(8)
2
...

Q
(8)
8

 , g(α) = exp(iαaT
a), (24)

where the top index is explicitly written down to clarify, that the fields are in the octet repre-

sentation. The 8× 8 matrices T a are generating the adjoint representation. The adjoint quark

and the given transformation law under gauge transformations read as

Qadj = Q(8)
a

λa
2
→ g(α)Qadjg(α)†. (25)
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In order to show that equation (24) and (25) can be transformed into each other, one has to

use the quantity

Tr(Qadjλ
a) = Tr

(
Qa

λa

2
λb
)

=
Qa

2
Tr(λaλb)︸ ︷︷ ︸

2δab

= Qb, (26)

where the condition that the Gell-Mann matrices λa are orthogonal under the trace of their

product was applied and the index (8) was omitted for better readability. As common in group

theory, equation (24) is expressed for infinitesimal transformations (i.e. αi � 1), while inserting

the transformation law of equation 25.

Qd = Tr(Qadjλ
d)→ Tr

(
exp

(
iαa

λa

2

)
Qb
λb

2
exp

(
−iαc

λc

2

)
λd
)

≈ Tr

((
1 + iαa

λa

2

)
Qb
λb

2

(
1− iαc

λc

2

)
λd
)

≈ Tr

(
Qb

2

(
λb + i

αa
2
λaλb − iαc

2
λbλc

)
λd
)

(27)

= Qd + Tr

Qb

2
i
αa
2

[λa, λb]︸ ︷︷ ︸
2ifabcλc

λd


= Qd −

Qb

2
αaf

abc Tr(λcλd) = Qd −Qbαaf
abd

Here, ≈ always indicates that terms of O(α2
i ) were neglected, and fabc are the antisymmetric

structure constants of SU(3). According to [18], the structure constants of a fundamental

representation are related to the generators of the adjoint representation via

fabc = i(Ta)bc. (28)

With this expression and the antisymmetric behavior of the structure constants, equation 27

finally becomes

Qd → Qd + iαa(Ta)dbQb. (29)

But this is just the infinitesimal form of equation 24. Thus both expressions are equivalent.

After this proof, possible gluelump operators can be written down. A possible choice is

O(x) = Tr(Qadj(x)Bx(x)). (30)

In principle, the chromo-magnetic field could be replaced with other combinations of covariant

derivatives and components of the field strength tensor. Examples with given spin and quantum

numbers are shown in table 2.
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The required gauge-invariance of operators can be shown, using the transformation law of a

magnetic field under gauge transformations

Bx(x) = F a
23

λa

2
→ g(x)Bx(x)g(x)†, g(x) ∈ SU(3). (31)

Now it is easy to see that O(x) is indeed gauge-invariant

O(x)→ Tr(g(x)Qadj(x)g(x)†g(x)Bx(x)g(x)†) = O(x), (32)

where the property that g(x) are SU(3) matrices (e.g. g(x)g(x)† = 1) and the invariance of the

trace under cyclic permutations were used.

JPC Creation operator
1+− Bi

1−− Ei
2−− D{iBj}
2+− D{iEj}
3+− D{iDjBk}
0++ B2

Table 2: Possible creation operators for a gluelump state with quantum numbers JPC. The
curly braces denote complete symmetrization of the indices which means that all symmetric
permutations are summed up. Taken from [13].
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3.2 Gluelumps on the lattice

In the following section, the behavior of the gluelump correlation function on the lattice is

investigated. It can be obtained by replacing continuum quantities with lattice expressions and

integrating over the adjoint static qq̄ pair. The gluelump correlation function is, according to

reference [6], given by

C(τ2 − τ1) = Hα(τ1)Lαβ(τ1, τ2)Hβ†(τ2). (33)

All constituents of equation (33) are defined at the same spatial lattice site n. They have the

definitions

Hα(τ) = Tr(G(τ)Tα) ; Hβ†(τ) = Tr(G(τ)†T β) (34)

and

Lαβ(τ1, τ2) = U
(8)αγ
0 (τ1)U

(8)γε
0 (τ1 + a) . . . U

(8)ρβ
0 (τ2 − a). (35)

Here, G(τ) = G(τ,n) is a suiting linear combination of spatial closed loops of links that cre-

ate/destroy states with certain quantum numbers. They are discussed in section 3.5. T a = λa/2

are the generators of SU(3), while Lαβ(τ1, τ2) is defined as a product of adjoint temporal links

connecting τ1 and τ2. U
(8)αγ
0 are temporal links mapped into the adjoint representation via

U
(8)αβ
0 = Tr(TαU0T

βU †0). (36)

To achieve a better comparability with older gluelump works (e.g. [19]), Q(τ1, τ2) is defined as

the product of fundamental temporal links connecting the lattice sites (τ1,n) and (τ2,n).

Equation (35) can be simplified by using the following relation [20] for the generators of SU(N)

TαijT
α
kl = δilδjk −

1

N
δijδkl. (37)

The product of two adjoint links in the time direction is given as

Lαβ(τ1, τ1 + 2a) = U
(8)αγ
0 (τ1)U

(8)γβ
0 (τ1 + a). (38)

Using equations 36 and 37 with N = 3, this leads to

Lαβ(τ1, τ1 + 2a) = Tr(TαU(τ1)T γU †(τ1)) Tr(T γU(τ1 + a)T βU †(τ1 + a))

= TαabU(τ1)bcT
γ
cdU

†(τ1)da · T γefU(τ1 + a)fgT
β
ghU

†(τ1 + a)he (39)

= U(τ1)bcU(τ1 + a)fgU
†(τ1)daU

†(τ1 + a)heT
α
abT

β
gh

(
δcfδde −

1

3
δcdδef

)
.

Here the short form U = U0 was used.
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Evaluating the first term of equation (39) results in

U(τ1)bcU(τ1 + a)fgU
†(τ1)daU

†(τ1 + a)heT
α
abT

β
gh δcfδde

= U(τ1)bcU(τ1 + a)cgU
†(τ1)daU

†(τ1 + a)hdT
α
abT

β
gh (40)

= [U(τ1)U(τ1 + a)]bgT
β
gh[U(τ1)U(τ1 + a)]†haT

α
ab

= Tr(Q(τ1, τ1 + 2a)T βQ†(τ1, τ1 + 2a)Tα).

The second term can be rearranged as

− 1

3
U(τ1)bcU(τ1 + a)fgU

†(τ1)daU
†(τ1 + a)heT

α
abT

β
gh δcdδef

= −1

3
U(τ1)bcU

†(τ1)ca︸ ︷︷ ︸
=δab

U †(τ1 + a)heU(τ1 + a)eg︸ ︷︷ ︸
=δgh

TαabT
β
gh (41)

= −1

3
TαaaT

β
gg = 0,

where the condition that the generators of SU(N) are traceless, was used. This leads to the

following conclusion

Lαβ(τ1, τ2) =

(
τ2−a∏
τ=τ1

U
(8)
0 (τ)

)αβ

= Q(8)αβ(τ1, τ2). (42)

In words, this means that the product of adjoint links in the time direction is the same as

multiplying fundamental temporal links and then mapping them into the adjoint representation.

With this expression equation (33) simplifies to

C(τ2 − τ1) = Tr(G(τ1)Tα) Tr(TαQT βQ†) Tr(G(τ2)†T β). (43)
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Last but not least, a new form of the correlation function, which is more convenient for com-

putation, is derived:

C(τ2 − τ1) = Tr(G(τ1)Tα) Tr(TαQT βQ†) Tr(G(τ2)†T β)

= G(τ1)abT
α
baT

α
cdQdeT

β
efQ

†
fcG(τ2)†ghT

β
hg

= G(τ1)abQdeQ
†
fcG(τ2)†gh ·

(
δbdδac −

1

3
δabδcd

)
·
(
δegδhf −

1

3
δefδgh

)
= G(τ1)adQdgG(τ2)†gfQ

†
fa−

1

3
G(τ1)aaQdgQ

†
fd︸ ︷︷ ︸

=δfg

G(τ2)†gf

−1

3
G(τ1)adQdfQ

†
fa︸ ︷︷ ︸

=δda

G(τ2)†hh+
1

9
G(τ1)aaQdfQ

†
fd︸ ︷︷ ︸

=δdd=3

G(τ2)†hh

= Tr[G(τ1)QG(τ2)†Q†]−1

3
Tr[G(τ1)] Tr[G(τ2)†]

−1

3
Tr[G(τ1)] Tr[G(τ2)†] +

1

3
Tr[G(τ1)] Tr[G(τ2)†]

= Tr[G(τ1)QG(τ2)†Q†]− 1

3
Tr[G(τ1)] Tr[G(τ2)†] (44)

For better understanding, equal terms are marked with the same color. With the gauge trans-

formation law of the above quantities

G(τ,n)→ G′(τ,n) = Ω(τ,n)G(τ,n)Ω(τ,n)†

Q(τ1, τ2,n)→ Q′(τ1, τ2,n) = Ω(τ1,n)Q(τ1, τ2,n)Ω(τ2,n)†, (45)

one can see that C(τ2 − τ1) is indeed gauge-invariant.
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3.3 Building PC-eigenstates

The linear combination G(τ), mentioned in equation (44), consists of several closed link paths.

To classify them the same notation given in [21] is used.

Let Ci be a path of length L, corresponding to a space like Wilson loop operator Oi. For the

following discussion, only the shape and orientation of the path are of importance. Ci can be

represented by a L-tuple

(f̂1, . . . , f̂L) with
L∑
i=1

f̂i = 0, (46)

where the vectors f̂i are given as f̂i ∈ {±êj | j = 1, 2, 3}. êi correspond to the unit vectors

of spacelike coordinates on the lattice. In this notation the path given in figure 2 is noted as

(êx, êy, êz,−êx,−êz,−êy).

x

y

z

Figure 2: Example of a closed loop, classified as (êx, êy, êz,−êx,−êz,−êy).

In the continuum, the gauge fields Aµ transform as follows under charge conjugation transfor-

mations C
Aµ

C−→ −ATµ . (47)

Thus, the following manner of the tuple under charge conjugation on the lattice is expected:

C(f̂1, . . . , f̂L) = (−f̂L,−f̂L−1 . . . ,−f̂1) (48)

The influence of this transformation is also illustrated in figure 3. One can now easily construct

C-eigenstates

(f̂1, . . . , f̂L)C=± = (f̂1, . . . , f̂L)± (−f̂L, . . . ,−f̂1). (49)
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Numerically this can be done with little effort. One has to compute the path Ci and add or

subtract the hermetian transpose of itself, for positive or negative C-parity, respectively.

For P-eigenstates one can carry out the same procedure. The transformation law reads as

P(f̂1, . . . , f̂L) = (−f̂1, . . . ,−f̂L). (50)

This is no surprise, since the parity transformation corresponds to a spatial reflection (cf. figure

3). Analogously, parity eigenstates are constructed

(f̂1, . . . , f̂L)P=± = (f̂1, . . . , f̂L)± (−f̂1, . . . ,−f̂L). (51)

x

y

z

x

y

z

Figure 3: Illustration of the different symmetry operations on the original black path
(êx, êy, êz,−êx,−êz,−êy). The parity transformed path (−êx,−êy,−êz, êx, êz, êy) is marked in
red, while the charge conjugated path (êy, êz, êx,−êz,−êy,−êx) is colorized in blue.

Combining equations (48) and (51), the rule for constructing PC-eigenstates for a path Ci can

be stated:

(f̂1, . . . , f̂L)P=±
C=± =

[
(f̂1, . . . , f̂L)±(−f̂1, . . . ,−f̂L)

]
±
[
(−f̂L, . . . ,−f̂1)±(f̂L, . . . , f̂1)

]
(52)

Please note, that all given states have to be normalized.
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3.4 The cubic group

This section is based on [21], [22] and [23].

