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Abstract

In this thesis we give an introduction to Twisted Mass Quantum Chromodynamics

and an actual implementation for the computations of e�ective masses for b̄q mesons

in the static-light approximation with q being either a u or a d quark. We discuss the

corresponding trial states creating the states with the desired quantum numbers on

the lattice and the e�ective masses obtained from the simulation with unphysically

heavy light quarks as well as the extrapolation of the e�ective masses in terms of

the physical light quark mass. The other subject is are four-quark systems b̄b̄ud and

their theoretical description in terms of possible four-quark structures, i.e. mesonic

molecule and the diquark-antidiquark state. Moreover, we give an approach for the

implementation of the latter on the lattice.
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Chapter 1

Introduction

Hadrons are compound particles based on quarks which are fundamental building

bricks for all the matter surrounding us. After the discovery of hundreds of hadrons

in the 1950s in particle experiments with newly invented detectors the question arose

whether there is a framework to describe the sheer number of hadrons in a more el-

emental form. This lead to the discovery of the Standard Model of Particle Physics

and the theory describing the strong interaction between quarks, Quantum Chromo-

dynamics (QCD). Since then, the whole area of particle physics has been subject to

investigations around the world. Hadrons occur either as baryons which are particles

consisting of three quarks or as mesons consisting of a quark and an antiquark. Since

computer power has been increased over time, those particles became subject to sim-

ulations until today.

We are especially concentrating on the computation of meson masses from Lattice

QCD, a discretized version of continuum QCD to be carried out on computers. As

time went by new methods and more powerful hardware has been explored, steadily

leading to more precise results allowing for better comparisons with experimental data.

In this thesis we will concentrate on the Twisted Mass QCD which is an equivalent

formulation of QCD with computational advantages when it is used in its lattice ver-

sion. Therefore, we will give an introduction to this framework hand in hand with the

computation of e�ective masses of certain mesons, i.e. mesons consisting of a heavy

antiquark b̄ and a light quark u or d building a bound state b̄u or b̄d. Therefore, we

will describe the mesons in terms of their quantum numbers and symmetries which

is fundamental to relate the mesons with the states of the same structure created in

the simulation. Moreover, we will accompany this procedure with technical aspects

necessary to compute the quantities of interest.

Another part of this thesis deals with BB systems consisting of two antiquarks b̄b̄ and

two light quarks ud building an exotic four-quark state b̄b̄ud which are theoretically

allowed to exist in nature but have only recently been discovered in experiments.

Therefore, these are subject to recent studies in theoretical frameworks as well. B

mesons and BB mesons are treated by similar means on the lattice and while we
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will concentrate on the computation of e�ective masses for B mesons, we will give an

introduction to BB systems and their di�erent structures with regard to four-quark

system, namely the mesonic molecule and the diquark-antidiquark state, respectivley.

Furthermore, we will discuss their quantum numbers and symmetries and give an

approach to an implementation for lattice computations.
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Chapter 2

Theoretical background

2.1 Notations and conventions

We will often use expressions like ψ
a(f)
A (x), where indices are explicit given. Greek

lower case letters represent light quark or antiquark �elds which usually have a colour

index a denoted by lower case Latin letters with values in {1, 2, 3}, a spin index A

denoted by upper case Latin letters with values in {0, 1, 2, 3} and a �avour index de-

noted either by an embraced �avour f or directly by replacing the quark �eld ψ by

the �avour, i.e. u or d. Moreover, x denotes the four-dimensional spacetime point of

the given quark �eld, which can also be written as (x, t), where x denotes a three-

dimensional spatial point and t ≡ x0 the time.

We use the chiral representation of the gamma matrices:

γ0 =

(
0 −12

−12 0

)
, γj =

(
0 +σj

−σj 0

)

with the Pauli matrices

τ1 =

(
0 +1

+1 0

)
, τ2 =

(
0 −i

+i 0

)
, τ3 =

(
+1 0

0 −1

)
.

2.2 Correlation functions

To get a trial state |ψ〉 with speci�c quantum numbers I(JP ), these states have to

be created. Therefore a so called creation operator O which creates these quantum

numbers by acting on the QCD vacuum |Ω〉

|ψ〉 = O |Ω〉 (2.1)
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needs to be built. A central quantity of all lattice computations are so called correla-

tion functions which consist of creation operators introduced above [1], [2].

C(t) ≡ 〈Ω| O†(t)O(0) |Ω〉

=

∞∑
n=0

〈Ω| e+HtO†(0)e−Ht |n〉 〈n| O(0) |Ω〉

=
∞∑
n=0

|〈n| O |Ω〉|2︸ ︷︷ ︸
=|an|2

exp(− (En − EΩ)︸ ︷︷ ︸
=mn

t)
t�1
≈ |a0|2 e−m0t (2.2)

These correlation functions are then used to determine the e�ective masses of systems

corresponding to the quantum numbers the creation operator implemented

me�(t) ≡ 1

a
ln

(
C(t)

C(t+ a)

)
t�1
≈ m. (2.3)

Since we are usually interested in computing potentials, me�(t) can be computed for

di�erent separations of the two considered states. This procedure allows to obtain the

potential as a function of the separation.

2.3 Nf = 2 twisted mass QCD

In this section we want to introduce the so called twisted mass QCD which is an

equivalent formulation of QCD with modi�cations allowing for an improvement of

discretization errors in its lattice version, see [3], [4], [5].

The continuum version of the twisted mass QCD action for Nf = 2 degenerate light

quarks, i.e. the doublet χ = (χ(u), χ(d)), reads as follows

Slight[χ, χ̄, A] =

∫
d4x χ̄

(
γµDµ +mq + iµqγ5σ

3
)
χ, (2.4)

where {χ, χ̄} denotes the set of fermion �elds in the twisted basis, Dµ = δµ + Aµ

the covariant derivative for a given gauge �eld Aµ and mq the untwisted quark mass.

Moreover, µq denotes the twisted quark mass and σ3 the third Pauli-matrix acting in

�avour space.

In contrast to the twisted basis, the physical basis {ψ, ψ̄} denotes the basis for the

standard QCD action. These two bases are related by a so called twist rotation

ψ = ei
ω
2
γ5σ3

χ, ψ̄ = χ̄ei
ω
2
γ5σ3

. (2.5)

where ω denotes the so called twist angle which is a free parameter. With these

transformations the form of the QCD action remains the same, but the mass term
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undergoes a rotation. If we rewrite the mass term in (2.4)

mq + iµqγ5σ
3 = Meiαγ5σ

3
(2.6)

with the absolute value

M =
√
m2
q + µ2

q (2.7)

and the angle α in the complex plain, we can see the twisted mass rotation directly:

Mei(α−ω)γ5σ3
. (2.8)

That is, we obtain the standard QCD action for α = ω, i.e. if the twist angle ω ful�ls

tanω = µq/mq. (2.9)

It can be shown that the so called automatic O(a) improvement is achieved at the

maximal twist with ω = π/2. For a deeper understanding, it is worth reading [3].

2.4 B mesons

In this thesis we want to concentrate on B mesons. These are mesons consisting of

a b̄ antiquark and a lighter quark q, while its counterpart, the B̄ meson, consists of

a b quark and a lighter antiquark q̄. In our case, the light quark is either a u or a d

quark. A star ∗ indicates mesons which have an even angular momentum quantum

number and positive parity, i.e. JP = 0+, 2+, ... as well as those which have an odd

angular momentum quantum number and negative parity, i.e. JP = 1−−, 3−, ... [6].

2.4.1 Static light mesons

One way to investigate B mesons is to use the so called Heavy Quark E�ective Theory

(HQET). With this approach, the leading term is the static approximation. Due to

the much higher mass of the b quark in comparison to the light quark, the b quark

is treated as a static quark, i.e. as a particle with in�nite mass and therefore with a

�xed position in space while the light quark is treated dynamically, i.e. with a �nite

mass. This system is called a static light meson.

2.4.2 Quantum numbers and symmetries

In the following we will give an overview and some information over the possible

quantum numbers involved in characterizing the B meson state.

Parity The �rst quantum number our system can be described with is parity. It can

either be positive or negative, i.e. P ∈ {+,−}.

Isospin Since the static light meson consists of a u/d quark, its isospin is I = 1/2

and the z-component Iz ∈ {−1/2,+1/2}.
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Angular momentum Moreover, the static quark spin does not a�ect the interaction

of our B mesons which are in turn degenerate. Consequently, our system can

be described by the total angular momentum corresponding to its light degrees

of freedom. The total angular momentum is j = |l± 1/2|, where l is the orbital
angular momentum which also includes the gluonic spin and ±1/2 is the spin of

the light quark.

