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Abstract

This thesis focuses on the investigation of the 1+1-dimensional Gross-Neveu model at finite number of
fermion flavors Nf using lattice field theory. A special emphasis is put on the search for an inhomoge-
neous phase, where the chiral condensate is an oscillating function in space. This inhomogeneous phase,
a chirally symmetric phase and a homogeneously broken phase with a constant chiral condensate were
originally found in the model in the limit of large-Nf. In the context of this work lattice Monte Carlo sim-
ulations of the Gross-Neveu model with various Nf for a wide range of lattice spacings and volumes were
carried out. The nature of the employed numerical techniques prevents the direct observation of an inho-
mogeneous chiral condensate. However, an oscillating spatial correlator of the condensate field was found,
which indicates a dominating oscillation in this field. This correlator is able to distinguish three regimes
that resemble the large-Nf phases and as the final result a “phase diagram” consisting of these regimes is
presented. The overall structure of the phase diagram is similar to the Nf →∞ results and persistent for
decreasing lattice spacing, thus ruling out that the inhomogeneous phase is merely a lattice artifact.
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Introduction

Quantum Field Theory (QFT) is the theoretical framework that was conceived as the unification of quan-
tum mechanics and special relativity. The description of individual particles evolved into quantized fields
that would fluctuate, produce particles and annihilate them again. A particle ceased to be a permanent
object by virtue of Einstein’s energy-mass relation.

At the core of QFTs (and most other theories of modern physics) is the concept of symmetries. We require
the theory to obey the symmetries observed in nature. In this context, symmetry means that the laws of
physics do not change if we subject our system to certain transformations. These can be local symmetries
that allow us to transform the system only in certain parts of spacetime for example gauge symmetries,
which are the central component of theories like Quantum electrodynamics (QED) or Quantum chromo-
dynamics (QCD). However, they also include global symmetries such as the Poincaré symmetry, which
requires the theory to be independent of the frame of reference or space-time. Although we require the
formulation of the theory to follow certain symmetries, it may happen that some of these symmetries are
not realized in the observed ground state. This phenomenon is called spontaneous symmetry breaking.

In 1974 the Gross-Neveu (GN) model in 1+1 dimensions was first proposed as a toy model for the mech-
anism of dynamical symmetry breaking in asymptotically free theories [1]. These are theories in which
the interaction of particles becomes weaker as the energy scale increases, such as QCD. The GN model is
arguably the simplest model of a class of quantum field theoretic models called Four-fermion (FF) theories
that describe the interaction of fermions via a quartic interaction (or FF) term, whereas in the standard
model the fermions’ interactions are exclusively mediated by gauge bosons. The majority of investigations
of the GN model were done in the large-Nf limit (Nf being the number of fermion flavors described by the
model), which allows the use of semi-classical methods, since quantum fluctuations are suppressed. It
was then found, that the discrete chiral symmetry of the model can be dynamically broken as indicated by
a non-zero vacuum expectation value of the chiral condensate.

The GN model was also subjected to finite temperature and chemical potential in the large-Nf limit. Under
the assumption of translation invariance of the chiral condensate a phase diagram of the model was pro-
duced, where the chiral symmetry was restored for either or both large temperature and large chemical po-
tential [2]. This remained the accepted result until almost 30 years after the inception of the GN, when the
assumption of the chiral condensate being homogeneous was discarded and a third inhomogeneous phase
(IP) breaking translation invariance was found at large baryon chemical potential and small temperatures
[3, 4]. In this novel phase the chiral condensate is an oscillating function in space. Such IPs have since
been found also in other FF models in the large-Nf limit including (compare with Ref. [5]): the Nambu-
Jona-Lasinio (NJL) model in 3+1 dimensions [6], the chiral Gross-Neveu model in 1+1 dimensions (also
NJL2) [7, 8] and more recently the 1+1-dimensional isoNJL with multiple chemical potentials [9, 10]. The
Quark-Meson model does also show inhomogeneities [6, 11] and is closely related to the 3+1-dimensional
NJL, albeit not a FF theory.

Interestingly, some of these models have counterparts in condensed matter physics, where the phase dia-
gram (including the IP) of the GN model was found more than 20 years prior [12]. We are, however, more
interested in the applications in high energy physics and in that context one could argue that the physics
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in these models crudely resembles QCD. This leads to the obvious question whether its phase diagram
also possesses IPs. Unfortunately, the aforementioned models point to the fact, that these phases occur
at finite baryon chemical potential. This puts us in a difficult situation as the only available first principle
approach, Lattice QCD, is confined to small ratios of chemical potential and temperature due to the sign
problem. Pertubative approaches in the limit of large chemical potential and the large-Nc limit (t’Hooft
limit) show indications of inhomogeneous condensates albeit inconclusive [13, 14]. Therefore, our idea of
the phase diagram of QCD at low temperatures and high baryon chemical potential continues to rely on
models for now.