Due to the lattice discretization, the symmetry group of a gluelump is no longer SO(3) with

C-partiy, because it is not possible to rotate around arbitrary angles, but discrete values. The

associated symmetry group is called O and contains 24 elements. The direct product of the O

with parity (which is of order two) is called Oh.

Each of the non-identity elements of the cubic group O can be interpreted as a rotation around

a uniquely determined symmetry axis of a cube [21]. The only point of symmetry in a cube

is the center, which is fixed under the application of all elements and is complemented by 13

symmetry axes C
(i)
n . In general, the order n of an axis is defined as the number of rotations,

which can be performed around this axis (including the identity), while the index (i) labels the

different possible axes. They are illustrated in figure 4. Note that every axis is passing through

the point of symmetry.

C
(1)
4

C
(2)
4

C
(3)
4

(a) C4

C
(1)
3

C
(2)
3

C
(3)
3

C
(4)
3

(b) C3

C
(1)
2

C
(3)
2

C
(2)
2

C
(4)
2

C
(5)
2

C
(6)
2

(c) C2

••
•

•

••

•

•

•

•

•

•

Figure 4: Illustration of all 13 symmetry axes of a cube. Dots are drawn for C2-rotations to
mark the position where the axes cross the edges.
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There are three axes perpendicular to the faces of the cube and one can perform four rotations

by π
2

along these axes. Thus, they are called C
(i)
4 , i = (1, 2, 3). Furthermore, there are four axes

connecting two vertices of the cube. Three rotations by 2π
3

are possible, hence they are called

C
(i)
3 , i = (1, 2, 3, 4). Last but not least, one can construct six axes connecting two centers of

edges, where two rotations by an angle π are realizable with the name C
(i)
2 , i = (1, . . . , 6).

With this knowledge, the number of independent elements N , which is the sum of all possible

distinguishable rotations, plus the identity, can be determined. This leads to

N = 1︸︷︷︸
id

+ 3 · (4− 1)︸ ︷︷ ︸
C

(i)
4

+ 4 · (3− 1)︸ ︷︷ ︸
C

(i)
3

+ 6 · (2− 1)︸ ︷︷ ︸
C

(i)
2

= 24. (53)

The five classes of conjugate elements mCn of the cubic group are given as:

• E = {id} : Identity

• 6C2 = {C(i)
2 (ϕ)} with i ∈ {1, . . . , 6} and ϕ = π

• 8C3 = {C(i)
3 (ϕ), (C

(i)
3 (ϕ))2} with i ∈ {1, 2, 3, 4} and ϕ = ±2π

3

• 6C4 = {C(i)
4 (ϕ), (C

(i)
4 (ϕ))3} with i ∈ {1, 2, 3} and ϕ = ±π

2

• 3C2
4 = {(C(i)

4 (ϕ))2} with i ∈ {1, 2, 3} and ϕ = π

Here m denotes the total number of elements and n is the same quantity as given above. Note

that two elements a, b ∈ G of a group G are conjugate if b = g−1ag for a g ∈ G. The conjugacy

class of an element a is then defined as Cl(a) = {g−1ag | g ∈ G}.
These five conjugacy classes correspond to the existence of five irreducible representations with

dimension dj respectively. According to the theorem of Burnside the squared dimension must

add up to the order of the group, i.e.

5∑
j=1

d2
j = 24. (54)

The only solution for the representation dimensions is dj = (1, 1, 2, 3, 3), with names A1, A2, E,

T1 and T2 respectively. In this notation A1 is the trivial representation while T1 is the standard

vector representation. The correspondent characters2 χ are shown in table 3.

2The character χR(g) of g ∈ G in a given representation R is defined as: χR(g) = TrR(g)
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Λ χ(E) χ(6C2) χ(8C3) χ(6C4) χ(3C2
4)

A1 1 1 1 1 1
A2 1 −1 1 −1 1
E 2 0 −1 0 2
T1 3 −1 0 1 −1
T2 3 1 0 −1 −1
θ(ξ) 2π π 2π/3 π/2 π

Table 3: Characters χ(ξ) for all irreducible representations Λ with a given rotation angle θ(ξ)
[24].

On the lattice it is not possible to associate an operator, transforming like an irreducible

representation Λ ∈ {A1, A2, E, T1, T2}, to a unique spin. Each representation can, but must

not, contain several spins. In table 4 the possible corresponding spins for each irreducible

representation Λ are shown. The following formula allows the subduction of continuum J to

discrete Λ of O [24]

nJΛ =
1

N

∑
ξ

mξχ
(Λ)(ξ)∗χ(J)(ξ). (55)

Here, N is the order of the group, mξ the number of elements for a given ξ and χ(J)(ξ) the

character for spin J and rotation angle θ(ξ) to class ξ given by

χ(J)(ξ) =
sin
[(
J + 1

2

)
θ(ξ)

]
sin
(
θ(ξ)

2

) . (56)

Table 4 is then derived using equation (55) and table 3.

Representation Dimension Angular momentum
A1 1 J = 0, 4, 6, 8, . . .
A2 1 J = 3, 6, 7, 9, . . .
E 2 J = 2, 4, 5, 6, . . .
T1 3 J = 1, 3, 4, 5, . . .
T2 3 J = 2, 3, 4, 5, . . .

Table 4: Irreducible representations with corresponding angular momenta and dimensions.
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3.5 Gluelump creation operators on the lattice

With this knowledge, possible gluelump operators can be built. For this purpose, one has to

start with a spatial closed Wilson loop and list all 24 possible octahedral rotations of it. One

possible way is to choose the standard plaquette as a starting object like it was done in [3].

Operators are then built as linear combinations of quadratic loops, which share one corner,

such that they transform as irreducible representations Λ. PC-eigenstates ΛPC are then created

using the methods described in section 3.3. One can also use the coefficients given in table 5

for construction, by ignoring the third direction. A benefit of these types of operators is that

they can be implemented numerically with low effort. For instance, the linear combination for

building the T+−
1 gluelump in the y,z-plane is given as

G(T+−
1x ) = U23 − U32 + U3−2 − U−23 + U−2−3 − U−3−2 + U−32 − U2−3. (57)

Note that every object is defined at the lattice site (τ,n). This is just the same linear combi-

nation of plaquettes as in the clover discretization of the field strength tensor (eq. (10)). The

downside of this type of operator is that only 10 out of 20 possible ΛPC can be constructed.

This is due to the fact, that some PC-transformations are equivalent to octahedral rotations.

Table 6 shows which irreducible representations are possible for a given shape.

To solve this problem the operators of [6], which are 1 × 2-rectangles bent in the middle (cf.

fig. 2), are adapted. Due to their lower symmetry, all 20 ΛPC possibilities can be built. In

figure 5 all used paths for the construction of the gluelump creation operators are shown, while

the path coefficients are given in table 5. For a better readability a shorter notation was used:

(êi, êj, êk,−êi,−êk,−êj)→ (i, j, k) (58)

A (six tuple) chair-shaped path is described every time the three tuple form is used. To build

a state with positive parity one has to form the combination (A+B), while negative P states

are built from (A − B). One has to add or subtract the hermitian transpose for positive or

negative charge parity states. The linear combinations for each irreducible representation are

given as follows [6]:
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G(A1) =
24∑
a=1

L(8)
a ,

G(A2) =
12∑
a=1

(−1)aL(8)
a −

24∑
a=13

(−1)aL(8)
a ,

G(T1x) = L
(8)
6 + L

(8)
20 + L

(8)
21 + L

(8)
11 − L(8)

18 − L(8)
8 − L(8)

9 − L(8)
23 ,

G(T1y) = L
(8)
5 + L

(8)
19 + L

(8)
24 + L

(8)
10 − L(8)

17 − L(8)
7 − L(8)

12 − L(8)
22 ,

G(T1z) = L
(8)
1 + L

(8)
2 + L

(8)
3 + L

(8)
4 − L(8)

13 − L(8)
14 − L(8)

15 − L(8)
16 ,

G(T2x) = L
(8)
6 − L(8)

20 + L
(8)
21 − L(8)

11 + L
(8)
18 − L(8)

8 + L
(8)
9 − L(8)

23 ,

G(T2y) = L
(8)
5 − L(8)

19 + L
(8)
24 − L(8)

10 + L
(8)
17 − L(8)

7 + L
(8)
12 − L(8)

22 ,

G(T2z) = L
(8)
1 − L(8)

2 + L
(8)
3 − L(8)

4 + L
(8)
13 − L(8)

14 + L
(8)
15 − L(8)

16 ,

G(E1) = vx − vy ,
G(E2) = vx + vy − 2vz ,

vx = L
(8)
6 + L

(8)
20 + L

(8)
21 + L

(8)
11 + L

(8)
18 + L

(8)
8 + L

(8)
9 + L

(8)
23 ,

vy = L
(8)
5 + L

(8)
19 + L

(8)
24 + L

(8)
10 + L

(8)
17 + L

(8)
7 + L

(8)
12 + L

(8)
22 ,

vz = L
(8)
1 + L

(8)
2 + L

(8)
3 + L

(8)
4 + L

(8)
13 + L

(8)
14 + L

(8)
15 + L

(8)
16 . (59)

For a given correlation function of a representation Λ with dimension dΛ, one has to average

over all dimensions and lattice sites, to obtain a projection to zero momentum

C(τ,Λ) =
1

Z

dΛ∑
d=1

NT−1∑
t=0

N−1∑
n1,n2,n3=0

C(τ,n,Λd) ; Z = dΛ ·N3 ·NT . (60)

The derivation of the orthonormal bases is based on group theoretical methods and is technical

and long, but straightforward (cf. [21]). Therefore, we decided, that it is more clear, to derive

the character relations for a given irreducible representation, in order to see if the built states

are indeed transforming like irreducible representations Λ. Besides that, the above-given sums,

agree with others in literature specified creation operators (e.g. [25].)

A1 and A2 are one-dimensional, thus, the correspondent rotation matrices are one-dimensional

as well. As mentioned above, A1 is a scalar state. Hence it should behave like a scalar under

rotations. This rotational invariance was achieved by summing up all possible rotations and

results in all characters being one.

A2 is built from a slightly different sum. All chairs corresponding to C2 and C4 rotations are

subtracted, while all C3 and C2
4 rotations are added. Thus, for example a C2 rotation will

change the sign of the sum. Again the characters agree with table 3.
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Figure 5: All chair-shaped paths for creating gluelump operators. Dotted lines are drawn to
guide the eye. Path B is the parity reflection of path A. The index (8) indicates that these
paths correspond to octet states. Taken from [6].
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Since T1 and T2 are three-dimensional, the rotation matrices are three-dimensional as well. The

character is defined as the trace of the rotation matrices in a given representation. Thus, to

determine the characters, one only has to compute the diagonal elements. Note that T1i and

T2i are built from the same eight chairs, but again differ in signs. Examples for the following

mentioned rotations are shown in figure 6. Since T1i states are invariant under rotations around

the i-axis, an illustration as planes is possible, where sum elements with sign ± are denoted as

T
(±)
1i .

It is clear to see that a C4 rotation around the z-axis has not any impact on T1z. Hence, the

(3, 3)-element of the transformation matrix must be one. Rotating T1x and T1y will not return

the element itself, but ±T1y and ±T1x, respectively (depending on the chosen rotation direc-

tion). Thus, the diagonal-elements (1,1) and (2,2) are zero. This results in the character being

one, as shown in the character table.