2.4.3 Meson creation operators and trial states

The notation for static light mesons is Q̄q and the trial states we are interested in,

have the following structure

Q̄Γψ |Ω〉 , (2.10)

where Q denotes the heavy quark �eld and ψ the light quark �eld, respectively. Γ

stands for an appropriate combination of γ-matrices describing the spin structure of

our trial state.

For now, we are interested in the B meson ground state which is also referred to as

S meson, and the �rst excited state, called P− meson, respectively. The S state is

characterized by orbital angular momentum l = 0 from which follows that its total

angular momentum is |j| = |jz| = 1
2 as mentioned above. On top, it is the state with

negative parity, i.e. P = −. Since the spin of the heavy quark does not contribute

to the interaction of the system, there are two corresponding states, i.e. JP = 0− or

JP = 1−. The same holds for the P− state (same orbital/total angular momentum)

except for the parity which is positive in that case, i.e. JP = 0+ or JP = 1+ corre-

sponds to the P−. The Γ structure we will consider is Γ ∈ {1, γ5} for the JP = 0+

and the JP = 0− state respectively.

In this thesis we will not discuss states with l 6= 0, i.e. states with excited orbital

angular momentum. These states are described by other γ-combinations in the trial

state.

2.4.4 Correlator

The next step on our agenda is to derive the correlator from our trial states for

the purpose pointed out in section 2.2. This is of great importance, because these

correlators are a crucial part in the actual code implementation for calculating e�ective

masses. First, we write down the spin and colour indices in (2.10) explicitly. Then,

the operator included in the trial state reads

O(t) = Q̄aA(t) ΓtAB ψaB(t). (2.11)
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Note that Γ has no time dependence. The index indicates to which operator the

matrix belongs to.

C(t) = 〈Ω| O†(t)O(0) |Ω〉

= 〈Ω|
(
Q̄aA(t) ΓtAB qaB(t)

)†
Q̄bC(0) Γ0

CD qbD(0) |Ω〉

= 〈Ω| q̄aB(t) (γ0Γt,†γ0)BA Q
a
A(t) Q̄bC(0) Γ0

CD qbD(0) |Ω〉

= 〈Ω| q̄aB(t)
(
γ0Γt,†γ0

)
BA

Γ0
CD QaA(t) Q̄bC(0) qbD(0) |Ω〉

= −〈Ω|
(
γ0Γt,†γ0

)
BA

QaA(t) Q̄bC(0) Γ0
CD qbD(0) q̄aB(t) |Ω〉

= −
〈(
γ0Γt,†γ0

)
BA

(Q−1)abAC(t, 0) Γ0
CD (D−1)baDB(0, t)

〉
= −e−Mt

〈(
γ0Γt,†γ0

)
BA

Uab(t, 0)

(
1 + γ0

2

)
AC

Γ0
CD (D−1)baDB(0, t)

〉
= −1

2
e−Mt

〈
Uab(t, 0)

(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD(D−1)baDB(0, t)

〉
= −1

2
e−Mt

〈
Trspin

[
Uab(t, 0)

(
γ0Γt,†γ0

)
(1 + γ0)Γ0(D−1)ba(0, t)

]〉
= −1

2
e−Mt

〈
Tr
[
U(t, 0)

(
γ0Γt,†γ0

)
(1 + γ0)Γ0D−1(0, t)

]〉
(2.12)

After inserting the propagator according to stochastic timeslice sources (3.19), the

correlator becomes

= − 1

2N
e−Mt

〈
ξ[n, t](0)†U(t, 0)

(
γ0Γt,†γ0

)
(1 + γ0)Γ0φ[n, t](t)

〉
(2.13)

A more comprehensive version in vector matrix notation better suited for this case can

be found in appendix A. In favour of further investigations with BB mesons, which

have more complex correlators, explicit indices are shown to focus on corresponding

structures. Here, 〈. . . 〉 denotes a path integral and (Q−1)abAC(t, 0) the heavy quark

propagator (2.14) derived from Heavy Quark E�ective Theory [7], [8].

(Q−1)abAC(x; y) = δ(x− y)Uab(x, x0; y, y0)

(
Θ(y0 − x0)

(
1− γ0

2

)
AC

exp−M(y0−x0)

+Θ(x0 − y0)

(
1 + γ0

2

)
AC

exp−M(x0−y0)

)
(2.14)

2.4.5 Relation between physical and twisted basis

Since the whole calculation is carried out within the scope of twisted mass lattice QCD

as pointed out in section 2.3, we have to transform the correlation functions after our

calculation back from the twisted basis into the desired physical basis according to

(2.5). Therefore, we use the mentioned equations with the maximal twist ω = π/2.
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This results in the following speci�c transformation equations for the fermion �elds

ψ(u) =
1√
2

(1 + iγ5)χ(u) ψ̄(u) = χ̄(u) 1√
2

(1 + iγ5), (2.15)

ψ(d) =
1√
2

(1− iγ5)χ(d) ψ̄(d) = χ̄(d) 1√
2

(1− iγ5), (2.16)

which only di�er by a relative minus sign due to the rotation regarding the third

Pauli-matrix in (2.5) corresponding to the two �avours u and d.

The overall Γ-matrix of the correlation function given in (2.12) has the general form

Γ = Γt(1 + γ0)Γ0. (2.17)

As a result, we are able to calculate this Γ-matrix in dependence of Γt and Γ0 with

regard to the twisted basis. In order to do so, we simply have to insert the γ-matrices

corresponding to the states we are interested in, since the calculation of the correlation

function takes place in the twisted basis as mentioned above.

As an example we show the case for Γt = γ5 and Γ0 = 1.

Twisted basis:

Γ = γ0Γ†tγ0(1 + γ0)Γ0

= −γ5(1 + γ0)1

= −(γ5 + γ5γ0)

= −(γ5 − γ0γ5)

= γ0γ5 − γ5 (2.18)

To obtain the correlation function with regard to the physical basis, we have to express

the operators in the physical basis in terms of the operators in the twisted basis. By

means of the twist rotation with maximal twist (2.15) and (2.16) we get

Otb1 = Q̄χ = Q̄
1√
2

(1∓ iγ5)ψ =
1√
2

(
Q̄ψ︸︷︷︸
Opb

1

∓i Q̄γ5ψ︸ ︷︷ ︸
Opb

5

)
=

1√
2

(
Opb1 ∓ iO

pb
5

)
, (2.19)

Otb5 = Q̄γ5χ = Q̄γ5
1√
2

(1∓ iγ5)ψ =
1√
2

(
Q̄γ5ψ︸ ︷︷ ︸
Opb

5

∓i Q̄ψ︸︷︷︸
Opb

1

)
=

1√
2

(
Opb5 ∓ iO

pb
1

)
,

(2.20)
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and thus, can express the operators in the physical basis in terms of linear combina-

tions of operators in the twisted basis

Opb1 =
1√
2

(
Otb1 ± iOtb5

)
(2.21)

Opb5 =
1√
2

(
Otb5 ± iOtb1

)
(2.22)

In order to build up the correlation matrix in the physical basis, we express each

correlation function in the physical basis Cpb in terms of the correlation functions in

the twisted basis Ctb. For a better readability the angular brackets were dropped. For

the case we dealt with above, this reads as follows:

Cpb51 =
(
Opb5

)†
Opb1

=
1√
2

((
Otb5
)†
∓ i
(
Otb1
)†) 1√

2

(
Otb1 ± iOtb5

)
=

1

2

((
Otb5
)†
Otb1 ∓ i

(
Otb1
)†
Otb1 ± i

(
Otb5
)†
Otb5 +

(
Otb1
)†
Otb5
)

=
1

2

(
Ctb51 ∓ iCtb11 ± iCtb55 + Ctb15

)
.

Considering only the Γ-matrix structure and account for the linearity of the correlator

=̂
1

2
(γ0γ5 − γ5 ∓ i(γ0 + 1− (γ0 − 1)) + γ0γ5 + γ5)

= γ0γ5 ∓ i1 (2.23)

This procedure has to be repeated for all other γ-combinations regarding the states

of interest. The other cases can be found in A.1. The results are listed in table 2.1.