Thus, one should be inclined to refine these models and bring them closer to QCD. To this extent one could
consider, as a first step, to carry out an investigation of the GN model at finite Nf and explore whether the
IP persists under the influence of quantum fluctuations. Such a study was already performed at Nf = 12
on the lattice and even found indications of an inhomogenous behavior by recognizing the formation of
single kink-antikink field configurations [15]. It was, however, not considered in the context of an IP and
there was no follow-up work on this topic.

The focus of this thesis lies on the investigation of this IP in the 1 + 1-dimensional GN model at finite
Nf. In the context of this work lattice Monte Carlo simulations of naive fermions with Nf ≥ 8 at finite
baryon chemical potential and temperature were performed. The character of the results is qualitative
as producing quantitative results was not the intended goal and is numerically expensive. We thoroughly
analyze these results to draw conclusions about the phases of the GN at finite Nf. The presented results
are backed up by similar results obtained with SLAC fermions and extended by a thorough analysis on the
possible existence of actual symmetry breaking of the translation symmetry, which is presented in Ref. [16].

Outline
This thesis is organized as follows:

Chapter 1 briefly introduces notation and the basic concepts of finite temperature QFT needed for the
discussions in this thesis. Moreover, we consider some details of the GN model, for instance the different
symmetries realized in the theory and a summary of the existing results in the large-Nf limit.

Chapter 2 discusses the lattice field theory techniques needed for our investigation. It starts by general
considerations of the aspects of discretization of spacetime and fermions, continues with the discretiza-
tion of the GN model and the possible errors one can make when using naive fermions, and ends with a
brief description of the numerical technique of Monte Carlo simulations that was used to obtain the main
results.

These results are presented in Chapter 3, where we discuss the phase diagram of the GN model at Nf = 8 in
detail and also connect to the existing large-Nf results by increasing the flavor number up to Nf = 24. This
presentation is preceded by the discussion of the employed observables.

We end with a brief conclusion of our findings and the prospects of possible future investigations in Chap-
ter 4. The Appendices A to E contain supplementary calculations, discussions and material that would
have cluttered the discussion and were consequently outsourced.
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Notation

In analytic calculations not only parantheses () but also curly {} and square brackets [] are used to group
terms. Hereby, the default order is {[()]}, but we might diverge from it at times in order to keep consistency
across steps of a calculation. The brackets of arguments of functionals, sets and intervals are, of course,
exempt from this and follow the usual conventions.

Throughout this work everything is expressed in natural units, i.e. setting ħ = c = kB = 1. Only Euclidean
spacetime is considered, where the D = d +1-dimensional metric reads

δµν = diag(+1,+1,+1, . . . ,+1︸ ︷︷ ︸
d components

),

where the first component corresponds to the time or more precisely the temperature direction (as dis-
cussed in the next section) and the remaining are the spatial components. Indices of spacetime and other
spaces (e.g. flavor space) that occur in pairs are summed over regardless of placement unless stated other-
wise. Vectors with the dimension of the spacetime are in bold e.g. x = (xµ)T = (xµ)T = (x0, x1, . . . , xd )T.

Fourier Transforms (FTs) are also performed and the FT of a function f (x) is denoted as

Fx

[
f (x)

]
(k) = f̃ (k) ,

where the subscript indicates that is transformed and the ~ indicates a Fourier transformed function. The
transformation is then calculated as

f̃ (k) = 1p
2π

∫
dx f (x)e−ikx ,

f (x) = 1p
2π

∫
dx f̃ (k) eikx ,

where a symmetric normalization of the transformation is chosen. Note that the choice of sign in the
exponential and the normalization are equivalent for the discrete FTs performed on the lattice.