T1i consists of one upper part with a positive sign and one lower part with a negative sign. A

C2
4 rotation around the i-axis will then have no impact on the element i but will change the sign

of the other two T1-objects. The diagonal-elements are then −1,−1 and 1 and χ(C2
4) = −1.

Obtaining χ(E) is trivial since it is always equal to the dimension of a representation. For

C2 rotation axes tangent to cube faces parallel to the i-axis, the sign changes in the T1i repre-

sentation. The other two representations are converted into ± of each other. Thus, the only

diagonal element is minus one, which results in χ(C2) = −1.

In contrast to this, C3 rotations will transform T1i into T1j with j 6= i, corresponding to

χ(C2) = 0. This concludes the proof that the above given operators are indeed transforming

like the irreducible representation T1.

The characters of T2 only differ for two rotation classes. Unlike T1, chairs in the same plane

differ alternately in signs. Thus, a rotation around the i-axis will change the sign in the T2i

representation, which leads to χ(C4) = −1.

The effect of a C2-rotation is for T2i very similar to T1i, with the difference that the alternating

signs in the same plane result in the only diagonal element being one (→ χ(C2) = 1). The

derivation of the characters of E is shown in [6]. Another possibility for computing the char-

acters is by implementing the cubic rotations numerically with quaternions like it was done in

reference [26].

Numerical computations have shown, that a proper mass determination was only possible for

operators with a larger extension. Table 6 shows for what kind of operator a mass extrac-

tion could be performed. An extension of 2 denotes that the chosen path is for instance

(êx, êx, êy, êy, êz, êz,−êx,−êx . . . ,−êy). For even higher extension no significant improvement

in the noise/signal ratio was found, which led to the use of operators with an extension of 2 in

the following computations.
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Chair number Path Chair number Path

1 (y,−x, z) 13 (x,−y,−z)
2 (x, y, z) 14 (−y,−x,−z)
3 (−y, x, z) 15 (−x, y,−z)
4 (−x,−y, z) 16 (y, x,−z)
5 (−x, z, y) 17 (−z, x,−y)
6 (y, z, x) 18 (−z,−y,−x)
7 (x, z,−y) 19 (−z,−x, y)
8 (−y, z,−x) 20 (−z, y, x)
9 (z, y,−x) 21 (−y,−z, x)
10 (z, x, y) 22 (−x,−z,−y)
11 (z,−y, x) 23 (y,−z, x)
12 (z,−x,−y) 24 (x,−z, y)

Table 5: Coefficients for the chair-shaped paths shown in figure 5.
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Figure 6: One example rotation for all types of possible rotations of a T1 state. Since T1

components are invariant under rotations in the same plane, they can be illustrated as colorized
planes. In addition the rotation axis with rotation direction, that led to the shown cube
orientation, is shown.

Operator Pl. Chair, size 1 Chair, size 2 Operator Pl. Chair, size 1 Chair, size 2

A++
1 X X X E−+ x X X

A+−
1 x x X E−− x X X

A−+
1 x x X T++

1 x x X
A−−1 x x X T+−

1 X X X
A++

2 x x X T−+
1 X X X

A+−
2 X X X T−−1 X X X

A−+
2 x X X T++

2 X x X
A−−2 x x X T+−

2 x X X
E++ X X X T−+

2 X X X
E+− X x X T−−2 X X X

Table 6: Information if a proper mass extraction from an operator built with a given shape was
possible. “Pl.” denotes a plaquette-shaped path, while “Chair, size i”, is a chair-shaped path
with extension i.
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3.6 Gluelumps in SU(N)

The calculations performed in section 3.2 can be extended to SU(N). By simplifying

C(τ2 − τ1) = Tr(G(τ1)Tα) Tr(TαQT βQ†) Tr(G(τ2)†T β), (61)

one can obtain

C(τ2 − τ1) = Tr[G(τ1)QG(τ2)†Q†]− 1

N
Tr[G(τ1)] Tr[G(τ2)†]. (62)

One major difference between SU(2) and SU(3) can be explored by inserting explicitly the

generators for N = 2 into equation (61):

C(τ2 − τ1) ∝ Tr(G(τ1)σα) Tr(σαQσβQ†) Tr(G(τ2)†σβ) (63)

But G(τ) are SU(2) matrices, which means that they can be expressed in terms of the Pauli

matrices σα with real prefactors hα

G(τ) = h0 · 1 + i
∑
j

hjσ
j, (64)

where h2
0 +

∑
j h

2
j = 1. With this relation one can analyze Tr(G(τ)σa), which leads to

Tr(G(τ)σa) = h0 · Tr(σa)︸ ︷︷ ︸
=0

+i
∑
j

hj Tr(σjσa)︸ ︷︷ ︸
2δja

= 2iha = −Tr(G(τ)†σa). (65)

Hence Tr[(G(τ) + G(τ)†)σa] = 0, which is just the linear combination with C = +. Hence, in

SU(2) Lattice Gauge Theory only negative charge parity gluelumps exist.
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4 Numerical improvement

In this section, several improvement techniques for the lattice results are discussed. These meth-

ods aim to increase the overlap with the ground state (APE-smearing), reduce the divergent

self-energy (HYP-smearing) and decrease the noise in the temporal transporters (multilevel

algorithm).

4.1 APE-smearing

APE-smearing [27] is a common technique in lattice QCD to increase the overlap of the “lat-

tice state” with the ground state to extract proper ground state masses at small times. The

procedure was developed by the APE collaboration and can be repeated repetitively. For the

following discussion, the notation given in [28] is used. In step Ns the link variable U
(Ns−1)
µ (x)

is replaced by

U (Ns)
µ (x) = PSU(3)

[
(1− αs)U (Ns−1)

µ (x) +
αs
6
S(Ns−1)
µ (x)

]
, (66)

where PSU(3) denotes the projection to SU(3). αs is a weighting factor that is commonly chosen

as αs = 0.5 and S
(Ns−1)
µ is a so-called staple, that reads as

S(Ns−1)
µ (x) =

∑
±ν 6=µ

U (Ns−1)
ν (x)U (Ns−1)

µ (x+ ν̂)U (Ns−1)
ν (x+ µ̂)†. (67)

One can see that the above quantity is the sum of all shortest paths connecting the lattice

sites (x) and (x+ µ̂) without the use of the direct link. All spatial links used in this thesis are

smeared using the APE procedure, with parameters optimized in section 5.2.

With optimized Ns one would expect the following manner for a state created by a gluelump

operator O |Ω〉:

| 〈1| O |Ω〉 |2, | 〈2| O |Ω〉 |2, . . . , | 〈n| O |Ω〉 |2 � | 〈0| O |Ω〉 |2 (68)
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4.2 HYP-smearing

A gluelump is localized in the temporal direction down to the lattice spacing. This leads

to an unphysical self-energy, which is expected to be, similar to the self-energy of a quark-

antiquark pair, proportional to 1
βa

[29]. This additional contribution to the mass results in

faster-decreasing correlation functions, which correspond to a smaller signal/noise ratio for

large t.

The HYP-smearing (hypercubic blocking) procedure [30] improves this behavior by reducing the

self-energy. For this reason, the final so-called hypercubic fat links Vµ(x) are constructed via

projected APE blocking from a set of decorated links Ṽµ;ν(x)

Vµ(x) = PSU(3)

[
(1− α1)Uµ(x) +

α1

6

∑
±ν 6=µ

Ṽν;µ(x)Ṽµ;ν(x+ ν̂)Ṽ †ν;µ(x+ µ̂)

]
, (69)

where the indices µ and ν in Ṽµ;ν(x) indicate that the decorated link has direction µ and only

contains staples that do not extend in ν-direction. They can be constructed analogously by

another set of different decorated links V̄ρ;ν µ(x)

Ṽµ;ν(x) = PSU(3)

[
(1− α2)Uµ(x) +

α2

4

∑
±ρ6=ν,µ

V̄ρ;ν µ(x)V̄µ;ρ ν(x+ ρ̂)V̄ †ρ;ν µ(x+ µ̂)

]
. (70)

Here the same notation as above is used, which means that the decorated link V̄ρ;ν µ(x) is point-

ing in the ρ-direction and does not contain staples in ν- or µ-direction. They are constructed

from the non-smeared links Uµ(x) via

V̄µ;ν ρ(x) = PSU(3)

[
(1− α3)Uµ(x) +

α3

2

∑
±η 6=ρ,ν,µ

Uη(x)Uµ(x+ η̂)U †η(x+ µ̂)

]
. (71)

In figure 7, a three-dimensional schematic representation of the three previously described steps

is presented.

The input parameters αi can be varied for optimal results. In the computations, HYP-smeared

temporal links with ~α = (1.0, 1.0, 0.5) were used.
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a) b)

Figure 7: The continuously drawn paths on the right hand side are used to construct one
double-lined staple. Four of this kind are then used for building the fat link (cf. a)). Taken
from [30].

4.3 The multilevel algorithm

The multilevel algorithm was originally developed by Lüscher and Weisz in [14] and exploits

the locality of SU(3) to exponentially decrease statistical errors for the computation of Wilson

or Polyakov loops.

4.3.1 Two-link operators

An important quantity in the context of the multilevel algorithm is the two-link operator, which

is defined at the lattice site x = (x0, 0, 0, 0) as follows

T(x0)αβγδ = U0(x)∗αβU0(x+ r1̂)γδ. (72)

Please note that the following discussion is performed for a Wilson loop in the x0-x1-plane with

corners (0, 0), (t, 0), (t, r), (0, r), but an extension for general Wilson loops is not difficult. The

multiplication of a pair of two-link operators can be performed via

{T(x0)T(x0 + a)}αβγδ = T(x0)αλγεT(x0 + a)λβεδ. (73)

Using this rule one can rewrite a Wilson loop as

W (r, t) = S(0)αγ {T(0)T(a) . . .T(t− a)}αβγδ S(t)∗βδ, (74)

with the line operator S(x0)αβ = {U1(x) . . . U1(x+ (r − a)1̂)}αβ.

34



4.3.2 Sublattice expectation values

A time-slice consists of all lattice points with time coordinates in the interval [x0, y0]. For a

sublattice expectation value, the spatial links at the boundaries are held fixed, while the link

variables in the interior are the degrees of freedom. A sublattice expectation value on a given

time-slice is then marked with square brackets [...] and is given by

[T(x0) . . .T(y0 − a)] =
1

Zsub

∫
D[U ]subT(x0) . . .T(y0 − a)e−S[U ]sub . (75)

This can be taken even further with more levels, by expressing two-link operator averages

as sublattice expectation values of smaller partitioned sublattices. Such averages are then

compatible in the sense, that they satisfy

[T(x0)T(x0 + a)] = [[T(x0)] [T(x0 + a)]] . (76)

The correlation function of a gluelump is different compared to a Wilson loop. One can try to

rewrite the first term of equation (44) in terms of two-link operators.

Cfirst(T ) = Tr
(
G(0)QG(T )†Q†

)
= G(0)ijQ

∗
ilQjkG(T )†kl (77)

But Q∗ilQjk is just a two-link operator with extension zero. This leads to

Cfirst(T ) = G(0)ijT(x0, r = 0)iljkG(T )†kl. (78)

4.3.3 The algorithm

The computations were performed with the codebase developed by Christian Reisinger, which

was used in [31] and adapted to our purposes. Thus, the same notation is used.

For the multilevel algorithm, a lattice with temporal extension NT is partitioned into nts time-

slices with thicknesses p1, p2, . . . pnts , with
∑

j pj = NT . In the case of more levels each of the nts

time-slices with thickness pj is partitioned into smaller slices of thickness pj;i, where
∑

i pj;i = pj.