Γt, Γ0 Twisted basis Physical basis

Γt = γ5,Γ0 = γ5 γ0 − 1 γ0 − iγ5

Γt = γ5,Γ0 = 1 γ0γ5 − γ5 γ0γ5 − i
Γt = 1 ,Γ0 = γ5 γ0γ5 + γ5 γ0γ5 + i
Γt = 1 ,Γ0 = 1 γ0 + 1 γ0 + iγ5

Table 2.1: Relation between twisted and physical basis

The usual strategy is to compute the correlation function for every occurring linear

factor of the possible Γ-matrices shown in table 2.1. In this case we can - despite of

the imaginary unit i - locate four γ-matrix combinations

Γ ∈ {1, γ0, γ5, γ0γ5}. (2.24)
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2.5 BB systems

In this section we want to introduce four-quark states b̄b̄qq. These consist of two

b̄ quarks and two lighter quarks which can in principle have di�erent �avours q ∈
{u, d, s, c} depending on the system of interest. In our case we concentrate on u and

d quarks. As in the case of B mesons, the heavy quarks can be treated with in�nite

mass and thus can be described in terms of the static approximation. These systems

are essentially combinations of two static light mesons B to build up a four-quark

system. In the following sections we will give information about BB systems in terms

of quantum numbers and symmetries and their di�erences occurring when changing

from continuum QCD to twisted mass lattice QCD.

2.5.1 Motivation

In principle, tetraquarks can be characterised by di�erent structures. One possibility

is to investigate four-quark systems b̄b̄qq in terms of B mesons: Two B mesons, each

consisting of a b̄ quark and a lighter u or d quark, when bound together, can form a

so called mesonic molecule which can be identi�ed as tetraquark. Another possibil-

ity is a so called diquark-antidiquark which consists of the same quarks but contrary

to the mesonic molecule, the heavy quarks b̄ form an antidiquark while the lighter

quarks qq form a diquark. A visualisation is shown in �gure 2.1. In contrast to the B

mesons, diquarks and antidiquarks are not colour singlets and thus can only occur in

bound states, e.g. a b̄b̄qq system. The overall aim of the computation is to obtain the

Figure 2.1: Two di�erent structures for tetraquarks: On the left a
drawing of the mesonic molecule and on the right a drawing of the

diquark-antidiquark is shown. Taken from [6].

interaction of the two heavy quarks b̄b̄ in presence of the lighter quarks qq [9] with

the purpose of �nding candidates for bound four-quark states which can be identi�ed

as tetraquarks. This is done utilizing the so called Born-Oppenheimer approximation

which was originally introduced in 1927 to separate the wave function of the electrons

from the wave function of the nuclei of a molecule. This is possible due to the large

mass di�erence of the electron and the nuclei mass, respectively. For a b̄b̄qq system

considered in the static approximation, this framework can also be applied since the
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mass of the heavy quarks vastly exceeds the mass of the light quarks. The advantage

is, that it paves the way for a better understanding of the binding of the four-quark

state beyond the fact that bound states occur with certainty within in the scope of

QCD if only the b quarks are heavy enough. The Born-Oppenheimer approximation

allows to determine the wave function of the heavy quarks b̄b̄. This is done with

regard to the potential of the heavy antiquarks in presence of the light quarks [6].

For small distances between the heavy antiquarks, these interact with a perturbative

one-gluon-exchange Coulomb potential, while the interaction is screened by the light

quarks for large distances between the heavy antiquarks as illustrated in �gure 2.2.

This leads to two weakly interacting B mesons [10]. With this approach the heavy

z

x

y

x

z

(a) (b)

y

Figure 2.2: b̄b̄qq system. (a) For short separations of b̄b̄, the heavy
antiquarks interact with a perturbative one-gluon-exchange Coulomb
potential. (b) For large separations, the interaction of the heavy anti-

quarks is screened by the light quarks. Taken from [10].

antiquarks b̄b̄ can be approximated as static colour charges with regard to the light

quarks and thus we are able to obtain the energy of the light quarks from lattice QCD.

In the second step, these energies can be used in return as the e�ective potential for

the heavy antiquarks. If this potential is inserted into the Schrödinger equation and

the energy eigenvalues are calculated, it is possible to state if the potential is able to

lead to a bound system.

Recent studies, [11], [9], [10] investigated the potential of BB mesons for various states

characterized by the quantum numbers discussed below leading to rules whether a

potential is repulsive or attractive. Moreover, they show that there are four-quark

systems which are candidates for bound b̄b̄ud tetraquark states. These computations

have in common that they made use of the mesonic molecule structure of tetraquarks.

In order to better understand the interaction reaching from small to large separa-

tions of the heavy antiquarks b̄b̄, it is therefore desirable to carry out these computa-

tions within the scope of another tetraquark structure, i.e. the diquark-antidiquark

structure and to compare the results with those obtained from the mesonic molecule

structure.
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2.5.2 Quantum numbers

In the following we will give an overview of the quantum numbers describing the b̄b̄ud

system. Since the heavy quarks are in�nitely heavy, they have a �xed position. Since

we want to extract the potential between those static light mesons as a function of

their spatial separation r, we choose the positions of the static light mesons to be

r1 = (0, 0,−r/2) and r2 = (0, 0,+r/2).

Parity For BB systems, parity is a quantum number and can be positive or negative,

i.e. P ∈ {+,−}.

Isospin As the BB system's isospin is only carried by its light quarks u and d, isospin

can take values I ∈ {0, 1} and its z-component Iz ∈ {−1, 0, 1}.

Angular momentum Since the heavy quarks are immobile and separated by r,

rotations are only allowed around the axis of separation. Moreover, the static

quarks' spin does not contribute to the interaction of the BB system and thus

the the states can be labelled by the z-component of the angular momentum of

the light degrees of freedom, i.e. jz ∈ {−1, 0, 1}.

Re�ection along the x-axis For jz = 0 there exists a re�ection around an arbitrary

axis perpendicular to the axis of separation which is usually chosen to be the

x-axis and denoted as Px. For states with jz 6= 0, Px ∈ {+,−} can be used as

quantum number if we use |jz| instead.

Thus, the BB system can be described by �ve quantum numbers, I, Iz, |jz|,PandPx.

These quantum numbers are subject to symmetry breaking e�ects. First of all, the

Wilson formulation of lattice QCD breaks some symmetries of the continuum version

which are only restored in the continuum limit. On top of that, the twisted mass

formulation of QCD has additional not exact symmetries, i.e. parity and isospin

which will be restored in the continuum limit, too [3].

2.5.3 Diquark-Antidiquark

Now we want to introduce the trial states representing the diquark-antidiquark struc-

ture of the BB system. The overall trial state can be written in terms of the parts

for the diquark and the antidiquark, i.e.

(CΓ)AB ubA(z, t) daB(z, t) εcab (2.25)

for the diquark and

Q̄fC(x, t) Ufd(x, t; z, t) εcde Q̄gC′(y, t) U
ge(y, t; z, t) (2.26)
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for the antidiquark. With the charge conjugation matrix C = γ0γ2 in correspondence

to the chosen Gellmann matrices, see section 2.1, the trial states then read in summary

O =(CΓ)AB (CΓ̃)CC′

ubA(z, t) daB(z, t) εcab Q̄fC(x, t) Ufd(x, t; z, t) εcde Q̄gC′(y, t) U
ge(y, t; z, t). (2.27)

The Levi-Civita symbols are introduced to account for the preservation of colour

neutrality, i.e. that the diquark and the antidiquark are coupled to a colour singlet.

Moreover, Γ and Γ̃ are as in the case of the B meson combinations of γ-matrices

representing the spin structure. Although the heavy quarks' spin decouples from the

system, we will keep it in the calculation and see that it will eventually drop out. A

visualisation of the corresponding correlation function is shown in �gure 2.3.

(z′, t) (y, t)

(x, 0) (z, 0) (y, 0)

(x, t)

Figure 2.3: Diquark-Antidiquark
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Now, we are able to calculate the correlation function C(t):

C =
∑
z′

〈Ω|O(t)†O(0)|Ω〉

=
∑
z′

〈Ω|((CΓ(t))AB (CΓ̃(t))CC′ ubA(z′, t) daB(z′, t) εcab

Q̄fC(x, t) Ufd(x, t; z′, t) εcde Q̄gC′(y, t) U
ge(y, t; z′, t))†

(CΓ(0))DE (CΓ̃(0))FF ′ uiD(y, 0) dkE(z, 0) εjki

Q̄nF (x, 0) Unl(x, 0; z, 0) εjlm Q̄oF ′(y, 0) Uom(y, 0; z, 0)|Ω〉

=
∑
z′

〈Ω|(Γ(t)†C†)BA (Γ̃(t)†C†)C′C ū
b
P (z′, t)(γ0)PA d̄

a
Q(z′, t)(γ0)QB εcab

(γ0)CRQ
f
R(x, t) Udf (x, t; z′, t) εcde (γ0)C′SQ

g
S(y, t) U eg(y, t; z′, t)