All other notations and conventions are introduced when they are first used.
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1 Theoretical Preliminaries and the Gross-Neveu
Model in 1+1 Dimensions

1.1 Thermal Quantum Field Theory
The Euclidean path integral in thermal QFT for a D = d +1-dimensional arbitrary theory with fermionic
fields ψ̄,ψ and a bosonic field ϕ is

Z =
∫

Dψ̄DψDϕ e−S[ψ̄,ψ,ϕ], S[ψ̄,ψ,ϕ] =
∫

dDx L , (1.1)

where S is the action and L the Lagrange density that defines our theory, ψ̄,ψ are Grassmann-valued and∫
Dϕ integrates the field ϕ(x) at every spacetime point x over all possible values (the same applies for the

fermion fields). Note that the Euclidean spacetime is the result of a Wick rotation of Minkowski space-
time, where real time is analytically continued to imaginary time. By restricting the temporal direction to
finite size L0 and introducing periodic boundary conditions for bosons, i.e. ϕ(x0, x1) = ϕ(x0 +L0, x1) and
antiperiodic boundary conditions for fermions, i.e. ψ(x0, x1) = −ψ(x0 +L0, x1), we are able to rewrite the
path integral as

Z
(
β
)= ∫

anti-
periodic

Dψ̄Dψ

∫
periodic

Dϕ e−S[ψ̄,ψ] ≡ tr
(
e−βH

)
, (1.2)

where H is the Hamiltonian that is connected to the Lagrange function L = ∫
ddx L via the Legendre

transformation. We identified the path integral with the canonical partition function tr
(
exp(−βH)

)
known

from statistical mechanics with the temperature given by β= L0 = 1/T , thus giving a new meaning to the
imaginary time. This, however, means that this formulation only describes equilibrium physics. The steps
to show the equivalence involve, among other things, the introduction of canonical momenta fields π to
perform the Legendre transformation. A detailed derivation can be found in textbooks such as Refs. [17,
18]. From here on, we no longer write the boundary conditions of the integral in Z for convenience.

Now that we established the connection to the canonical partition function, we can introduce a chemical
potential in analogy to statistical mechanics and thereby transform the canonical partition function to the
grand canonical partition function Z as

Z
(
β,µ

)= tr
(
e−β(H−µN )

)
=

∫
Dψ̄DψDϕ e−S[ψ̄,ψ,ϕ]+µQ =

∫
Dψ̄DψDϕ e−S[ψ̄,ψ,ϕ](µ), (1.3)

where N is the baryon number operator and

Q =
∫

dx0 N =
∫

dd+1x ψ̄γ0ψ and S[ψ̄,ψ,ϕ](µ) = S[ψ̄,ψ,ϕ]−µQ. (1.4)

1



1 Theoretical Preliminaries and the Gross-Neveu Model in 1+1 Dimensions

The expectation value of an observable O dependent on the fields is then calculated as

〈O〉 = 1

Z

∫
Dψ̄DψDϕ O[ψ̄,ψ,ϕ] e−S[ψ̄,ψ,ϕ](µ). (1.5)

1.2 Four-Fermion Theories
A Four-fermion (FF) theory is a kind of QFT that has a Lagrangian consisting of a kinetic Dirac part and a
quartic interaction of the fermionic fields—a so called FF interaction. The general form of the Lagrangian
L for this kind of theory is

L =
Nf∑

a=1
ψ̄a(x) (/∂+m)ψa(x)−

N∑
n=1

g 2
n

2

(
Nf∑

a=1
ψ̄a(x)Γn,1ψa(x)

)(
Nf∑

a=1
ψ̄a(x)Γn,2ψa(x)

)
, (1.6)

where /∂= γµ∂µ is the derivative contracted with the Dirac gamma matrices, ψ̄,ψ are fermion spinors of Nf

flavors and Γn,i are N linearly independent matrices in spinor space. The FF term with different matrices
Γ correspond to different interaction channels. The number of channels depend on the spinor representa-
tion , e.g. in D = 4 spacetime dimensions in the irreducible representation we find 16 independent matrices
Γ or in D = 2 spacetime dimensions in the irreducible representation we find only 4 independent matrices
Γ.

1.3 The Gross-Neveu Model in 1+1 Dimensions
The Gross-Neveu (GN) model is arguably the simplest FF theory as its Lagrangian features only a scalar
interaction term [1]

L =
Nf∑

a=1
ψ̄a(x)

(
/∂+γ0µ+m

)
ψa(x)− g 2

2

(
Nf∑

a=1
ψ̄a(x)ψa(x)

)2

, (1.7)

where we already introduced the chemical potential according to Eq. (1.3).1 In the notation of Eq. (1.6)
the GN model has N = 1 and Γ1,1 = Γ1,2 = 1. In the following, we suppress the summation over flavor

indices whenever it is not important, so simply writing
∑Nf

a=1 ψ̄a(x)ψa(x) = ψ̄(x)ψ(x). In order for the

action S to be dimensionless, the Lagrangian is required to have dimension [L ] = L−2. The kinetic term
fixes the dimension of the spinors as [ψ] = [ψ̄] = L−1/2, which in turn determines the coupling constant

to be dimensionless, i.e.
[

g 2
]
= 1. This dimensionless coupling constant renders the theory pertubatively

renormalizable, which holds for all FF theories in 2 spacetime dimensions.