Figure 8 shows a possible partitioning for a two-level scheme. Please note that brackets, that

denote sublattice averages, are colorized in the same color as the sublattice itself.

For every top-level gauge field configuration nm sublattice configurations are generated by

updating the links in the interior nm · nu times. This means, that all sublattice configurations

are separated by nu updates. Performing this procedure for higher-order schemes would require

that for every sublattice configuration nm,2 subsublattice configurations are generated, which

are separated by nu,2 updates. This process has to be repeated until the lowest level is reached.

On the lowest level, one has to compute the time-slice averages of two-link operators. The
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expectation values are then used to calculate averages on a higher level (cf. eq. (76)). One has

to repeat these steps until the top level is reached.

With these averages a calculation of correlation function values with equation (44) and (78) is

possible. The algorithm is repeated for every top-level configuration.

[T(0)] [T(a)] [T(2a)] [T(3a)]

[[T(0)][T(a)]] [[T(2a)][T(3a)]]

[[[T(0)][T(a)]][[T(2a)][T(3a)]]]

Figure 8: Illustration of the averaging of two-link operators in a two level scheme. For better
visibility spatial links are not displayed.

4.3.4 Exponential error reduction

In the following Lüscher’s reasoning, why an exponential error reduction appears for the expec-

tation value [T(x0)T(x0 + a)], while the time-slices are in the confinement phase, is outlined.

The expected value of a Polyakov line can be specified using the multilevel algorithm (with

time-slice thickness 2a and extension NT ) as follows

〈
P ∗(x)P (x+ r1̂)

〉
= 〈[T(0)T(a)] . . . [T(NT − 2a)T(NT − a)]〉 . (79)

If the time-slices are in the confinement phase, the following applies

‖[T(x0) . . .T(y0 − a)]‖ ∝ e−m0r, (80)

where ‖ . . . ‖ denotes a norm for 9 × 9-matrices acting on complex vectors. Now, if nm mea-

surements are made on each sublattice, the error is proportional to 1/n
1/2
m . One can choose nm

such that the signal/error ratio is equal to one:

nm ∝ e2m0r (81)

The errors of the single factors in equation (79) would then be proportional to e−m0r, which

corresponds to the error of a Polyakov line with length NT to equal

σ ∝ e−m0rNT /2a. (82)

Thus, the errors are exponentially reduced with the area A = r ·NT .

Even though the algorithm turned out to improve gluelump mass results (cf. sec. 5.3), a few

issues with this discussion in general and in the context of gluelumps, exist.
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According to [15] the expectation value of Polyakov loops 〈P 〉 at large separation distances can

be used to determine whether a system is in the confinement phase:

• 〈P 〉 = 0 ←→ confinement

• 〈P 〉 6= 0 ←→ no confinement

In figure 9 the Polyakov loop expectation value as a function of the temperature T (defined in

eq. (83)) in MeV, which can be varied by changing the extension pj of the sublattice, is shown.

T =
1

pj · a
(83)

Hence, for temperatures lower than Tc ≈ 270MeV the system is in the confinement phase and

the argumentation of Lüscher is applicable. In this context one has to choose for instance

pj = 12 at β = 6.284 to reach temperatures lower than Tc. But this is, in our experience, way

too thick for proper spectroscopy and pj has to be even larger for smaller lattice spacings.

On the one hand equation, equation (80) is not completely the same as a Polyakov loop ex-

pectation value, since it is not forming a closed loop around a periodic lattice. On the other

hand, gluelumps define Wilson loops for r → 0. Thus an exponential reduction with the area

A = r ·NT might have no influence.

Therefore, clarifying why the multilevel algorithm works in the case of gluelumps requires

further investigation.

Figure 9: Polyakov loop expectation value as a function of the temperature T in MeV. Taken
from [15].
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5 Lattice results

5.1 Lattice setup

The aim of this work is not only to compare gluelump masses with hybrid static potentials but

also to extrapolate the data into the continuum. For this reason, a cross-check, if the lattice

spacings used in [1] are small enough to neglect errors of O(a4), is performed.

Because every gluelump mass contains the same amount of divergent self-energy, differences of

gluelump masses have a finite value for a→ 0. Usually masses are given relative to the lightest

gluelump T+−
1 .

Therefore, the following ansatz for the mass splitting data of T−−1 and T+−
1 , taken from [3], is

chosen

∆m = m0 + c2 · a2 + c4 · a4. (84)

Figure 10 shows the results of the fit. It is clear to see, that the used lattice spacing a1 is way

too large for approximating the continuum with only a quadratic term. The impact of O(a4) is

significant for a ≈ a1. All lattice spacings used in this thesis are smaller than/equal to a2. Thus

we are confident, that our lattice spacings are sufficiently small enough for a proper quadratic

continuum extrapolation.

Table 7 shows the four ensembles A,B,C and D used in this thesis, which were generated with

the CL2QCD software package [32] in reference [1]. The lattice spacing a was related to the

Sommer scale r0 via the following parametrization, derived in [33]

ln(a/r0) =− 1.6804− 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3,

for 5.7 ≤ β ≤ 6.92. (85)

As common in pure gauge theory, r0 was set to 0.5fm. The number of lattice points was chosen

for each ensemble, such that the lattice volume is≈ (1.2fm)3·2.4fm, which turned out to be large

enough to neglect finite volume corrections. In addition, the ensembles were negatively tested

for possible topological freezing. Thus, we are sure that the used gauge field configurations are

of high quality. Two sets of computations with HYP-smearing and without were performed.

38



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

a in fm

−200

−100

0

100

200

300

400

C
on

tr
ib

u
ti

on
to

∆
m

(a
)

in
M

eV

a1a2

a3

a4

T−−1

m0

O(a2)

O(a4)

Figure 10: Different terms obtained by fitting the mass splitting data of T−−1 and T+−
1 [3]

via equation (84). The constant (blue) and quadratic (orange) term are shown, for a better
visibility, without error bars, while the green curve describes terms of O(a4). The lattice
spacings a1, a2 and a3 were used in [3], while the computations in this thesis stick to lattice
spacings a with a ≤ a2.

Ensemble β a in fm N3 ×NT Nor Ntherm Nsep Nmeas Ns,opt

A 6.000 0.093 123 × 26 4 20000 50 3200 33

B 6.284 0.060 203 × 40 12 20000 100 1450 82

C 6.451 0.048 263 × 50 15 40000 200 800 123

D 6.594 0.040 303 × 60 15 40000 200 800 164

Table 7: Gauge link ensembles [1].
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5.2 Optimizing APE-smearing

In this section the number of APE-smearing steps Ns is optimized by examining the effective

mass at τ = 1 with α = 0.5 for all 20 gluelump states at β = 6.284. For meff(τ = 1)

the impact of higher excitations is not negligible, thus an optimal Ns is characterized by a

minimal effective mass at small τ . Figure 11 shows meff(τ = 1) versus the number of smearing

steps Ns for a T−−1 gluelump. The minimum is achieved at Ns ≈ 51+19
−12, while the errors

were chosen such that the error bands overlap. In general, it turned out, that for Ns values

larger than the optimal value, the slope is significantly lower than for smaller values. Thus

even for Ns ≥ Ns,opt the overlap should be sufficient large enough. This procedure has to be

repeated for all 20 gluelump operators and leads to figure 12, where the optimal Ns for all ΛPC

is shown. Since the error bars, especially the upper border, can get very large, they are not

displayed explicitly. It turned out, that an optimal overlap for lighter gluelumps, is achieved

with smaller Ns. Since mass spectroscopy is possible for lighter states up to larger times at

which excitations are sufficiently suppressed, Ns is primarily optimized for heavier gluelumps,

which led to Ns,opt = 82 for β = 6.284. For the other lattice spacings, the optimal smearing

steps are given in table 7. They were obtained by choosing the same ratios like in [1] and

additionally performing a cross-check for single gluelumps.
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5.3 Optimizing the multilevel algorithm

The multilevel algorithm is very complex and difficult to optimize due to its many parameters.

For a given number of levels, one has to determine the optimal sublattice structure, the number

of sweeps between two measurements and the total number of sublattice measurements. Even

though the optimal parameters might differ for different lattice spacings, all optimizations could

only be performed on non-HYP-smeared gauge fields at β = 6.284 due to the large computa-

tional time consumption.

The purpose of the multilevel algorithm is to reduce fluctuations in the temporal transporters

and generate smaller errors σ in the effective mass/correlation function for a given computa-

tional time Tml. For statistically independent gauge field configurations σ ∝ 1/
√
N is expected

and therefore N · σ2 ∝ Tml · σ2 = const. This is not the case for the number of sublattice

measurements nm, where a minimum in nm · σ2 at the optimal value for a given t, is expected.

The procedure for the optimization of nm for a given sublattice structure is given as follows:

1. Generate Ntop top level configurations.

2. Vary the number of sublattice measurements nm.

3. Find the minimum in nmσ
2 for a given t and ΛPC.

The final nm was determined, by performing computations on Ntop = 50 top-level configu-

rations, for the T+−
1 gluelump at t = 12, while the errors of the effective mass meff(t) were
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examined. T+−
1 was chosen for optimization since all masses are given relative to its mass,

while t = 12 turned out to be sufficiently large enough for a positive influence of the multilevel

algorithm, but not too large for a proper mass extraction. Exemplary, the above mentioned

graph is displayed in figure 13 for two possible operator extensions on a sublattice with thick-

ness pi = 2. The minimum is visible at nm = 20 for both extensions. This is no surprise since

both correlators contain the same adjoint temporal transporters and only differ in the linear

combination G(τ), which is not influenced by the multilevel algorithm due to its position on

the time-slice boundaries.
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Figure 13: nmσ
2 versus nm for the error of the effective mass of a T+−

1 gluelump at t = 12 for
an extension of one and two on sublattice C (cf. table 8).

Table 8 shows the different sublattice structures used in this work. The number of levels does

not include the top lattice. The given structures are periodically repeated until the lattice is

filled with time-slices. While the correlation function for the structures A,B and F can be

computed for all possible time separations t, C only allows t = 0, 2, 4, . . . . The number of data

points is even more restricted for D and E, where just t = 0, 4, 8, . . . is possible. In contrast,

data for G is extracted from different simulations with structures Gi respectively. The last row

of table 8 displays which t were computed on every sublattice.

The equidistant partitioned structures A,B,C,D and E are compared in figure 14. It turned

out that the use of the multilevel algorithm improves the efficiency in every case. Generating

results with the same precision without the algorithm would require 102 up to 104 times longer

calculations (depending on the chosen temporal transporter length). D and E are producing

similar results, while σ2 · T is slightly smaller when using two levels. It is necessary to con-
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sider that lattices with a larger time-slice thickness reduce the total number of data points. In

principle, this can affect the temporal translation invariance and reduce the quality of effective

mass fits. Especially for heavier gluelumps, where the mass spectroscopy is in some cases only

possible up to t ≈ 6, time-slices of thickness four are significantly too thick.