(CΓ(0))DE (CΓ̃(0))FF ′ uiD(z′, 0) dkE(z, 0) εjki

Q̄nF (x, 0) Unl(x, 0; z, 0) εjlm Q̄oF ′(y, 0) Uom(y, 0; z, 0)|Ω〉

=
∑
z′

〈Ω|(γ0Γ(t)†C†γ0)QP (γ0Γ̃(t)†C†γ0)SR ū
b
P (z′, t) d̄aQ(z′, t) εcab

QfR(x, t) Udf (x, t; z′, t) εcde QgS(y, t) U eg(y, t; z′, t)

(CΓ(0))DE (CΓ̃(0))FF ′ uiD(z′, 0) dkE(z, 0) εjki

Q̄nF (x, 0) Unl(x, 0; z, 0) εjlm Q̄oF ′(y, 0) Uom(y, 0; z, 0)|Ω〉

= exp−2Mt
∑
z′

(γ0Γ(t)†C†γ0)QP (CΓ(0))DE

(γ0Γ̃(t)†C†γ0)SR

(
1 + γ0

2

)
RF

(CΓ̃(0))FF ′

(
1 + γ0

2

)
F ′S

〈D−1ib
DP (z, 0; z′, t) Udf (x, t; z′, t) Ufn(x, t;x, 0) Unl(x, 0; z, 0) εcab εcde εjki εjlm

D−1ka
EQ (z, 0; z′, t) U eg(y, t; z′, t) Ugo(y, t; y, 0) Uom(y, 0; z, 0)〉

= −2 exp−2Mt
∑
z′

(γ0Γ(t)†C†γ0)QP (CΓ(0))DE

〈D−1ib
DP (z, 0; z′, t) Udf (x, t; z′, t) Ufn(x, t;x, 0) Unl(x, 0; z, 0) (δadδbe − δaeδbd)(δklδim − δkmδil)

D−1ka
EQ (z, 0; z′, t) U eg(y, t; z′, t) Ugo(y, t; y, 0) Uom(y, 0; z, 0)〉

= −2 exp−2Mt
∑
z′

1

N2

N∑
n,m=1

(γ0Γ(t)†C†γ0)QP (CΓ(0))DE (δadδbe − δaeδbd)(δklδim − δkmδil)

〈φ[n, t]
i(u)
D (z, 0) φ[m, t]

k(d)
E (z, 0) Udf (x, t; z′, t) Ufn(x, t;x, 0) Unl(x, 0; z, 0)

ξ[m, t]
a(d)
Q (z′, t)† ξ[n, t]

b(u)
P (z′, t)† U eg(y, t; z′, t) Ugo(y, t; y, 0) Uom(y, 0; z, 0)〉

(2.28)

where we used

(γ0Γ̃(t)†C†γ0)SR

(
1 + γ0

2

)
RF

(CΓ̃(0))FF ′

(
1 + γ0

2

)
F ′S

= −2,

inserted the quark propagator (3.19) and rewrote the Levi-Civita symbols in terms of

Kronecker delta symbols for a more straightforward way to implement the correlator.



Chapter 2. Theoretical background 15

Moreover, we used the static quark propagator (2.14).

2.5.4 Mesonic molecule

For a comparison we will give a short overview of the trial states for mesonic molecules.

Since one could further investigate the potential of b̄b̄qq systems with a extended

version of the mesonic molecule as illustrated in �gure 2.4, it is not really necessary

due to the applied Gaussian smearing causing the result to be indi�erent.

Figure 2.4: Extended Mesonic Molecule

Therefore, the usual correlator for mesonic molecules reads as follows:

O = (CΓ)AB (CΓ̃)CC′ Q̄aC(x, t) uaA(x, t) Q̄cC′(y, t) dcB(y, t) (2.29)

As mentioned above, C = γ0γ2 is the charge conjugation matrix and Γ as well as Γ̃

are combinations of γ-matrices describing the spin structure. Note that in contrast to

the trial states for the diquark-antidiquark (2.27), no Levi-Civita symbols are needed

because both B mesons are already colour singlets.
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Chapter 3

Technical aspects

In this chapter, we will discuss several techniques used in lattice QCD. These range

from necessary implementations to improvements of statistical errors.

3.1 Lattice setup

First, we want to give an overview of the ensembles used for our lattice calculations.

Ensemble β lattice κ aµ mπ [MeV] a [fm]

B40.24 3.9 243 × 48 0.160856 0.0040 314 0.0855

B85.24 3.9 243 × 48 0.160856 0.0085 448 0.0855

B150.24 3.9 243 × 48 0.160856 0.0150 597 0.0855

Table 3.1: Ensembles and their parameters of Nf = 2 gauge con-
�gurations generated by the ETMC. The inverse bare coupling β, the
lattice size measured in (L/a)3 × (T/a), the bare light quark mass in
lattice units aµ, the pion mass mπ and the lattice spacing a are shown.

Since the pion masses are listed in 3.1 and are suitable for testing purposes, the

correlator for the pion is given in appendix A.2.2.

3.2 Symmetry averaging

Symmetry averaging is a technique to achieve better statistics and to con�rm the

correctness of the computed contractions. The following symmetries are used for that

purpose. Note that the symmetries for the quark �elds in the twisted basis include a

�avour exchange.

3.2.1 Symmetries

Parity P

ψ(x)
P−→ γ0ψ(−x)

ψ̄(x)
P−→ ψ̄(−x)γ0

(3.1)
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Twisted mass parity Ptm

χ(u)(x)
Ptm

−→ γ0χ
(d)(−x)

χ̄(u)(x)
Ptm

−→ χ̄(d)(−x)γ0

(3.2)

Charge conjugation C

ψ
C−→ γ0γ2ψ̄

T

ψ̄
C−→ −ψTγ2γ0

(3.3)

Twisted mass time reversal T tm

χ(u)(x, t)
T tm

−→ γ0γ5χ
(d)(x,−t)

χ̄(u)(x, t)
T tm

−→ χ̄(d)(x,−t)γ5γ0

(3.4)

Twisted mass γ5-hermiticity

χ(u) γtm5−→ γ5χ
(d)†

χ̄(u) γtm5−→ χ̄(d)†γ5

(3.5)

Subsequently we are able to derive rules which de�ne how we have to combine the

correlation functions with respect to the mentioned symmetries above and the occuring

γ matrices in (2.24).

3.2.2 Symmetry transformation rules

The general spin structure only depends on the light degrees of freedom:(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD qbD(0) q̄aB(t) (3.6)

Twisted mass time reversal T tm(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD qbD(0) q̄aB(t)

T tm

−→
(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD (γ0γ5)DSq

b
S(0) q̄aT (−t)(γ5γ0)TB

= (γ0γ5)TB

(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD (γ5γ0)DSq

b
S(0) q̄aT (−t)

=
(
γ0γ5γ0Γt,†γ0(1 + γ0)Γ0 γ5γ0

)
TS
qbS(0) q̄aT (−t) (3.7)

Therefore, the rules we deduce are:

• Contractions computed in positive and negative time direction have to be merged,

i.e. +t↔ −t.

• Contractions with exchanged �avours have to be related, i.e. u↔ d.
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• Due to the additional γ matrices, there is a sign change according to Γ ↔
γ0γ5Γγ5γ0, i.e. a sign change for Γ ∈ {γ0, γ5}.

Twisted mass parity Ptm(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD qbD(x, 0) q̄aB(x, t)

Ptm

−→
(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD (γ0)DSq

b
S(x, 0) q̄aT (−x, t)(γ0)TB

= (γ0)TB

(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD (γ0)DSq

b
S(x, 0) q̄aT (−x, t)

=
(
γ0γ0Γt,†γ0(1 + γ0)Γ0 γ0

)
TS
qbS(x, 0) q̄aT (−x, t) (3.8)

It follows, that

• Contractions with exchanged �avours have to be related, i.e. u↔ d,

• Γ↔ γ0Γγ0, i.e. sign change for Γ ∈ {γ5, γ0γ5}.

Charge conjugation C(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD qbD(0) q̄aB(t)

C−→
(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD (γ0γ2)DS q̄

b,T
S (0) (−1)qa,TT (t)(γ2γ0)TB

= (γ2γ0)TB

(
γ0Γt,†γ0

)
BA

(1 + γ0)ACΓ0
CD (γ0γ2)DS q̄

b,T
S (0) (−1)qa,TT (t)

=
(
γ2γ0γ0Γt,†γ0(1 + γ0)Γ0 γ0γ2

)
TS
q̄b,TS (0) (−1)qa,TT (t)

=
(
γ2γ0γ0Γt,†γ0(1 + γ0)Γ0 γ0γ2

)
ST
qaT (t) q̄bS(0)

t→−t
=

(
γ2γ0γ0Γt,†γ0(1 + γ0)Γ0 γ0γ2

)
ST
qaT (0) q̄bS(−t) (3.9)

The symmetry transformation rules are:

• Contractions computed in positive and negative time direction have to be re-

lated, i.e. +t↔ −t.