Throughout this work we choose the irreducible representation of the Clifford algebra{
γµ,γν

}
= 2δµν, (1.8)

of 2×2 γ−matrices, which can be constructed with the Pauli matrices. We do not have to make an explicit
choice, since the matrices can always be transformed into each other by similarity transformations, but
note that the Euclidean γ-matrices are all hermitian. We use only 2 of the 3 available γ-matrices in the

1Note that the sign is different to adjust for convention. This is not a problem, because the action is an even function of µ as
shown in Appendix A.1.

2



1 Theoretical Preliminaries and the Gross-Neveu Model in 1+1 Dimensions

kinetic part of L and can thus define the remaining matrix as γch
2, which is relevant for chiral symmetry.

Moreover, in this representation in 2 Euclidean dimensions, we find charge conjugation matrices C± that
fulfill (compare with Refs. [19, 20])

C−γµC −1
− =−γTµ, (1.9a)

C+γµC −1
+ = γTµ. (1.9b)

1.3.1 Bosonization

A common practice, when investigating these FF theories, is to bosonize the action via a Hubbard-Stratonovich
(HS) [21, 22] . This transformation can be seen as an inverse Gaussian integration

exp

[
−

∫
d2x

g 2

2

(
ψ̄(x)ψ(x)

)2

]
=N

∫
Dσ exp

[
−

∫
d2x

(
Nf

2λ
σ(x)2 + ψ̄(x) σ(x)ψ(x)

)]
, (1.10)

where N is a normalization constant to the transformation, and we introduced a scalar bosonic field σ

and a rescaled coupling λ= Nfg
2. This leads to a Euclidean partition function without the FF interaction

term

Z =
∫

Dψ̄DψDσ e−Sσ[ψ̄,ψ,σ] , Sσ[ψ̄,ψ,σ] =
∫

d2x
(
ψ̄(x) QGN(x)ψ(x)+ Nf

2λ
σ(x)2

)
, (1.11)

with

QGN(x) := /∂+γ0µ+σ(x)+m, (1.12)

where the auxiliary field σ now enters as a dynamically generated mass. Note that we neglected the nor-
malization N , which does not pose a problem, since we are only interested in observables. These are
normalized by a factor of 1/Z and thus a missing constant does not matter. In order to ease notation, we
continue to neglect any normalization constants that arise from modifications to the path integral. More-
over, from here on we only consider the chiral limit, i.e. m = 0 unless stated otherwise.

One can connect the condensate field ψ̄ψ and the bosonic field σ using a series of Ward identities, which
we derive in the following. First, consider an infinitesimal shift of σ as

σ(x) →σ′(x) =σ(x)+δσ(x). (1.13)

We apply this transformation to Eq. (1.11) and obtain

Z ′ =
∫

Dψ̄DψDσ′ exp

{
−

∫
d2x

[
ψ̄(x) (/∂+γ0µ+σ(x)+δσ(x)+m)ψ(x)+ Nf

2λ
(σ(x)+δσ(x))2

]}
=

∫
Dψ̄DψDσ′ e−S[ψ̄,ψ,σ] exp

{
−

∫
d2x δσ(x)

[
ψ̄(x)ψ(x)+ Nf

2λ

(
2σ(x)+δσ(x)

)]}
≈

∫
Dψ̄DψDσ′ e−S[ψ̄,ψ,σ]

[
1−

∫
d2x δσ(x)

(
ψ̄(x)ψ(x)+ Nf

λ
σ(x)

)]
, (1.14)

where we used the fact that δσ(x) is infinitesimal in order to expand the exponential and to neglect terms
of order O (δσ(x)2). The integral in Eq. (1.11) has to be invariant under such a shift3 and by assumption

2In 3+1 dimensions this “remaining” γ-matrix is often called γ5.
3The integral integrates over all possible field values. Thus, a shift cannot influence the overall integral.
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1 Theoretical Preliminaries and the Gross-Neveu Model in 1+1 Dimensions

that the integral measure Dσ is invariant under this transformation we derive

Z ≡Z ′ =Z−
∫

Dψ̄DψDσ

[∫
d2x δσ(x)