Sublattice No. of levels Structure 1 Structure 2 nm,1 nm,2 Used t 6= 0
A 0 × × × × 1,2,3,. . . ,20
B 1 [1, 1, 1, 1, . . . ] × 10 × 1,2,3,. . . ,20
C 1 [2, 2, 2, 2, . . . ] × 20 × 2,4,6,. . . ,20
D 1 [4, 4, 4, 4, . . . ] × 100 × 4,8,12,. . . ,20
E 2 [4, 4, 4, 4, . . . ] [2, 2, 2, 2, . . . ] 10 10 4,8,12,. . . ,20
F 1 [1, 2, 3, 4, . . . ] × 70 × 1,2,3,. . . ,20

G


G1

G2

G3

G4

G5

1 [1, 1, 1, 1, . . . ] × 10 × 1,2,11,13
2 [3, 3, 3, 3, . . . ] [1, 2, 1, 2, . . . ] 10 10 3,6,9
2 [4, 4, 4, 4, . . . ] [2, 2, 2, 2, . . . ] 10 10 4,8,12,16
2 [5, 5, 5, 5, . . . ] [2, 3, 2, 3, . . . ] 10 10 5,10,15
2 [7, 7, 7, 7, . . . ] [3, 4, 3, 4, . . . ] 10 10 7,14

Table 8: Sublattices used in this thesis with given sublattice structure on each level and number
of measurements. G is build from several different sublattice structures Gi.
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Figure 14: Logarithmic comparison of the efficiency of different sublattice structures (A,B,C,D
and E) for several t values. σ is the relative error of the effective mass, T the total computation
time, while the subscript norm corresponds to sublattice B.
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Figure 15: Logarithmic comparison of the efficiency of different sublattice structures (B,F and
G) for several t values. σ is the relative error of the effective mass, T the total computation
time, while the subscript norm corresponds to sublattice B.

The sublattices F and G are trying to combine the efficiency of large time-slice thicknesses

with the possibility to compute effective masses for all possible temporal extensions. While F

contains time-slices with thicknesses pi 6= pi+1 6= pi+2 6= pi+3, G combines different sublattice

structures with thicknesses up to seven. They are compared with B in figure 15.

Both variants do not seem to improve the efficiency for t ≤ 13. On the one hand, only 10% of

the samples are present in F compared to B. Additionally, the computation time is increased

approximately by a factor of four. Thus an approximately 40 times higher σ2T value for small

times is expected. With increasing t the positive effects of larger time-slices start to contribute,

which leads to better performance. Since for t values larger than thirteen, where F might have

better efficiency, no proper mass extraction is possible, variant F is not used.

Sublattice G is a very complex construct and therefore many different factors can contribute

to the efficiency. First, the computation time for G is about ten times larger than for B.

This explains the behavior of t = 1 and 2. One main issue is the prime number temporal

lengths since they have to be computed either on G1, where no large time-slices contribute or

on sublattices with thicker time-slices, which reduces the total number of samples and increases

the computation time. On a sublattice with partitioning [1, 1, 1, 1, . . . ] full temporal translation

invariance is achieved since the computation of correlation functions is possible at every lattice

site, which is not the case for larger time-slices. Additionally, G is built partly from a structure

with odd pj. The former analysis was only performed on even lattices.

44



Last but not least some substructures (e.g. G5), cause about one-quarter of the computation

time, but only provide a few additional data points.

Unfortunately, we were unable to construct sublattices, which are more efficient than sublattices

with a uniform partitioning. But this does not mean that uniform structures are in general

more efficient. A more detailed investigation would exceed the scope of a master thesis.

Both sublattices B and C are possible candidates for the final computation. While C provides

a higher efficiency on single mass data points but reduces the total number of samples, B can

be applied to any lattice extension. Computations have shown that effective mass fits for B

and C of gluelump masses result in similar errors for lighter gluelumps, while for heavier states

B is preferable. Therefore, structure B with nu = 30 is used for all final calculations, since

it can be applied to any top lattice without further adjustments and increases the efficiency

significantly.

45



5.4 Mass determination

Correlation functions were computed with and without the use of HYP-smearing on four dif-

ferent lattice spacings for twenty different gluelump operators. This leads to a total of 160

different mass spectra. Therefore, it is necessary to use algorithms that generate consistent

results for all data sets. Two different approaches are applied, which are based on effective

masses and correlation functions respectively. To extract masses and errors the fitting algo-

rithms described in [34] were used, while the errors of C(t) and meff(t) were estimated using

the jackknife method.

5.4.1 Mass extraction procedures

Procedure I : The first procedure is based on the property, that a correlation function is

an infinite sum of exponential functions of energy differences (cf. eq. (16)). The correlation

function is approximated using the approach

C(ΛPC, t) = c0 · e−m0t + c1 · e−m1t. (86)

Where c0, c1 > 0 and 0 ≤ m0 ≤ m1. If the APE-smearing was successful one would expect

c1 < c0. While m0 can be interpreted as the mass of the ground state, this is not possible for

m1. The second exponential may be understood as a superposition of the contributions of all

higher-lying gluelump states to the correlation function. Fits with more exponential functions

turned out to be too unstable.

Procedure II : The second algorithm uses effective masses and determines the mass value

by identifying the plateau region. It was used previously in [31].

For the mass extraction χ2-minimizing fits of a constant are applied to meff(ΛPC, t) in between

t′min and t′max. The fit range is chosen for every data set individually and is determined as

follows:

1. tmin is the minimal t value, where meff(ΛPC, t) and meff(ΛPC, t + a) overlap within error

bands, i.e. differ less than ∆ = σt + σt+a.

2. tmax is defined as the maximal t, where meff(ΛPC, t) is computed and the statistical error

is reasonably small.

3. Fits are then performed for all ranges t′min ≤ t ≤ t′max, where tmin ≤ t′min and t′max ≤ tmax

with at least three data points.

4. m(ΛPC) is taken as the result of the fit with the longest plateau and χ2/dof ≤ 1.
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The above-described algorithm worked reliably in about 85% of the cases. In the other cases,

the fit range had to be varied slightly. For heavier gluelumps a fit with χ2/dof ≤ 1 was not

always achievable and therefore we decided to use the range, where χ2/dof was minimal.

5.4.2 Mass results

Figure 16 shows one example plot for both mass extraction procedures. The results agree very

well within error bands, while the mass extraction of the ground state via procedure I suffers

from an approximately 30% larger uncertainty. Nevertheless, the behavior of the effective mass

for large t, shows the good quality of our data, especially for the magnetic gluelump T+−
1 .

As for the continuum extrapolation, all masses are given relative to m(T+−
1 ), it is important,

that no higher-lying states contribute to the extracted mass. Furthermore figure 17 shows the

comparison of the computed gluelump masses at β = 6.451 for both procedures.

In most cases, the results agree within error bands, while the exponential fit leads mostly to

larger errors. In general, all masses derived with the effective mass fit are larger. This could

be an indication of a non-negligible contribution of higher-lying states for the chosen t′min. All

results for both procedures, lattice spacings and with and without the use of HYP-smearing

are collected in Appendix A in the tables 14-17. Additional to the ground state mass, the

corresponding errors and χ2/dof values are displayed. The gluelump spectrum is discussed in

detail in section 6, where the gluelump masses are extrapolated to the continuum.
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Figure 16: Mass extraction of T+−
1 for β = 6.451 with the use of HYP-smearing for procedure I

with a logarithmic scale (left) and procedure II (right). The results of the fits are marked in
orange and red respectively.
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Figure 17: Comparison of the effective mass fit (blue) and the exponential fit (black) for all 20
ΛPC gluelumps at β = 6.451.

5.4.3 Hybrid potentials

The aim of this section is to compare the derived masses for T+−
1 with the bare lattice data

of the hybrid static potentials computed in [1]. According to equation (22) and table 1 the

potentials Σ−u and Πu should approach m(1+−) for r → 0. For this reason, we have to be

sure, that m(T+−
1 ) = m(1+−) is correct. On the one hand, a computation of the corresponding

mass was possible on all used lattice spacings in wide plateau regions, which indicates that no

heavier states contribute. On the other hand the possible two lowest-lying spin states in T+−
1

are J = 1 and 3, while for A+−
2 J = 3, 6, 7 . . . is possible (cf. table 4). If m(T+−

1 ) = m(3+−)

would hold, m(T+−
1 ) ≈ m(A+−

2 ) is expected, which is not the case. Thus we conclude that

m(T+−
1 ) = m(1+−) is correct.

In figure 18 the comparison of the hybrid statice potentials and gluelump masses are displayed.

Taking the gluelump masses into account, all results with non-HYP-smeared links, show a sim-

ilar upward curvature for r → 0. This behavior agrees with the expected repulsive behavior

in pNRQCD for small r [12]. Unfortunately, the potentials were only computed for r ≥ 2a. A

data point at r = a would, especially for β = 6.594, provide deeper insights in the agreement of

the mass results with the potentials for r → 0. Nevertheless our masses confirm qualitatively

equation (22) and the pNRQCD prediction.
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Figure 18: Comparison of the Σ−u and Πu potentials computed in [1] with the mass of the
lightest gluelump T+−

1 versus the separation distance r in fm. Additional to the potentials
without the use of HYP-smearing, the results for HYP-smeared gauge fields are displayed in
the upper left corner. All potentials/masses are given in units of the lattice spacing.

By comparing the upper left and upper right plot in figure 18 a clear mismatch for HYP-

smeared gauge field configurations is present, where no upward curvature is visible for r → 0.

According to reference [3] the self-energy at r 6= 0 can be considered as 2EF , while at r = 0

it is given by EA = 9EF/4. Thus the self-energy is 9
8

times larger at r = 0. This mismatch

is a first indication for the behavior for r → 0. By comparing the smeared and unsmeared

bare potential lattice data at r = 6a, an energy difference ∆Ehybrid = 0.509(8) is obtained,

while examining the difference for m(T+−
1 ) leads to ∆Egluelump = 0.561(4). Even within error

bands both self-energy reductions do not agree. Shifting the gluelump mass in the smeared

spectrum by (∆Egluelump − ∆Ehybrid) would then recreate the expected curvature. Additional

∆Egluelump ≈ 9/8∆Ehybrid holds, which agrees with the above relation between EA and EF and

would indicate that HYP-smearing reduces the self-energy proportionally.

Hence we conclude that bare lattice data for HYP-smeared potentials and gluelump masses

cannot be compared without any further adjustments.
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5.4.4 Overlap and possible glueball mass determination

One advantage of procedure I for mass extraction is, that the fit parameters c0 and c1 can

give an insight into, whether APE-smearing was successful. Although c1 cannot be interpreted

as the overlap of the next higher-lying state, but as a superposition of several heavier states,

c0 � c1 can indicate that the smearing was successful. In figure 19 the fraction |c1|/|c0| at

β = 6.594 for all twenty computed gluelump masses is shown. Smaller fractions correspond

to higher overlaps with the ground state. Note that for all β the behavior is similar and thus

only values for β = 6.594 are drawn. In most cases |c1|/|c0| / 0.35 was achieved. Together

with faster decreasing exponential functions of heavier states, a ground state mass extraction

even at small times is therefore possible. The smallest overlaps occur for A+−
2 and A−−2 , which

may correspond to a general bad overlap of the state created by the chosen operator with these

states. Especially A+−
2 and A−−2 masses determined by an effective mass fit should therefore

be considered with caution.
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Figure 19: Fraction of the prefactors c1 and c0, which were obtained by fitting the function, given
in equation (86) to the HYP-smeared correlation data for all 20 ΛPC gluelumps at β = 6.594.
|c1| = |c2| is marked in blue.
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The gluelump correlation function (cf. eq. (44)) is consisting of two terms. While both terms

contain the linear combinations of closed link loops G(τ), only the first term includes temporal

links. As mentioned before the symmetry group on the lattice for glueballs and gluelumps is

the cubic group. Therefore, corresponding creation operators might be build from the same

G(τ). According to [35] a possible correlation function for glueballs is given by

C(τ2 − τ1) = Tr(G(τ2)†) Tr(G(τ1)), (87)

where all quantities are again defined at the same spatial lattice site. In the case of A++
1 , one

has to additionally subtract the vacuum contribution. Since the quantity given in equation

(87) appears in the gluelump correlator as well, one might expect that it is possible to extract

glueball masses on the fly, while computing the gluelump spectrum. Unfortunately, this is not

possible because of the following reasons:

On the one hand, the chair-shaped operators, used in this thesis, are considered as “bad” glue-

ball operators in [36], since they suffer from a bad signal-to-noise ratio. On the other hand, the

total number of APE-smearing steps was adjusted, such that the effective mass of gluelumps

at small times was minimized. This probably causes a worse overlap to glueball states. Addi-

tionally, the applied HYP-smearing and multilevel algorithm do not improve possible glueball

results.