• Γ↔ γ2γ0ΓTγ0γ2, i.e. sign change for Γ ∈ {γ0}.

Once the contractions have been computed, all the above listed rules will be applied

to every single contraction, i.e. the arithmetic mean of contractions related by those

symmetries is computed. Since related contractions only di�er within computational

�uctuations, this procedure gives rise to an improvement of statistical errors. More-

over, they allow for a veri�cation of the computed contractions with respect to these

symmetries, i.e. if they have large di�erences in their value or even in their shapes

the computed contractions might be corrupt.

3.3 General eigenvalue problem

The general eigenvalue problem is one way to extract the desired e�ective hadron

masses [2], [12]. The idea is to combine di�erent operators O0,O1, . . . with respect to
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the states we want to investigate to a correlation matrix C(t)

Cij(t) = 〈Ω| Oi(t)†Oj(0) |Ω〉

=
∑
n

〈Ω| O†i |n〉 〈n| Oj |Ω〉 e
−Ent.

(3.10)

Since we investigate two di�erent states collected in a 2 × 2-correlation matrix, we

have to solve the two dimensional general eigenvalue problem

C(t)u(k)(t, tr) = λ(k)(t, tr)C(tr)u
(k)(t, tr) (3.11)

where λ(k) are the eigenvalues and u(k) the corresponding eigenvectors belonging to

the k-th state. The reference time tr leads to a reduction of contributions from

higher states which in turn improves the signal for contributions of lower states. The

eigenvalues are then proportional to the desired exponentials

λ(k)(t, tr) ∝ e−Ek(t−tr)
(

1 +O
(
e−∆Ek(t−tr)

))
, (3.12)

where Ek is the energy value of the k-th state and ∆Ek the di�erence with regard to

the lowest lying energy state, respectively.

This method is applied to the correlation matrix C(t) for every time step t. Since it is

possible that the calculated eigenvalues of di�erent states take similar values, it might

be di�cult to assign these to the corresponding states. In those cases the eigenvector

components u
(k)
j have to be taken into consideration which give information about

the contribution of the k-th state to the j-th operator of the correlation matrix.

The e�ective masses are then calculated as in the case of single state correlators

described in section 2.2:

am
(k)
e�

(t) = ln

(
λ(k)(t, tr)

λ(k)(t+ a, tr)

)
(3.13)

These e�ective masses are then �tted in a suitable range tmin, . . . , tmax, i.e. which

reduces the errors at most.

3.4 Techniques for propagator computation

On the lattice, sources provide the possibility to calculate parts of the fermion propa-

gator D−1. The Dirac matrix D has O(1012) elements and although they're sparsely

distributed, D−1 will also have as many elements which are not necessarily sparse.

Due to the lack of memory to store such an amount of data and for numerical cost

reasons, only columns of the propagator are calculated [2].
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We have to solve the following equations:∑
y

D
(f)
a,A;b,B(x, y)G

(f)
b,B;c,C(y, z) = δa,cδA,Cδ(x, z) (3.14)

Due to the high amount of equations we have to solve (12 × T × L3), we only

compute estimations for the full propagator which will be discussed in the following

sections.

3.4.1 Point-to-all propagators

These propagators make use of translational invariance and hence are computed from

a single spacetime point x to every other spacetime point y. To get one column of the

quark propagator, one has to obtain a solution for a combination of colour and spin

indices, i.e. 3× 4 = 12 solutions of a linear system of the form∑
y

D
(f)
a,A;b,B(x, y)φ

(f)
b,B(y)[c, C, z] = ξa,A(x)[c, C, z], ξa,A(x)[c, C, z] = δa,cδA,Cδ(x, z).

(3.15)

The indices c and C label 12 di�erent point sources ξa,A(x)[c, C, z] for a �xed spacetime

point z, whereas each solution φ
(f)
b,B(y)[c, C, z] represents a single column of the inverse

Dirac matrix D. The sought point-to-all propagator reads

φ
(f)
b,B(y)[a,A, x] = G

(f)
b,B;a,A(x,y) (3.16)

3.4.2 Stochastic timeslice-to-all propagators

Due to the problem, that the exact computation of the point-to-all propagator is not

possible in practice, the propagator is usually estimated by statistical methods. A

commonly used approach is the so called stochastic timeslice-to-all propagator. In

contrast to the mentioned point-to-all propagators, in this case the propagator is

computed from any spatial point in a given timeslice to any other spacetime point.

The linear systems remain the same except the source term and its labelling changes

to n ∈ 1, ..., N :∑
y

D
(f)
a,A;b,B(x, y)φ

(f)
b,B(y)[t0, n] = ξa,A(x)[t0, n], ξa,A(x)[t0, n] = δx0,t0Ξa,A(x)[n],

(3.17)

where Ξa,A(x)[n] are uniformly distributed random numbers ful�lling

1

N

N∑
n=1

Ξa,A(x)[n]∗Ξb,B(y)[n] = δa,bδA,Bδ(x,y) + unbiased noise. (3.18)

A common choice is Ξa,A(x)[n] ∈ Z2 × Z2 which results in an unbiased noise propor-

tional to O(1/
√
N).
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This results in the propagator

G(f)(y;x, t0) =
1

N

N∑
n=1

φ(f)(y)[t0, n](ξ(x, t0)[t0, n])† + unbiased noise, (3.19)

which will be mostly used for our lattice computations which always include light

quark �elds.

3.4.3 One-end trick

The one-end trick is a way to compute a product of two propagators but is only

possible for products of the form∑
y

G(f1)(x;y, t) ΓG(f2)(y, t; z), (3.20)

i.e. the propagators are connected at every spacetime point (y, t), but no further

propagators start or end at (y, t) which �ts a meson correlator. The linear systems

then have the form

D
(f1)
a,A;b,B(x; y)φ

(f1)
b,B (x)[t0, n] = ξa,A(y)[t0, n] (3.21)

D
(f2)
a,A;b,B(x; y) φ̃

(f2)
b,B (x)[t0,Γ, n] = (γ5 Γ† ξ)a,A(y)[t0, n], (3.22)

where ξ are stochastic timeslice sources as de�ned in (3.17). φ and φ̃ then express the

propagators' product (3.20) as

∑
y

G(f1)(x;y, t) ΓG(f2)(y, t; z) =
1

N

N∑
n=1

φ(f1)(x)[t, n] φ̃(f2)(z)[t,Γ, n]†γ5

+ unbiased noise

(3.23)

3.5 tmLQCD Software Suite - Inverter

The tmLQCD Software Suite, see [13], is a collection of programmes for the simula-

tion of (twisted mass) Qunatum Chromodynamics on a four dimensional spacetime

lattice. Despite of the potential for generating gauge con�gurations with the help

of the Hybrid Monte Carlo Algorithm, see [14], which is implemented in the binary

hmc_tm, this programme suite also provides an implementation for the computation

of quark propagators in the binary invert. In addition to gauge con�gurations these

propagators are needed for many lattice computations including light quarks in their

observables such as those we are interested in.

Usually, the gauge con�gurations used are directly obtained from the European Twisted

Mass Collaboration (ETMC) from which the quark propagators are computed to our

needs, i.e. the explicit sources are computed by us in accordance to section 3.4. Even

though the programme gen_sources is capable of computing various source types by
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itself, stochastic timeslice sources are not provided yet. Therefore, we can rely on an

own implementation of (3.17) as well as the high quality random number generator

RANLUX introduced by M.Lüscher, see [15].

The input for the invert programme then consists of two �les: The source gen-

erated as mentioned above and a �le with a list of parameters describing the lattice

proportions and characteristics as well as the physical parameters like the quark mass.

In fact, the invert programme uses the discretised version of the twisted mass action

(2.4), [3]:

Slight = a4
∑
x

χ̄(x) (DW +m0 + iµγ5σ3)χ(x) (3.24)

where χ denotes the light quark �eld in the twisted basis which is related to the

physical basis via the twist rotation (2.5). DW denotes the Wilson-Dirac operator

DW =
1

2

(
γµ
(
∇µ +∇∗µ

)
− a∇∗µ∇µ

)
, (3.25)

µ is referred to as the twisted mass parameter and σ3 is the third Pauli matrix. ∇µ
and ∇∗µ are the standard gauge covariant forward and backward derivatives. In the

end, the desired propagators are computed by inverting the Dirac matrix.