(
ψ̄(x)ψ(x)+ Nf

λ
σ(x)

)]
e−S[ψ̄,ψ,σ]

⇒ 0 =
∫

Dψ̄DψDσ

[∫
d2x δσ(x)

(
ψ̄(x)ψ(x)+ Nf

λ
σ(x)

)]
e−S[ψ̄,ψ,σ]. (1.15)

The transformation δσ(x) is arbitrary and by restricting it to a single site, i.e. δσ(x) = δ(x−y)δσ, we obtain
the Ward identity

〈
ψ̄(x)ψ(x)

〉= −Nf

λ
〈σ(x)〉 , (1.16)

which links the chiral condensate
〈
ψ̄(x)ψ(x)

〉
to the expectation value of the auxiliary field 〈σ(x)〉. There-

fore, we also refer to 〈σ(x)〉 as the chiral condensate.

Furthermore, we want to derive a second Ward identity that links the correlators of the fields. As a starting
point we choose the expectation value

〈
σ(y)

〉
and apply the transformation from Eq. (1.13), where the

expectation value does not change under the transformation

〈
σ(y)

〉→ 〈
σ(y)

〉= 1

Z

∫
Dψ̄DψDσ′ σ′(y) e−S[ψ̄,ψ,σ′] = 1

Z

∫
Dσ

(
σ(y)+δσ(y)

)
e−S[ψ̄,ψ,σ′]

≈ 1

Z

∫
Dψ̄DψDσ

(
σ(y)+δσ(y)

)
×

[
1−

∫
d2x δσ(x)

(
ψ̄(x)ψ(x)+ Nf

λ
σ(x)

)]
e−S[ψ̄,ψ,σ]

= 1

Z

∫
Dψ̄DψDσ

(
σ(y)+δ(y − z)δσ

)[
1− δσ

(
ψ̄(z)ψ(z)+ Nf

λ
σ(z)

)]
e−S[ψ̄,ψ,σ]

=〈
σ(y)

〉+δσ

(
δ(y − z)−〈

σ(y)ψ̄(z)ψ(z)
〉− Nf

λ

〈
σ(z)σ(y)

〉)
(1.17)

⇒ Nf

λ

〈
σ(y)ψ̄(z)ψ(z)

〉=Nf

λ
δ(y − z)−

(
Nf

λ

)2 〈
σ(z)σ(y)

〉
, (1.18)

where we chose δσ(x) = δ(x − z)δσ from line 2 to 3. Starting from
〈
ψ̄(z)ψ(z)

〉
and performing similar

steps yields

Nf

λ

〈
σ(y)ψ̄(z)ψ(z)

〉=−〈
ψ̄(y)ψ(y) ψ̄(z)ψ(z)

〉
. (1.19)

Combining Eqs. (1.18) and (1.19) produces a Ward identity that connects the correlation functions of ψ̄ψ

and σ as

〈
ψ̄(y)ψ(y) ψ̄(z)ψ(z)

〉=− Nf

λ
δ(y − z)+

(
Nf

λ

)2 〈
σ(z)σ(y)

〉
. (1.20)

1.3.2 Symmetries

The action of the GN model respects various symmetries and in the following we examine those that are
relevant for our investigations.
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1 Theoretical Preliminaries and the Gross-Neveu Model in 1+1 Dimensions

Poincaré Symmetry

In Euclidean spacetime the Lorentz transformations from Minkowski space become ordinary rotations of
SO(D) as the metric now has the same sign for every entry. Nevertheless, we continue to call this sort of
transformation “Lorentz transformations” for simplicity’s sake. The coordinates transform under such a
transformation Λ as

xµ → x ′
µ =Λµν xν, (1.21)

a scalar field is invariant as

σ(x) →σ′(x ′) =σ (x) , (1.22)

and the spinors transform as

ψ(x) →ψ′(x ′) = S[Λ]ψ
(
x ′)=exp

[
− i

2
ΩµνSµν

]
ψ(x) , (1.23a)

ψ̄(x) → ψ̄′(x ′) =exp

[
i

2
ΩµνSµν

]
ψ̄(x) , (1.23b)

where Sµν = [γµ,γν] i/4 and Ωµν = −Ωνµ are the parameters of the Lorentz-Transformation (e.g. rotation
angle).

The term ψ̄γ0µψ in the action breaks Lorentz symmetry explicitly for µ 6= 0 (because of the accompanying
γ0). Also finite temperature breaks Lorentz invariance due to the (anti)periodic finite temporal extent.