Hence, a precise computation of glueball masses would require another set of operators, for

this purpose adjusted smearing step sizes and if necessary the application of different numerical

procedures, like for instance blocking. An attempt to neglect the “glueball contribution” in

the gluelump correlator neither reduced the computation time significantly nor increased the

signal-to-noise ratio.
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6 Continuum gluelump masses

As previously discussed, gluelump masses contain an unphysical self-energy, which is divergent

for a→ 0. Therefore, only mass differences can be extrapolated to the continuum without any

further adjustment. In agreement with section 5.1 a χ2-minimizing fit is performed to

m(ΛPC)−m(T+−
1 ) = m0 + c2 · a2 ; ΛPC 6= T+−

1 . (88)

The errors of m(T+−
1 ) and m(ΛPC) are added linearly since they are not statistically indepen-

dent, while the corresponding χ2-minimizing fit is performed with the methods described in

reference [34]. The continuum masses are then given by the fit constant m0. Figure 20 shows

four examples for the continuum extrapolation. The mass splittings have a clear a2-dependence,

which makes us confident, that equation (88) was a good ansatz.
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extrapolation via fitting equation (88) to the data points, including error bands, is colorized
with the color given in the legend. The mass points were extracted using procedure I with the
use of HYP-smearing.
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The mass splittings for all 19 gluelumps are given in table 9 with corresponding errors and

χ2/dof values, which makes it possible to compare the different procedures and if the use of

HYP-smearing provides an improvement. Similar to the results at a given lattice spacing, the

mass results are in the same range for both procedures and agree in most cases within error

bands. The largest mismatch appears, like previously predicted, for A+−
2 and A−−2 . Probably

procedure I provides better results here since states of higher masses seem to contribute sig-

nificantly to the effective mass in the extraction time range.

The application of HYP-smearing reduced the average error of the masses computed via

procedure I by 5MeV and 10MeV for procedure II , while most masses agree within error

bands. For one of the heaviest states A−−2 , a large discrepancy between both results is present,

which is likely due to the increment of “good” data points for HYP-smeared correlators. In

general, the number of effective mass points, where the errors were sufficiently small, was in-

creased. Thus we are sure that mI,HYP and mII,HYP are more probable correct and therefore the

following discussion is performed for them.

ΛPC mI χ2/dof mII χ2/dof mI,HYP χ2/dof mII, HYP χ2/dof
T++

1 1920(40) 1.47 1985(20) 2.60 1924(30) 1.52 1977(27) 5.98
T−+

1 1278(29) 0.83 1329(21) 0.31 1288(27) 0.09 1351(14) 2.25
T−−1 382(11) 1.69 393(17) 0.45 386(9) 1.86 359(9) 1.44
T++

2 1734(29) 2.31 1762(18) 1.66 1731(27) 1.90 1742(16) 0.83
T+−

2 968(16) 0.89 975(18) 0.62 973(15) 0.13 951(15) 0.23
T−+

2 1594(29) 2.67 1640(17) 0.50 1604(28) 2.06 1629(17) 0.88
T−−2 503(15) 0.45 517(13) 0.54 511(13) 0.57 505(9) 0.15
A++

1 996(24) 2.92 1005(18) 1.60 1006(23) 1.73 997(15) 0.92
A+−

1 2180(60) 1.34 2220(40) 2.18 2210(60) 1.52 2261(26) 3.07
A−+

1 2420(60) 0.12 2460(40) 0.78 2420(50) 0.32 2442(25) 0.81
A−−1 1390(27) 0.33 1429(19) 0.10 1396(25) 1.20 1410(16) 2.57
A++

2 2150(50) 1.01 2153(29) 0.43 2150(50) 0.79 2125(29) 2.75
A+−

2 1240(40) 1.99 1310(25) 0.99 1200(40) 0.79 1280(29) 1.44
A−+

2 1530(50) 0.44 1550(40) 0.08 1560(40) 0.64 1584(22) 0.93
A−−2 920(14) 3.20 1090(12) 5.17 2320(60) 0.93 2340(40) 0.51
E++ 1313(25) 1.21 1300(18) 0.53 1306(23) 1.39 1302(13) 0.53
E+− 894(16) 0.44 888(23) 0.07 902(15) 0.31 915(13) 0.54
E−+ 1541(29) 5.70 1550(19) 0.92 1541(27) 6.02 1540(16) 0.04
E−− 551(14) 3.26 544(17) 4.81 560(13) 2.09 543(12) 3.84

Table 9: Continuum results of m(ΛPC) −m(T+−
1 ) with χ2/dof values for all 19 possible mass

differences in MeV. The subscripts I and II denote the used procedure for the mass extraction,
while HYP indicates, that HYP-smearing was applied.
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6.1 Spin identification

Every irreducible representation can contain several different spin states. With the full ΛPC

spectrum a possible spin identification/estimation of severals JPC states is possible. The iden-

tifications in the different PC sectors are performed with figures 21, 22 and table 4. Please note

that the following discussion is based on the computed masses and is not generally applicable to

ΛPC from different computations. Another set of operator shapes can correspond to a different

spin identification for a given ΛPC.

PC = +− sector: The masses of T+−
2 and E+− agree within error bands. Since both contain

J = 2 as the lowest spin, one can identify them as 2+−. The next higher-lying states are J = 3

and J = 4 respectively, thus we conclude that 3+− and 4+− are heavier than 2+−. T+−
1 is

lighter than all other computed states in this sector, which corresponds to m(T+−
1 ) = m(1+−).

A+−
1 might be identified as 0+−, but also 4+−, 6+− . . . is possible. A+−

2 cannot be associated

with J = 6, because m(A+−
2 ) is smaller than m(A+−

1 ) and one might expect an influence in

the spectrum of A+−
1 , where J = 6 is included as well. Hence the most probable possibility is

m(A+−
2 ) = m(3+−).

PC = −+ sector: For the same reasons like in the PC = +− sector we can identify m(T−+
1 )

as m(1−+). The masses of E, T2 and A2 are very close to each other, while the lowest spin level

that they all share is J = 6. Therefore, it is more probable that m(2−+) ≈ m(3−+). Hence

E−+ can be identified as 2−+, while T−+
2 and A−+

2 might correspond to 3−+. For A1 again no

clear identification is possible.

PC = −− sector: Analogously T−−1 is identified as a spin-one state, while E−− and T−−2

correspond to J = 2. Since A−−1 and A−−2 are separated from all other measured data points

by approximately 1000 MeV no clear spin assignment is possible.

PC = ++ sector: A++
1 is the lowest-lying state in this sector and is identified as 0++. The

next larger spin is J = 4, which can be contained in E, T1 and T2 as well. Since none of these

states are close to A++
1 , an assignment with the lowest spin content is most likely. For the first

time, a larger mass gap between E and T2 is visible, consequently, no identification with J = 2

is possible for both at the same time. One possible way is to assume that E++ = 2++ holds,

which then results in an assignment of J = 3, 4, 5 . . . for T++
2 . An identification of T++

1 with

1++ is doubtful, since it shares as well J = 3, 4, 5 . . . spin contents with T2 and the measured

mass is heavier. The spin of the measured T++
1 mass can thus be assumed to be larger than the

spin of T++
2 , which then results in J = 4, 5 . . . depending on the chosen angular momentum

for T++
2 . Last but not least the two lowest possible J for A++

2 are 3 and 6. If the previous

reasoning is correct the correspondent spin has to be at least 6.
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In table 10 the correspondent results are shown and additionally compared with the continuum

extrapolation derived in [3]. The errors and in general the literature results have to be taken

with caution. According to the authors, the low number of used gauge field configurations

might have led to an underestimation of the statistical errors. On the one hand the continuum

masses of 0++ and 3+− were computed with β = 5.7 gauge fields, where only one single effec-

tive mass could be determined. On the other hand, effective masses were only computed up to

t = 4. Thus the results might suffer from much larger error bands. Taking this in mind, a good

agreement between both results is found. Only the mass of 3+− is significantly smaller in [3],

probably due to the use of gauge field with β = 5.7, where lattice discretization error larger

than O(a2) contribute, which could in principle lead to a false continuum extrapolation. A

comparison with the literature results for each lattice spacing is difficult since the chosen gauge

field couplings except for β = 6.0 differ in both works. For β = 6.0 the number of effective

mass points was increased by a factor of two up to three, depending on the chosen gluelump.

Besides that, the precision was enhanced for each mass point. This leads to better fit results,

with smaller χ2/dof values.

Surprisingly, several states are lighter than the lightest measured spin-zero state 0++. In gen-

eral, the spectrum does not show any patterns that suggest that states with certain JPC are

heavier. This could be either an indication for missing states in between and a corresponding

false spin identification or that the gluelump spectrum does not follow any ordering rules. The

performed spin identification was based on the assumption, that in a given irreducible represen-

tation, states with larger spins are indeed heavier. In order to show that even this assumption

can distort the spin spectrum, in the following the PC = −− sector with the property that

states with higher spin are generally heavier, is considered:

For A−−1 an assignment as 0−− would then be impossible, since m(1−−) ≤ m(A−−1 ). The corre-

sponding angular momentum has then to be at least four, resulting in the spin of A−−2 being at

least six. This would, on the one hand, correspond to m(3−−) ≤ m(A−−1 ) ≤ m(5−−) ≤ m(A−−2 ).

On the other hand, this suggests the existence of a state with 0−− lighter than 1−−.

In summary, the spin identification with only one set of operators is in most cases more a

qualitative interpretation than a precise assignment. A possible way to solve this problem is

by choosing a wide range of different operator shapes and solving the generalized eigenvalue

problem (cf. for instance reference [37]). Analogously to the identification of J = 2 states

by overlapping computed masses in the T2 and E representation, certain spin states can be

identified by their appearance in different representations.
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JPC Other J mI,HYP mII,HYP mlit [3]
1−− 386(9) 359(9) 368(7)
2−− 540(40) 530(30) 584(10)
2+− 940(50) 930(30) 970(40)
0++ 1006(23) 997(15) 1090(30)
3+− 1200(40) 1280(29) 972(24)
1−+ 1288(27) 1351(14)
2++ 1306(23) 1302(13)
0−− 4,6,8. . . 1396(25) 1410(16)
2−+ 1541(27) 1540(16)
3−+ 1580(60) 1610(50)
3++ 4,5,6. . . 1731(27) 1742(16)
4++ 5,6,7. . . 1924(30) 1977(27)
6++ 7,9,10. . . 2150(50) 2125(29)
0+− 4,6,8. . . 2210(60) 2261(26)
3−− 6,7,9. . . 2320(60) 2340(40)
0−+ 4,6,8. . . 2420(50) 2424(25)

Table 10: Most probable spin identifications for mass splittings relative to m(T+−
1 ) in MeV

derived applying procedure I and procedure II . In the case that two different states, corre-
sponded to a given JPC, the average was taken, while the error bands were taken from the lower
border of the lighter state to the higher border of the heavier state. Additional, in unclear cases
other possible spins J are listed, while the last row shows literature values taken from [3].
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6.2 Subtraction of the self-energy

Previously only mass differences were extrapolated to the continuum. This section aims to

subtract the divergent self-energy, to compute the mass of the lowest-lying gluelump T+−
1 . For

this purpose, two different approaches are chosen. First of all the self-energy is subtracted by

approximating the shape of gluelump masses depending on the lattice spacing a. Secondly, the

gluelump masses are converted into the RS-scheme, as it was done in [13]. In the latter case,

only computations for mII(T
+−
1 ) are shown, since T+−

1 masses extracted with both procedures

are almost equal.