3.6 BB systems

3.6.1 Gauge transformation test

In order to verify the correctness of the implemented correlator in the code one can

choose from several methods. One of the most powerful method is a gauge invariance

test. Since the whole theory is constructed to be locally gauge invariant, the observ-

ables we are interested in have to be constructed in a gauge invariant manner, too,

i.e. they are asymptotic colour singlets. A simple way of implementing such a test is

to apply a random gauge transformation g(n) ∈ SU(3) on the �eld variables ψ(n) at

each lattice site n ∈ {0, . . . , L− 1}3 × {0, . . . , T − 1} as well as on every link variable

U(n, n + µ̂). Here, g(n) depends on n because gauge symmetry is a local symmetry

with the following well known transformation rules

U(n+ µ̂)→ U ′(n+ µ̂) = g(n)U(n+ µ̂)g(n+ µ̂)†,

ψ(n)→ ψ′(n) = g(n)ψ(n),

ψ̄(n)→ ψ̄′(n) = ψ̄(n)g(n)†.

(3.26)

A comparison of the computed observables once with and once without a random

gauge transformation should give the same results within computational errors. Visu-

ally this is comparable to unconnected pieces in the system's diagram, see e.g. 2.3. A

gauge invariant observable always has no disconnected pieces in its diagram because
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these would imply that there are di�erent, non matching local gauge transformations

g(n), g(m), n 6= m rendering the observable gauge invariant. Therefore, this approach

suits best to detect mistakes made in the geometry of an implemented observable. In

combination with the elimination of degrees of freedom those mistakes can be located

in subsequent step.

Since the quark �elds are implemented by the sources and sinks introduced in sec-

tion 3.4, we have to apply the gauge transformation within our calculation on those,

respectively [16]:

U(x, y)→ g(x)U(x, y)g(y)†

φ(x)→ g(x)φ(x)

ξ(x)→ g(x)ξ(x)

A possible strategy to implement a random gauge transformation is to generate L3×T
matrices A(n) with uniformly distributed entries A(n)ij ∼ unif(−1, 1) which will be

projected onto a matrix g(n) ∈ SU(3). Subsequently, these are multiplied with the

gauge �eld and spinor �eld, respectively.

3.7 BB correlator

In principle, the implementation of BB systems follows that of the B mesons. The

algorithm can be described as follows: Here, we have to keep in mind that the separa-

for all spatial separations,

all temporal separations

and all z′ do
Connect the static quarks at x and y with the corresponding links
U(x, 0; z, 0) and U(z, 0; y, 0) to the space time point (z, 0).
Connect the static quarks in temporal direction with U(x, 0;x, t) and
U(y, 0; y, t).
Close the loop with gauge links U(x, t; z′, t) and U(z′, t; y, t).

end
Algorithm 1: Strategy to compute the BB correlator

tion r can take even and odd values, i.e. z and z′ respectively have di�erent distances

in lattice units to the static quarks. This can be taken into account by implementing

a geometry of choice, for example choosing one gauge link to take odd values. The

�rst helpful step towards the implementation of the BB correlation function is test

the geometry independently which results in static quark potentials.

Due to the fact that BB mesons are essentially two B mesons, one can test the im-

plementation by computing the �half� BB correlator including its geometry and light
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quark propagator. This has the advantage that the Levi-Civita or the Kroencker

delta smybols respectively can be excluded from the equation leading to less complex

implementations of the correlator. Furthermore, choosing meaningful parameters, es-

pecially setting one of the extensions T and L to zero to eliminate sources for mistakes,

ist quite helpful.

Combined with the gauge transformation test described in section 3.6.1, this is a

powerful framework to detect and locate misleading implementations on the way to a

well working correlator giving the desired results.
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Chapter 4

Numerical results

In this chapter we will present the numerical results. The computations were per-

formed with three ensembles of gauge con�gurations with Nf = 2 dynamical quark

�avours which were generated by the ETCM. As described in section 2.3, these con�g-

urations were generated for the maximal twist for the O(a) improvement of discretiza-

tion errors. Furthermore, the gauge con�gurations di�er in the bare quark masses,

i.e. we used those with µ = 0.015, 0.085, 0.004 as shown in 3.1. The light quark

propagators are addressed with 12 timeslice sources, see section 3.4, per �avour and

con�guration. Moreover, the observable's maximal temporal separation was 18.

The signal quality of the correlation functions computed, was improved by utilizing

APE smearing for the spatial links with parameters NAPE = 10, αAPE = 0.5, Gaussian

smearing with parameters NGauss = 30, κGauss = 0.5 as well as HYP smearing with

parameters NHYP = 1, αHYP = (1.0, 1.0, 0.5).

4.1 Correlators

The �rst numerical results we want to present are the computed correlators Cij , i, j ∈
{0, 1}. They are subject to statistical error improvements, see section 3.2, as well as

the basic building blocks for the computation of e�ective masses, see for single-state

correlations section 2.2 and for multi-state correlations section 3.3. Moreover, a �rst

indicator for the e�ective mass is directly visible through the exponential decay of the

curve predicted by our theory. This can be considered a �rst check for the integrity

of the lattice calculation but we have to keep in mind that, with respect to certain

symmetries, also other shapes occur. These two contractions are very similar because

both are calculated in the same channel γ1−γ5. As explained in section 3.2, these and

all other by a symmetry related contractions are combined and their average values

are calculated to reduce statistical errors. A visible comparison is shown in �gure 4.2.
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Figure 4.1: Contraction with a bare quark mass of µ = 0.015 in
lattice units illustrated for the γ5-γ5 correlator.
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Figure 4.2: Comparison of the symmetry averaging for (a) corre-
lator before symmetry averaging and (b) correlator after symmetry

averaging both for µ = 0.15.

4.2 Static light meson masses

This section shows the numerical results of the computation of the static light meson

masses we are interested in. As described in section 3.3, one possibility to extract

these e�ective masses is to build the correlation matrix C and to solve the general

eigenvalue problem regarding C.

In �gure 4.3 a plot of the e�ective mass me� as a function of the time T in lattice

units is shown. Moreover, for both states, the occurring plateau is �tted with a

linear ansatz. Note that these �ts only include a speci�c range of points in time

T ∈ {tmin, . . . , tmax} in accordance to obtain physically reasonable results. First of

all, points in time before the computed e�ective mass reaches a plateau have to be

discarded. Moreover, the errors shown in �gure 4.3 increase heavily with increasing
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Figure 4.3: E�ective masses for the bare quark mass µ = 0.015 in
lattice units

T due to the decreasing signal to noise ratio caused by the exponential decay of the

signal while the errors remain constant over all points in time. This leads to large

statistical errors, i.e. points in time beyond a certain value for T have to be discarded

as well. However, the signal to noise ratio can be improved by increasing the amount

of con�gurations used. In terms of �nding a suitable tmax, a possible strategy is to

�t the plateau for various values of tmin and tmax and look for those which minimise

the value for the reduced χ2 value. The values for the S and the P− state for three

di�erent quark masses are shown in table 4.1.

jP µ = 0.004 µ = 0.0085 µ = 0.015

(1/2)− ≡ S 3.30 1.17 1.11

(1/2)+ ≡ P 0.23 1.15 0.09

Table 4.1: Reduced χ2/dof value for the S and P− state for di�erent
bare quark masses µ

While for µ = 0.085 both states and for µ = 0.015 the S state show decently reason-

able reduced χ2 values, the other values are exceptionally di�erent from 1, see also

�gure 4.5b. If we compare these cases with the e�ective mass plots in �gure 4.3 and

�gure 4.5, the decent values match the observation of larger �tting ranges.

In �gure 4.4 the eigenvector components computed from the correlation matrix C

with the general eigenvalue problem are shown. In the computation of the correlation
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Figure 4.4: Eigenvector components |v(k)j |2 for a bare quark mass of
µ = 0.015 for (a) the ground state and for (b) the �rst excited state

matrix every operator used represents one of the states we are interested in. The

eigenvector components describe the shares of each operator used in the computation

of the correlation function in the respective state we took as the basis for this calcu-

lation. On the left the eigenvector components of the ground state and on the right

the eigenvector components of the �rst excited state are presented, respectively. The

expectation we have, is that the states S and P− spread perfectly over the �rst and

second state. This means that the components of the �rst state should be 1 for all

points in time for the operator representing the S state and 0 for all points in time

representing the P− state. The fact that the eigenvector components are not perfectly

shared amongst the given operators has its reason in statistical �uctuations.

Nevertheless, this allows us to assign the results for the e�ective masses to the cor-

responding states. This can be quite di�cult if the values of the e�ective masses are

close together and hence are not di�erentiable. In this case the S state has an e�ective

mass of m̂e�(S) = 0.4319 in lattice units while the P− state has an e�ective mass of

m̂e�(P−) = 0.6339 in lattice units.