The translation symmetry part of the Poincaré symmetry is not affected by finite temperature, chemical
potential or Euclidean spacetime. The translation symmetry is realized in the action in Eq. (1.11) as it is
invariant under a transformation

x → x ′ = x +δ, (1.24)

where δ is the constant by which we shift the system.

Flavor Symmetry

The flavors are degenerate in the GN model; therefore, the Lagrangian L in Eq. (1.7) is invariant under a
unitary flavor transformation

ψa →ψa = (
eiωAλA

)
abψb , ψ̄a → ψ̄a = ψ̄b

(
e−iωAλA

)
ba , (1.25)

where λA are the (Nf)
2 −1 generalized Nf ×Nf Gell-Mann matrices [23].

Phase Symmetry

The Lagrangian L in Eq. (1.7) for one flavor is invariant under a global U (1) transformation of the spinors
as

ψa →ψ′
a = eiα1ψa , ψ̄a → ψ̄′

a = ψ̄ae−iα1, (1.26)
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1 Theoretical Preliminaries and the Gross-Neveu Model in 1+1 Dimensions

which becomes a U (Nf) symmetry through the Flavor symmetry (in a similar way as described in Ref. [23],
where the 2+1 Thirring model is considered).

Chiral Symmetry

The massless kinetic term in the Lagrangian L from Eq. (1.7) is invariant under a chiral transformation

ψ→ψ′ = eiωγch ψ, ψ̄→ ψ̄′ = ψ̄eiωγch . (1.27)

Applying this transformation to the FF term yields

[
ψ̄aψa

][
ψ̄bψb

]→ [
ψ̄′

bψ
′
b

][
ψ̄′

bψ
′
b

]= [
ψ̄ae2iωγchψa

][
ψ̄be2iωγchψb

]
= [

ψ̄a

(
cos(2ω)1+ isin(2ω)γch

)
ψa

]× [
ψ̄b

(
cos(2ω)1+ isin(2ω)γch

)
ψb

]
, (1.28)

where we used that the complex matrix exponential of the involutary matrix4 A can be decomposed as

eiαA = cos(α)1+ isin(α)A. (1.29)

Equation (1.28) shows that only parameters ωo = (2n +1)π/2 and ωe = mπ with n,m ∈ Z leave the whole
action invariant. The even parameters ωe correspond to a discrete phase transformation of the individual
flavors as

ψa →ψ′
a =ψa cos(mπ) =ψa(−1)m , ψ̄a → ψ̄′

a = ψ̄a(−1)m , (1.30)

which is just a discrete subgroup of the aforementioned U (Nf) phase transformation. The odd parameters
ωo correspond to

ψ→ψ′ = sin((2n +1)π/2)iγch ψ= (−1)n iγch ψ, ψ̄→ ψ̄′ = ψ̄ (−1)n iγch, (1.31)

where all flavors have to be transformed simultaneously. The transformation by (−1)n i is again part of the
U (Nf). By using the transformations of this group from Eq. (1.26) to rotate the spinors by α=−π(n +1/2),
we obtain a discrete Z2 chiral symmetry as

ψ→ψ′ = γch ψ, ψ̄→ ψ̄′ =−ψ̄ γch. (1.32)

To preserve this chiral symmetry in Lσ, the auxiliary field σ has to be transformed as

σ→−σ. (1.33)

In the next section, we show that the action Sσ only depends on the determinant of the Dirac operator QGN,
which is an even function in σ (see Appendix A.1), and thus allows the transformation of σ as in Eq. (1.33).
It is actually not a new symmetry, instead just part of the chiral symmetry.

We conclude that the scalar FF interaction of the GN model explicitly breaks the original continuous chiral
symmetry of Eq. (1.27) down to this discrete subgroup Z2.

4These are matrices that satisfy A = A−1, i.e. matrices that are their own inverse.
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1 Theoretical Preliminaries and the Gross-Neveu Model in 1+1 Dimensions

1.3.3 The Limit of Large Number of Fermion Flavors

In the HS transformed action Sσ, the fermion fields only occur in bilinear form, which we can integrate out

Z =
∫

Dσ det(Q)Nf exp

(∫
d2x

Nf

2λ
σ(x)2

)
=

∫
Dσ e−Seff[σ], (1.34)

with

Seff[σ] = Nf

(
1

2λ

∫
d2x σ(x)2 − lndet(Q)

)
. (1.35)

It is easy to see that for Nf →∞ every contribution to the path integral but the global minimum of Seff is
infinitely suppressed. This classical field configuration σ′ that minimizes the action globally is a solution
to the gap equation5

δS[σ]

δσ(x)
= 0. (1.36)

This, in turn, means that expectation value of an observable O only relies on this classical configuration.
Therefore, the expectation value reduces to

〈O〉 = 1

Z

∫
DσO[σ] e−Seff[σ] Nf→∞= O

[
σ′] . (1.37)

In particular the chiral condensate 〈σ(x)〉 is then σ′(x). The chiral condensate serves as an order parameter
for the chiral symmetry and a non-zero value signals a broken chiral symmetry.