6.2.1 Approach I

The divergent self-energy is, according to [29], proportional to 1/(βa). Additionally, previous

computations show, that approximating the discretization errors as O(a2) is valid. The mass

of the i’th gluelump in the dependence of the lattice spacing might then be approximated as

m(i)(a) = cself ·
1

βa
+m

(i)
0 + c

(i)
2 · a2 ; i ∈ ΛPC. (89)

Note that cself is identical for every gluelump, while m
(i)
0 and c

(i)
2 differ. Although in general the

mass of i’th gluelump is given as m
(i)
0 , only the mass of the lowest-lying gluelump is extracted

via this approach. The results are shown in table 11.

Label m
(T+−

1 )
0 in MeV cself in MeV·fm

I 1727(27) 717(8)
II 1708(30) 726(8)

I,HYP 1218(21) 265(5)
II,HYP 1286(25) 246(6)

Table 11: Results for cself and m
(T+−

1 )
0 . The same labels for the results as in the previous sections

are used.

The mass splitting results in table 9 have then to be shifted by the computed constants. Inter-

estingly, in the case of the application of HYP-smearing, not only the diverging contribution of

the self-energy is reduced, but also m
(T+−

1 )
0 .
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6.2.2 Approach II: RS scheme

The form of the short distance hybrid potential En(r) in [12] is given by

En(r) = V RS
o (νf ) + ΛRS

H (νf ) + bnr
2. (90)

Where V RS
o (νf ) denotes the octet potential and ΛRS

H (νf ) is the mass of a suiting gluelump (cf.

table 1). Hence the gluelump mass appears as an additional constant in the small distance

description of hybrid potentials and therefore determines the energy scale setting. A possible

way of converting gluelump masses in the RS scheme is given in [13]. The authors related the

lattice mass of an arbitrary gluelump ΛL
H(a) with the gluelump mass in the RS scheme ΛRS

H (νf ).

The index H labels different kinds of gluelumps. The lattice mass is connected with the mass

in the RS scheme via the following master formula:

ΛRS
H (νf ) = ΛL

H(a)−
{
δΛL

H(a) + δΛRS
H (νf )

}
(91)

As equation (91) implies, ΛRS
H has a νf dependence, which could be, according to [13], inter-

preted in pNRQCD as a matching scale between ultrasoft and soft physics. In the following

νf = 1GeV is used. The correction in equation (91) reads as

δΛL
H(a) + δΛRS

H (νf ) =
CA
2
a−1v1αs(ν)

+

{
CA

2(4π)
a−1 {v2 + v1[−b1 + β0 ln(νa)]}+ νf

(
Ṽs,1 − Ṽo,1

)}
α2
s(ν) (92)

+

{
CA

2(4π)2
a−1

{
v3 + 2v2B1(νa) + v1[B2(νa) +B2

1(νa) + b2
1]
}

+
νf
2

[
2(Ṽs,2 − Ṽo,2)− 2(Ṽs,1 − Ṽo,1)

β0

π
ln
(νf
ν

)]}
α3
s(ν) + . . . ,

where

Bi(x) = −bi + 2βi−1 ln(x), i = 1, 2.

Equation (92) is an NNNLO expansion in αs. The expansion of O(α3
s) is correct up to effects of

O(1/N2
c )3. The correspondent coefficients with a short explanation are given in table 12. For

the extraction of ΛRS
B (νf ), ν = 1/a = νf were used. ν and νf do not have to be necessary taken

similar, but large logarithms are avoided this way. Values for αs are interpolated for the used β

with the data taken from [38]. In the following the index B refers to the magnetic gluelump T+−
1 .

3SU(3) → Nc = 3.
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Figure 23: ΛRS
B (νf ) for different lattice spacing and fitting orders. Values evaluated at β = 6.0

(in gray) are not taken into account, due to the non-negligible discretization errors of O(a2).

The computation of ΛRS
B (νf ) at a given scale consists of the following steps:

1. Convert ΛL
B(a) to ΛRS

B (νf ) via eq. (91) with νf = 1/a for all lattice spacings.

2. Perform a linear fit to the dataset [ν
(i)
f ,Λ

RS
B (νf )

(i)].

3. Extract ΛRS
B (νf ) at a given νf with the above derived linear fit.

4. Estimate the errors of the expansion.

In figure 23 the data for four different expansion orders are shown. Here LO implies that the bare

lattice data was used, while NNNLO indicates that terms up to O(α3
s) are included. For a better

convergence the lowest β value was excluded from the dataset β ∈ {6.000, 6.284, 6.451, 6.594},
due to the non-negligible discretization errors. The gray dotted line marks the chosen scale

νf = 1GeV. As one can see the difference between order n and n+ 1 gets significantly smaller

for increasing orders. Therefore, the same behavior is expected for larger orders.

Evaluating the NNNLO fit at νf = 1GeV for mII results in

ΛRS
B,fit(νf = 1 GeV) = 1160(30)MeV, χ2/dof = 0.097. (93)

Note that the given error values are only determined via the NNNLO-fit with the given statis-

tical uncertainties from the lattice mass results.
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To get a better error estimation one has to sum up all possible sources of uncertainty:

1. σfit = 30MeV is the error estimation of the NNNLO fit.

2. σpert,1 = 50MeV is the expected error by ignoring terms of O(α4
s). The estimation of

lower orders shows that the difference between two orders decreases approximately by a

factor of three for every increment in the perturbation series, which leads to the given

error.

3. σpert,2 = 70MeV is due to the uncertainty in NVs −NVo [13].

4. σΛMS
= 40MeV is due to the error in ΛMSr0[13].

Adding up these sources of uncertanity linearly leads to the final result for the mass of the

magnetic gluelump (T+−
1 ) in the RS scheme

ΛRS
B (νf = 1GeV) = 1160(190)MeV. (94)

The calculation of the lowest-lying gluelump mass in [13] with the data computed in [3] led

to ΛRS
B (νf = 1 GeV) = 910(220)MeV. Both results agree within error bands but suffer from a

very high uncertainty, which is caused by the above-mentioned error sources. Even with more

precise measurements on finer lattice spacings, the errors were just reduced insignificantly, since

only a small fraction of the errors is caused by the lattice results themself.

To get a higher precision one has to expand equation (91) to higher orders and compute the

parameters given in tabular 12 with more accuracy.

Parameter Value Definition
CA 3 fACDfBCD = CAδ

AB = NCδ
AB

v1 3.1759115 . . .
Expansion coefficients of the static self-energy.v2 0.21003(5)× 103

v3 20.4(3)× 103

b1 73.93539066 . . .
Expansion coefficients for expressing αL in units of αs.b2 b2

1 + 1388.1645
β0 11CA/3 Expansion coefficients of the β-function for nf = 0 [39].
β1 34C2

A/3

Ṽs,1 −2.44378

Expansion coefficients of the singlet and octet potential divided by ν.
Ṽs,2 −11.7893

Ṽo,1 0.305472

Ṽo,2 1.27419

Table 12: Definition of the coefficients used in equation (92). Every value without citation is
taken from [13].
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6.2.3 Comparison with other results

In table 13 the given summary taken from section 5.3 in reference [13] is shown. The calculated

masses of the lightest gluelump range from 0.9GeV to 1.87GeV, which is in accordance with

the results determined in the sections 6.2.1 and 6.2.2. Nevertheless, the given masses are all

scheme dependent, which might be a main reason for the differences between different results.

Additionally, some results are missing an error estimation, which makes a proper comparison

even more difficult.

m in GeV Method

≈ 1.87 String model
0.90(10) Lattice simulations, using the cooling method
1.25(16) Sum rule analysis of the magnetic correlator
≈ 1.37 MIT bag model
≈ 1.40 Constituent quark model

Table 13: Comparison with other calculation results of the lightest gluelump. The mass values,
as well as the used method, were taken from [13]. The symbol ≈ denotes, that no errors were
given.
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7 Conclusion

7.1 Summary

The aim of this work was to compute precise gluelump masses in SU(3) lattice gauge and to

compare them with hybrid static potentials. To guarantee an optimal overlap with the ground

state for all 20 different ΛPC gluelumps, APE-smearing was adapted such that the number of

smearing steps was optimal for heavier gluelumps. Next, the multilevel parameters were ad-

justed for the T+−
1 gluelump, to enhance the results of the continuum extrapolation. For this

purpose, the number of sublattice measurements was optimized for several different sublattice

structures. On the one hand, uniform structures with varying time-slice thicknesses and num-

ber of levels were optimized. On the other hand, more complex constructs like the combination

of several sublattices were considered. Even though for the final computations the simplest

structure B (= [1, 1, 1, 1, . . . ]) was chosen, the gained insights might be important for future

computations.

Two different mass extraction procedures were applied to the correlation functions, which were

computed on gauge field configurations with four different lattice spacings. While procedure I

provides a qualitative insight into the ground state overlap, procedure II reduces the errors,

but in some cases (e.g. A−−2 ) the computed masses might be larger than the actual ground state

mass. Besides that, the application of HYP-smearing, significantly improved mass difference

results. Unfortunately, HYP-smeared gluelump masses turned out, to be not comparable with

hybrid potentials, without any further adjustments.

A continuum extrapolation of mass differences with the assumption, that the discretization er-

rors are of O(a2) was successful. With the full gluelump spectrum, a unique spin identification

was partly possible. A clear degeneracy for T2 and E was found in two different PC-sectors.

Additionally, the computed continuum mass splittings were compared with the results of [3].

Since previously, only mass splittings were extrapolated to the continuum, two different ap-

proaches for the mass determination of the lightest gluelump T+−
1 were discussed. The conver-

sion into the RS-scheme showed that more precise gluelump lattice masses do not significantly

enhance the results, which is restricted by the power series expansion in αs and the precision

of coefficients.

In summary, the combination of optimized APE-smearing, adapted multilevel parameters, the

application of HYP-smearing, and the mass extraction via two different procedures on four

small lattice spacings, provided ground state results that are more trustworthy than former

computations in literature (e.g. [3]).
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7.2 Outlook

There are a few ways, how to improve the previously derived results. Even though choosing

only one number of APE-smearing steps for all gluelumps reduces the total computation time

significantly, a set of several different Ns would enhance the individual ground state results.

Besides that, one can think of a large field of different multilevel sublattice structures, that

might be more efficient than structure B. Additionally, structure optimizations on different

lattice spacings would provide a deeper understanding of the multilevel algorithm in general

and how optimal structures may be built. Besides that, one can think of a sublattice structure,

where the spatial linear combinations G(τ) do not lie on the boundaries. This way the multi-

level algorithm would not be restricted to the optimization of the temporal transporters, but

could in general improve the whole gluelump correlator.

A unique spin identification requires a more comprehensive set of different operators that trans-

form like Λ. With a clear spin identification a full analysis of the gluelump spectrum, like a

possible PC dependence is possible.