4.3 Chiral limit

One problem of lattice computations for QCD are the unphysically high quark masses

which can be tuned by the bare quark mass µ. There are two important numerical rea-

sons that it is hardly achievable to perform lattice computations with physical quark

masses. First, the �nite size e�ects increase in such a manner that the amount of lat-

tice sites has to increase vastly [2]. Furthermore, the eigenvalues of the Dirac matrix

become smaller for physical quark masses and hence the numerical costs for inversions

of the Dirac matrix to obtain light quark propagators increase [1]. As progress over

the past decades in terms of computer power as well as numerical methods was made,

the expectation follows the trend for a approach towards physical quark masses
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However, common practice is to compute the e�ective masses for di�erent bare quark

masses µ and lattice spacings a and to extrapolate the results to the physical quark

mass. This is called the chiral limit. In this scope, we will only make use of the

variation of the bare quark mass. In addition to the discussed e�ective mass computed

with the bare quark mass µ = 0.015 in section 4.2, �gure 4.5 shows the e�ective masses

for the other ensembles we used for the computation. Moreover, the e�ective masses

are collected in table 4.2 in lattice units.
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Figure 4.5: E�ective masses in lattice units for bare quark masses of
(a) µ = 0.040 and (b) µ = 0.085.

jP µ = 0.004 µ = 0.0085 µ = 0.015

(1/2)− ≡ S 0.4120 0.4127 0.4319

(1/2)+ ≡ P− 0.5975 0.6158 0.6339

Table 4.2: E�ective masses m̂e� computed with di�erent quark
masses in lattice units

To obtain the physical e�ective masses, the S state is utilized as reference level, i.e. we

calculate the di�erence me�(P−)−me�(S) for the three di�erent bare quark masses.

This is necessary because the static quarks in the the B meson are located sharply

due to their in�nite mass. In the continuum this leads to an in�nite self-energy while

on the lattice the self-energy is �nite within the locational boundary of the lattice

spacing a, i.e. decreasing the lattice spacing increases the self-energy and vice versa.

By means of the lattice spacing a = 0.0855fm, see table 3.1, we end up with

me�(P−)−me�(S) =
m̂e�(P−)− m̂e�(S)

a
, (4.1)

resulting in the e�ective masses of the P− state in MeV collected in table 4.3.
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jP µ = 0.004 µ = 0.0085 µ = 0.015

(1/2)+ ≡ P− 428(29) 468(20) 466(15)

Table 4.3: E�ective masses me� computed with di�erent quark
masses in MeV

To obtain the e�ective mass at as physical u/d quark mass, the e�ective masses for the

di�erent bare quark masses are subject to a regression. Due to the linear behaviour

of e�ective masses as a function of the squared mass m2
PS , it is most convenient to

utilize this for a linear regression which also bene�ts the visual expression, see �gure

4.6 where the e�ective mass di�erences for the P− state are plotted as a function of

m2
PS including a green straight line as a result of the linear regression which is suitable

within the scope of errors resulting from the lattice computation and a vertical black

line marking the physical u/d quark mass.
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Figure 4.6: Extrapolation to physical u/d quark mass. The e�ective
mass of the P− state with regard to the e�ective mass of the S state is
shown. The vertical black line indicates the physical u/d quark mass.

The extrapolation results in an e�ective mass di�erence of me�(P−) − me�(S) =

427(24) MeV at physical u/d quark mass. This result alongside the results for the

e�ective masses obtained for the di�erent bare quark masses match and verify the

results in [17] to a great extent.
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Chapter 5

Conclusions

5.1 Summary

In this thesis we gave and introduction to the framework of twisted mass lattice QCD

as a equivalent formulation of standard continuum theory with an improvement in

�nite size e�ects for computed observables. We gave an overview of the concepts of

twisted mass lattice QCD with regard to the computation of hadron spectroscopy in

terms of B mesons and their e�ective masses. We described those mesons by their

quantum numbers and symmetries as well as their trial states and correlators.

We computed the e�ective masses of B mesons by means of gauge con�gurations

generated with Nf = 2 dynamical quark �avours for di�erent bare quark masses µ

and extrapolated the e�ective masses obtained in m2
PS to the physical u/d quark

mass.

In addition we gave a broad overview of the techniques used in lattice QCD compu-

tations to not only allow for meaningful results but also for statistical improvements.

These were introduced for B mesons as well as BB mesons.

Furthermore, we introduced the concept of four-quark systems within the scope of

di�erent tetraquark structures, i.e. the mesonic molecule and the diquark-antidiquark

state which allow for a better understanding of bound four-quark states addressing

the recent progression in detecting those in experiments.

5.2 Outlook

In the end we want to give a short outlook for further investigations regarding B and

BB mesons. For the former it is desirable to compute e�ective masses for more than

the bare quark masses we used and also to account for di�erent lattice spacings a. It

is imaginable that with more powerful hardware the physical u/d quark mass will be

within range in the upcoming future as it has been approached over the past decades.

For BB systems it is desirable to compute potentials from an actual implementation
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of the correlator of diquark-antidiquark states and compare the results with those of

the mesonic molecule to obtain more insight into the area of particle physics.



33

Appendix A

A.1 Relation between twisted basis and physical basis

A.1.1 Twisted basis

Case 1: Γt = γ5,Γ0 = γ5

Γ = γ0Γ†tγ0(1 + γ0)Γ0

= −γ5(1 + γ0)γ5

= −(1 + γ5γ0γ5)

= −(1− γ0)

= γ0 − 1 (A.1)

Case 2: Γt = γ5,Γ0 = 1

Γ = γ0Γ†tγ0(1 + γ0)Γ0

= −γ5(1 + γ0)1

= −(γ5 + γ5γ0)

= −(γ5 − γ0γ5)

= γ0γ5 − γ5 (A.2)

Case 3: Γt = 1,Γ0 = γ5

= γ0Γ†tγ0(1 + γ0)Γ0

= 1(1 + γ0)γ5

= γ5 + γ0γ5 (A.3)

Case 4: Γt = 1,Γ0 = 1

= γ0Γ†tγ0(1 + γ0)Γ0

= 1(1 + γ0)1

= 1 + γ0 (A.4)
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A.1.2 Physical basis

Case 1, Γt = γ5,Γ0 = γ5

Cpb55 =
(
Opb5

)†
Opb5

=
1√
2

((
Otb5
)†
∓ i
(
Otb1
)†) 1√

2

(
Otb5 ± iOtb1

)
=

1

2

((
Otb5
)†
Otb5 ∓ i

(
Otb1
)†
Otb5 ± i

(
Otb5
)†
Otb1 +

(
Otb1
)†
Otb1
)

=
1

2

(
Ctb55 ∓ iCtb15 ± iCtb51 + Ctb11

)
=̂

1

2
(γ0 − 1∓ i(γ0γ5 + γ5 − (γ0γ5 − γ5)) + γ0 + 1)

= γ0 ∓ iγ5 (A.5)

Case 2, Γt = γ5,Γ0 = 1

Cpb51 =
(
Opb5

)†
Opb1

=
1√
2

((
Otb5
)†
∓ i
(
Otb1
)†) 1√

2

(
Otb1 ± iOtb5

)
=

1

2

((
Otb5
)†
Otb1 ∓ i

(
Otb1
)†
Otb1 ± i

(
Otb5
)†
Otb5 +

(
Otb1
)†
Otb5
)

=
1

2

(
Ctb51 ∓ iCtb11 ± iCtb55 + Ctb15

)
=̂

1

2
(γ0γ5 − γ5 ∓ i(γ0 + 1− (γ0 − 1)) + γ0γ5 + γ5)

= γ0γ5 ∓ i1 (A.6)

Case 3, Γt = 1,Γ0 = γ5

Cpb15 =
(
Opb1

)†
Opb5

=
1√
2

((
Otb1
)†
∓ i
(
Otb5
)†) 1√

2

(
Otb5 ± iOtb1

)
=

1

2

((
Otb1
)†
Otb5 ∓ i

(
Otb5
)†
Otb5 ± i

(
Otb1
)†
Otb1 +

(
Otb5
)†
Otb1
)

=
1

2

(
Ctb15 ∓ iCtb55 ± iCtb11 + Ctb51

)
=̂

1

2
(γ0γ5 + γ5 ∓ i(γ0 − 1− (γ0 + 1)) + γ0γ5 − γ5)

= γ0γ5 ± i1 (A.7)
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Case 4, Γt = 1,Γ0 = 1