Homogeneous Phase Diagram

By restricting the chiral condensate 〈σ〉 to being constant in space, one has to consider only constant
σ when minimizing Seff. One then defines the effective potential Ueff(σ), with Seff = NfβL1 Ueff (see Ap-
pendix B for the derivation of the renormalized effective potential), which is a “mexican-hat” potential. It
is symmetric and has two global minima at σ′ = ±σ0 for µ = 0 and T = 0. The value σ0 is used to set the
scale and we express all quantities in units of σ0. When fixing µ= 0 and increasing the temperature T , the
minima move towards the origin and continuously merge into a single minimum at σ′ = 0 for a critical tem-
perature Tc /σ0 = eγ/π ≈ 0.567 6 (compare Figure 1.1b). Right at the transition, there is no energy barrier
between the new minimum and the old minima characteristic to a second order phase transition. When
fixing T = 0 and increasing the chemical potential, a competing local minimum, which is separated by an
energy barrier from the global minima, forms and eventually becomes the global minimum at a critical
chemical potential µc /σ0 = 1/

p
2 ≈ 0.707 (compare Figure 1.1c). This is a first order phase transition as the

global minimum does not change continuously for varied chemical potential.

When minimizing the effective potential numerically7 (as given in Eq. (B.15)) in the µ,T -plane one de-
termines a “homogeneous” phase diagram. Figure 1.1a shows this phase diagram that consists of a
homogeneously broken phase (HBP) with σ′ 6= 0 and a symmetric phase (SP) σ′ = 0. A second order
phase boundary extends from (µ/σ0,T /σ0) = (0,eγ/π) ≈ (0,0.567) to the Lifshitz point at (µ/σ0,T /σ0) =
(0.608,0.318) as indicated by the smooth evolution of σ′ to 0. From here the phase boundary continues as
a first order phase transition to (µ/σ0,T /σ0) = (1/

p
2,0) ≈ (0.707,0) [2].

5Note that there are also solutions that are local minima or maxima, which solve this equation.
6The constant γ is called the Euler-Mascheroni constant with γ= 0.57721. . ..
7The integration in Ueff and its minimization is done with appropriate numeric routines from the scipy python library.
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Figure 1.1: 1+1-dimensional GN in the large-Nf limit with restriction to homogeneous σ [2].
(a) The homogeneous phase diagram in the µ,T -plane. (b) The the evolution of the effective
potential for various T and µ= 0. (c) The evolution of the effective potential for various µ and
T = 0. The dots indicate the minimum of the respective potential.

Inhomogeneous Phase Diagram

Without the restriction of the chiral condensate being constant in space, it was found that there is a third
phase called inhomogeneous phase (IP) where σ′ is a periodic oscillating function in space [3, 4]. Fig-
ure 1.2a shows this new phase diagram where the HBP/SP boundary up to the Lifshitz point is the same
as in the homogeneous phase diagram. Following the Lifshitz point there is now a splitting of the phase
boundaries with the IP emerging. The new HBP/IP boundary extends from the Lifshitz point to (µ/σ0,T /σ0) =
(1/2π,0) ≈ (0.637,0). The former boundary (green dashed line) is completely engulfed by the IP and all
phase boundaries are second order now. In the IP, the oscillating chiral condensate is described by a com-
bination of Jacobi elliptic functions and for increasing chemical potential the chiral condensate (compare
Figure 1.2b)

1. morphs from a kink-antikink shape to a sin-like shape,

2. has an increasing frequency,

3. has a decreasing amplitude.

It is also found that the baryon density has its peak at the steepest descends of σ′(x), i.e. its zeros. There-
fore, the baryons seem to align with the oscillation and an increase in frequency of the oscillation means
the introduction of an additional baryon. Thus, the inhomogeneous phase is interpreted as a crystal of
baryons placed in fixed distances [24].