Finally, the conversion into the RS-scheme has shown, that the results are mainly restricted by

the power series expansion and its coefficients. Therefore, expanding equation (92) for higher

orders and an improvement of the used coefficients would enhance the results. Since the errors

of hybrid meson masses in [12] are dominated by the error of the gluelump mass in the RS-

scheme, an improvement is important.

In summary, gluelumps provide an interesting field for further studies.
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Appendices

A Additional results

In this section the gluelump mass results on each individual lattice spacing (cf. section 5.4.2)

are collected.

ΛPC mI χ2/dof mII χ2/dof mI,HYP χ2/dof mII, HYP χ2/dof
T++

1 2.184(20) 0.46 2.204(11) 0.85 1.636(18) 1.26 1.60(4) 0.38
T+−

1 1.3316(20) 0.08 1.3319(17) 0.35 0.7699(18) 0.04 0.7705(15) 0.09
T−+

1 1.932(12) 1.35 1.936(7) 1.38 1.372(11) 0.64 1.378(6) 0.91
T−−1 1.485(5) 1.19 1.474(8) 0.84 0.936(4) 1.27 0.942(4) 1.91
T++

2 2.049(18) 0.39 2.071(9) 0.13 1.491(17) 0.25 1.513(9) 0.09
T+−

2 1.737(7) 0.84 1.735(9) 0.24 1.181(7) 0.55 1.181(8) 0.23
T−+

2 2.009(19) 0.90 2.031(8) 0.99 1.441(19) 0.91 1.470(8) 0.95
T−−2 1.569(5) 0.37 1.5763(21) 0.99 1.010(4) 1.10 1.0193(20) 0.65
A++

1 1.750(13) 0.72 1.753(7) 0.34 1.191(12) 0.81 1.194(7) 0.16
A+−

1 2.25(6) 0.92 2.276(27) 0.78 1.69(5) 0.57 1.720(25) 0.44
A−+

1 2.27(6) 0.90 2.327(26) 1.02 1.73(5) 0.35 1.777(23) 0.50
A−−1 1.963(15) 1.42 1.966(10) 0.23 1.402(15) 0.90 1.407(9) 0.43
A++

2 2.31(4) 0.66 2.350(7) 0.57 1.76(4) 0.55 1.793(6) 0.60
A+−

2 1.854(16) 1.55 1.887(8) 0.78 1.301(15) 1.27 1.306(20) 1.05
A−+

2 2.056(22) 0.53 2.069(13) 0.19 1.500(21) 0.79 1.512(12) 0.05
A−−2 2.05(9) 0.90 2.18(4) 3.65 1.70(5) 1.17 1.762(25) 3.54
E++ 1.878(20) 2.65 1.917(9) 2.13 1.330(18) 2.03 1.359(8) 0.77
E+− 1.730(9) 0.41 1.726(12) 0.33 1.171(8) 0.80 1.165(11) 0.84
E−+ 1.985(22) 1.37 2.014(10) 2.32 1.434(20) 1.27 1.460(10) 1.51
E−− 1.566(6) 0.91 1.563(6) 0.24 1.007(6) 0.96 1.006(6) 0.80

Table 14: Lattice results with errors and χ2/dof for β = 6.0. The subscripts I and II denote the
used procedure for the mass extraction, while HYP indicates, that HYP-smearing was applied.
All results are given in units of the lattice spacing a.

ΛPC mI χ2/dof mII χ2/dof mI,HYP χ2/dof mII, HYP χ2/dof
T++

1 1.652(12) 0.88 1.653(10) 0.88 1.150(9) 0.95 1.155(6) 1.02
T+−

1 1.0805(18) 0.85 1.0816(14) 0.96 0.5774(13) 1.29 0.5784(13) 1.90
T−+

1 1.465(10) 0.51 1.475(6) 0.63 0.971(7) 0.62 0.966(8) 0.91
T−−1 1.1955(30) 0.62 1.188(8) 0.57 0.6984(19) 0.55 0.692(5) 0.30
T++

2 1.584(11) 0.74 1.598(4) 0.77 1.071(9) 0.51 1.080(6) 0.57
T+−

2 1.362(6) 0.65 1.3671(30) 0.70 0.863(4) 0.47 0.860(4) 0.64
T−+

2 1.540(13) 0.99 1.552(8) 0.83 1.039(9) 1.18 1.055(5) 1.87
T−−2 1.242(4) 0.63 1.243(4) 0.33 0.7350(26) 3.34 0.735(4) 1.13
A++

1 1.361(10) 0.69 1.374(4) 0.69 0.872(6) 0.68 0.873(5) 0.47
A+−

1 1.720(22) 0.73 1.740(9) 0.31 1.226(14) 0.95 1.230(15) 0.32
A−+

1 1.776(20) 0.66 1.789(8) 0.96 1.272(14) 0.54 1.275(14) 0.15
A−−1 1.499(10) 0.71 1.501(9) 1.22 0.974(9) 1.11 0.988(6) 1.18
A++

2 1.692(27) 0.75 1.732(8) 1.24 1.195(18) 0.56 1.202(14) 0.62
A+−

2 1.414(16) 0.94 1.453(8) 2.35 0.916(10) 2.96 0.933(10) 3.45
A−+

2 1.539(20) 0.61 1.555(12) 0.79 1.065(9) 0.31 1.069(8) 0.46
A−−2 1.57(5) 0.66 1.60(4) 0.02 1.262(14) 1.59 1.267(14) 1.09
E++ 1.466(9) 0.71 1.465(8) 0.07 0.968(7) 0.98 0.972(5) 0.93
E+− 1.351(6) 1.24 1.348(8) 0.76 0.852(4) 0.93 0.853(5) 0.41
E−+ 1.527(13) 1.90 1.531(9) 0.58 1.037(7) 0.42 1.038(6) 1.25
E−− 1.236(5) 1.49 1.227(8) 0.57 0.735(4) 0.59 0.727(5) 0.44

Table 15: Lattice results with errors and χ2/dof for β = 6.284. The subscripts I and II denote
the used procedure for the mass extraction, while HYP indicates, that HYP-smearing was
applied. All results are given in units of the lattice spacing a.
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ΛPC mI χ2/dof mII χ2/dof mI,HYP χ2/dof mII, HYP χ2/dof
T++

1 1.441(7) 1.01 1.451(4) 0.49 0.971(6) 0.97 0.980(4) 0.39
T+−

1 0.9714(12) 0.69 0.9711(9) 0.64 0.4997(11) 0.73 0.4996(8) 0.92
T−+

1 1.281(7) 0.93 1.292(4) 0.95 0.810(6) 1.04 0.821(4) 1.04
T−−1 1.0643(17) 0.33 1.0627(26) 0.29 0.5941(16) 0.56 0.5913(25) 0.20
T++

2 1.365(8) 0.30 1.3823(30) 0.90 0.895(8) 0.37 0.9116(29) 0.96
T+−

2 1.200(4) 0.77 1.198(4) 0.18 0.728(4) 0.34 0.726(4) 0.43
T−+

2 1.332(9) 2.42 1.3597(26) 2.52 0.862(8) 2.25 0.8889(25) 3.05
T−−2 1.0922(29) 0.72 1.0958(20) 0.73 0.6206(28) 1.05 0.6251(19) 1.35
A++

1 1.195(7) 0.70 1.201(5) 0.21 0.725(7) 0.32 0.730(5) 0.27
A+−

1 1.465(15) 0.48 1.486(7) 0.49 0.999(13) 0.28 1.017(7) 0.45
A−+

1 1.538(12) 1.94 1.551(7) 0.14 1.070(11) 1.44 1.082(7) 0.09
A−−1 1.307(6) 0.44 1.314(4) 0.80 0.837(6) 1.66 0.844(4) 0.80
A++

2 1.490(12) 0.86 1.500(7) 0.20 1.019(11) 0.68 1.029(7) 0.25
A+−

2 1.269(9) 0.66 1.286(6) 1.63 0.788(9) 0.98 0.796(9) 1.66
A−+

2 1.347(10) 0.45 1.351(8) 0.38 0.874(10) 0.51 0.879(8) 0.47
A−−2 1.25(4) 0.58 1.27(4) 0.07 1.031(14) 1.37 1.059(7) 1.79
E++ 1.271(7) 1.03 1.2820(28) 2.53 0.800(7) 0.88 0.8106(27) 2.64
E+− 1.186(4) 0.91 1.182(5) 0.31 0.7153(29) 0.81 0.7185(27) 1.21
E−+ 1.298(12) 1.56 1.3396(29) 6.99 0.829(11) 2.40 0.8686(29) 6.54
E−− 1.096(4) 1.60 1.091(4) 0.16 0.6258(29) 1.29 0.621(4) 0.26

Table 16: Lattice results with errors and χ2/dof for β = 6.451. The subscripts I and II denote
the used procedure for the mass extraction, while HYP indicates, that HYP-smearing was
applied. All results are given in units of the lattice spacing a.

ΛPC mI χ2/dof mII χ2/dof mI,HYP χ2/dof mII, HYP χ2/dof
T++

1 1.277(7) 0.68 1.286(4) 1.05 0.826(6) 0.80 0.8355(30) 1.22
T+−

1 0.8976(10) 0.92 0.8942(21) 0.23 0.4471(9) 1.57 0.4488(7) 1.20
T−+

1 1.160(6) 1.61 1.165(6) 0.83 0.708(6) 2.15 0.7229(21) 1.91
T−−1 0.9713(13) 0.79 0.9670(26) 0.25 0.5219(12) 0.90 0.5200(13) 0.35
T++

2 1.248(5) 0.27 1.2480(29) 0.99 0.796(5) 0.40 0.7981(28) 0.96
T+−

2 1.0908(22) 0.76 1.0872(27) 0.33 0.6411(20) 0.81 0.6374(26) 1.01
T−+

2 1.221(5) 0.91 1.2225(26) 0.90 0.770(4) 1.01 0.768(5) 0.97
T−−2 1.0012(21) 1.01 0.9982(22) 0.21 0.5521(18) 0.78 0.5513(15) 0.81
A++

1 1.101(4) 1.74 1.0986(24) 0.33 0.650(4) 0.25 0.6484(24) 0.32
A+−

1 1.338(9) 1.09 1.345(8) 0.86 0.891(8) 0.33 0.902(4) 1.11
A−+

1 1.369(9) 0.66 1.370(7) 0.21 0.919(9) 0.89 0.930(4) 0.87
A−−1 1.178(5) 0.74 1.1807(29) 1.09 0.729(4) 0.61 0.7306(29) 0.83
A++

2 1.333(9) 0.85 1.328(7) 0.31 0.883(8) 1.10 0.878(7) 0.55
A+−

2 1.146(8) 1.14 1.155(5) 0.95 0.692(8) 0.88 0.707(5) 0.88
A−+

2 1.208(8) 0.43 1.206(7) 0.61 0.761(7) 0.63 0.769(4) 1.36
A−−2 1.073(27) 0.76 1.07(4) 0.44 0.906(10) 0.57 0.910(7) 0.62
E++ 1.161(4) 0.47 1.1593(28) 0.16 0.710(4) 0.55 0.7113(17) 0.54
E+− 1.0774(22) 0.37 1.073(4) 0.02 0.6277(20) 0.42 0.6308(15) 0.96
E−+ 1.210(4) 0.80 1.2091(29) 0.46 0.759(4) 0.56 0.7583(29) 0.12
E−− 1.0105(17) 0.30 1.0094(15) 0.86 0.5611(16) 0.39 0.5598(14) 1.10

Table 17: Lattice results with errors and χ2/dof for β = 6.594. The subscripts I and II denote
the used procedure for the mass extraction, while HYP indicates, that HYP-smearing was
applied. All results are given in units of the lattice spacing a.
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