Cpb11 =
(
Opb1

)†
Opb1

=
1√
2

((
Otb1
)†
∓ i
(
Otb5
)†) 1√

2

(
Otb1 ± iOtb5

)
=

1

2

((
Otb1
)†
Otb1 ∓ i

(
Otb5
)†
Otb1 ± i

(
Otb1
)†
Otb5 +

(
Otb5
)†
Otb5
)

=
1

2

(
Ctb11 ∓ iCtb51 ± iCtb15 + Ctb55

)
=̂

1

2
(γ0 + 1∓ i(γ0γ5 − γ5 − (γ0γ5 + γ5)) + γ0 − 1)

= γ0 ± iγ5 (A.8)

A.1.3 Summary

Gammas Twisted basis Physical basis

Γt = γ5,Γ0 = γ5 γ0 − 1 γ0 − iγ5

Γt = γ5,Γ0 = 1 γ0γ5 − γ5 γ0γ5 − i
Γt = 1 ,Γ0 = γ5 γ0γ5 + γ5 γ0γ5 + i

Γt = 1 ,Γ0 = 1 γ0 + 1 γ0 + iγ5

A.2 Correlators

A.2.1 B meson correlator in matrix vector notation

C = 〈Ω| O†(t)O(0) |Ω〉

= 〈Ω|
(
Q̄(t)Γtψ(t)

)†
Q̄(0)Γ0ψ(0) |Ω〉

= −〈Ω| ψ̄(t)γ0Γ†tγ0Q(t)Q̄(0)Γ0ψ(0) |Ω〉

= −e−Mt

〈
ψ̄(t)γ0Γ†tγ0U(t, 0)

1

2
(1 + γ0)Γ0ψ(0)

〉
= −1

2
e−Mt

〈
Tr[U(t, 0)γ0Γ†tγ0(1 + γ0)Γ0D

−1(0, t)]
〉

(A.9)

A.2.2 Pion correlator

The pion is the lightest meson consisting of a u- and a d̄-Quark. The operator for a

charged pion is the following:

O =
∑
x

ū(x)γ5d(x) (A.10)
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The corresponding correlation function reads as follows

C = 〈Ω| O†(x0)O(y0) |Ω〉

= 〈Ω|

(∑
x

ū(x)γ5d(x)

)†∑
y

ū(y)γ5d(y) |Ω〉

=− 〈Ω|
∑
x

d̄(x)γ5u(x)
∑
y

ū(y)γ5d(y) |Ω〉

=− 〈Ω|
∑
x

d̄aA(x)(γ5)ABu
a
B(x)

∑
y

ūbC(y)(γ5)CDd
b
D(y) |Ω〉

= 〈Ω|
∑
x,y

(γ5)ABu
a
B(x)ūbC(y)(γ5)CDd

b
D(y)d̄aA(x) |Ω〉

=
∑
x,y

〈
(γ5)ABD

−1(u)(x, y)abBC(γ5)CD

(
D−1(d)(y, x)

)ba
DA

〉
=
∑
x,y

〈
(γ5)ABD

−1(u)(x, y)abBC(γ5)CD

(
γ5D

−1(d)†(x, y)γ5

)ba
DA

〉
=
∑
x,y

〈
D−1(u)(x, y)abBCD

−1(d)†(x, y)baDA

〉
(A.11)

If we apply the one-end trick, we end up with the following correlator:

C =
1

N

N∑
n=1

〈∑
x

φ(u)†[n, y0](x, x0)φ(d)[n, y0](x, x0)

〉
(A.12)



37

References

[1] Christof Gattringer and Christian B Lang. Quantum Chromodynamics on the

Lattice: An Introductory Presentation. Vol. 788. Lecture Notes in Physics. Springer,

Berlin/Heidelberg, 2010. url: http://physik.uni-graz.at/~lgt/qcdlatt/.

[2] J. Berlin. �Scalar tetraquark candidates on the lattice�. PhD thesis. Goethe-

Universität Frankfurt am Main, 2017.

[3] Andrea Shindler. �Twisted mass lattice QCD�. In: 461.2-3 (May 2008), pp. 37�

110. arXiv: 0707.4093 [hep-lat].

[4] Roberto Frezzotti et al. �Lattice QCD with a chirally twisted mass term�. In:

arXiv e-prints (Dec. 2000). arXiv: hep-lat/0101001.

[5] R. Frezzotti and G. C. Rossi. �Chirally improving Wilson fermions I. O(a)

improvement�. In: Journal of High Energy Physics (Aug. 2004). arXiv: hep-

lat/0306014.

[6] A. Peters. �Investigation of heavy-light four-quark systems by means of Lattice

QCD�. PhD thesis. Goethe-Universität Frankfurt am Main, 2017.

[7] E. Eichten. �Heavy quarks on the lattice�. In: Nuclear Physics B - Proceedings

Supplements 4 (1988), pp. 170�177. issn: 0920-5632.

[8] Lowell S. Brown and William I. Weisberger. �Remarks on the static potential in

quantum chromodynamics�. In: Phys. Rev. D 20 (12 Dec. 1979), pp. 3239�3245.

[9] Pedro Bicudo et al. �Evidence for the existence of udb̄b̄ and the nonexistence of

ssb̄b̄ and ccb̄b̄ tetraquarks from lattice QCD�. In: prd 92.1, 014507 (July 2015),

p. 014507. arXiv: 1505.00613 [hep-lat].

[10] Pedro Bicudo et al. �B B interactions with static bottom quarks from lat-

tice QCD�. In: prd 93.3, 034501 (Feb. 2016), p. 034501. arXiv: 1510.03441

[hep-lat].

[11] Pedro Bicudo and Marc Wagner. �Lattice QCD signal for a bottom-bottom

tetraquark�. In: prd 87.11, 114511 (June 2013), p. 114511. arXiv: 1209.6274

[hep-ph].

[12] B. Blossier et al. �E�cient use of the Generalized Eigenvalue Problem�. In: arXiv

e-prints (Aug. 2008). arXiv: 0808.1017 [hep-lat].

[13] Karl Jansen and Carsten Urbach. �tmLQCD: A program suite to simulate Wil-

son twisted mass lattice QCD�. In: Computer Physics Communications 180.12

(Dec. 2009), pp. 2717�2738. arXiv: 0905.3331 [hep-lat].

http://physik.uni-graz.at/~lgt/qcdlatt/
http://arxiv.org/abs/0707.4093
http://arxiv.org/abs/hep-lat/0101001
http://arxiv.org/abs/hep-lat/0306014
http://arxiv.org/abs/hep-lat/0306014
http://arxiv.org/abs/1505.00613
http://arxiv.org/abs/1510.03441
http://arxiv.org/abs/1510.03441
http://arxiv.org/abs/1209.6274
http://arxiv.org/abs/1209.6274
http://arxiv.org/abs/0808.1017
http://arxiv.org/abs/0905.3331


REFERENCES 38

[14] C. Urbach et al. �HMC algorithm with multiple time scale integration and mass

preconditioning�. In: Computer Physics Communications 174.2 (Jan. 2006), pp. 87�

98. arXiv: hep-lat/0506011 [hep-lat].

[15] Martin Lüscher. �A portable high-quality random number generator for lat-

tice �eld theory simulations�. In: Computer Physics Communications 79.1 (Feb.

1994), pp. 100�110. arXiv: hep-lat/9309020 [hep-lat].

[16] Marc Wagner. private notes/unpublished.

[17] Karl Jansen et al. �The static-light meson spectrum from twisted mass lattice

QCD�. In: Journal of High Energy Physics 2008.12, 058 (Dec. 2008), p. 058.

arXiv: 0810.1843 [hep-lat].

http://arxiv.org/abs/hep-lat/0506011
http://arxiv.org/abs/hep-lat/9309020
http://arxiv.org/abs/0810.1843

	Introduction
	Theoretical background
	Notations and conventions
	Correlation functions
	Nf = 2 twisted mass QCD
	B mesons
	Static light mesons
	Quantum numbers and symmetries
	Meson creation operators and trial states
	Correlator
	Relation between physical and twisted basis

	BB systems
	Motivation
	Quantum numbers
	Diquark-Antidiquark
	Mesonic molecule


	Technical aspects
	Lattice setup
	Symmetry averaging
	Symmetries
	Symmetry transformation rules

	General eigenvalue problem
	Techniques for propagator computation
	Point-to-all propagators
	Stochastic timeslice-to-all propagators
	One-end trick

	tmLQCD Software Suite - Inverter
	BB systems
	Gauge transformation test

	BB correlator

	Numerical results
	Correlators
	Static light meson masses
	Chiral limit

	Conclusions
	Summary
	Outlook

	
	Relation between twisted basis and physical basis
	Twisted basis
	Physical basis
	Summary

	Correlators
	B meson correlator in matrix vector notation
	Pion correlator


	References