The special property of this phase is that the continuous translation symmetry realized in the action is
broken to a subgroup as the condensate is only invariant under a transformation

σ′(x0, x1) =σ′(x0, x1 +λ), (1.38)

where λ is the wave length of the oscillation. The breaking of this symmetry apparently contradicts the
Coleman theorem, which states that a continuous symmetry cannot be spontaneously broken in d ≤ 2
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∆µ≈ 10−9 ∆µ≈ 0.02 ∆µ≈ 1.16

Figure 1.2: 1+1-dimensional GN in the large Nf limit [3, 4]. (a) The full phase diagram in the µ,T -plane.
(b) The inhomogeneous condensate for various ∆µ= (µ−µc )/σ0 and T = 0.

dimensions [25]. It is argued that this would produce massless Nambu-Goldstone bosons with a relativis-
tic dispersion relation whose correlation functions have infrared divergences and thus cannot exist. This
problem can be circumvented in the limit of Nf →∞ (see Ref. [26]), but the same argument does not hold
at finite Nf, so it is not obvious if the breaking of translational invariance would still occur. If the Gold-
stone boson decouples completely or it has a non-relativistic dispersion relation (which does not produce
infrared divergences in the correlation function), it could be that there still occurs true spontaneous sym-
metry breaking of the translation symmetry. For a more in-depth discussion of this matter we refer to
Ref. [16].
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2 The Gross-Neveu Model on the Lattice

2.1 Spacetime Discretization
As a first step, we introduce a hypercubic d +1-dimensional spacetime lattice Γ of size V =∏d

µ=0 Lµ, where
d is the number of spatial dimensions and Lµ denotes the physical extent in µ-direction. This lattice is
defined by a set of discrete spacetime points

Γ := {x = na |n ∈ Λ} with Λ :=
{

n = (n0, n1, . . . ,nd )T |nµ ∈
{

0, 1, . . . , Nµ−1
}}

, (2.1)

where the lattice points are equidistantly distributed with a lattice spacing a and Nµ is the number of lattice

sites in µ-direction.1 The physical extent of the lattice in µ-direction is then Lµ = aNµ. The discretized
spacetime of the lattice clearly breaks the Poincaré symmetry down to discrete translations and rotations.
The fields σ,ψ,ψ̄ only occur on these discrete lattice sites, which causes the measure in the path integral
Z to be of finite dimensions. It is then written as

Dσ= ∏
x ∈Γ

dσ(x). (2.2)

A discretization of spacetime leads to an upper bound on the physical momenta k on these lattices, which
is illustrated by considering a plane wave

exp(ik · x) = exp(ik ·na) ,

where a shift k → k+eν 2π/a does not change the expression since n ∈ N
d+1, and eν denotes the unit vector

in ν direction. Therefore, all relevant momenta are located within the first Brillouin zone [−π/a,π/a).2

A finite lattice discretizes the available physical momenta and requires us to impose boundary conditions.
These are (anti)periodic boundary conditions i.e. f (x + eµLµ) = exp(i2πηµ) f (x) (no summation over µ),
where ηµ = 0, 1/2 for periodic and antiperiodic boundary conditions in µ-direction respectively. This is
again demonstrated with a plane wave

exp
[

ik · (n +Nµeµ)a
]
= exp

(
i2πηµ

)
exp(ik ·na) ⇒ kµaNµ = 2π

(
ñµ+ηµ

)
with ñµ ∈Z, (2.3)

which shows that only certain momenta are allowed.

Both of these conditions combined define the reciprocal lattice Γ̃ containing the available physical mo-

1Elements of Γ are referred to as “lattice points” with standard symbols x , y , z and elements of Λ are referred to as “lattice sites”
with standard symbols n,m,r , s.

2An asymmetric choice of the first Brillouin Zone as [0,2π/a) would also be correct as long as the continuum limit is not taken.
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menta3

Γ̃ :=
{

k = p

a

∣∣∣ p ∈ Λ̃
}

, (2.4)

with

Λ̃ :=
p = (p0, p1, . . . , pd )T

∣∣∣∣∣∣ pµ =
2π

(
ñµ+ηµ

)
Nµ

, ñµ ∈
{
−Nµ/2, −Nµ/2+1, . . . , Nµ/2−1

} , (2.5)

where we assume Nµ to be even. The set for ñµ is obtained by a shift of the set in the asymmetric first
Brillouin zone [0,2π/a) , where ñµ ∈ {0,1, . . . , Nµ−1}. For an even lattice extent, one shifts this by −Nµ/2 to
obtain the set in Eq. (2.5). An odd lattice extent would need a different shift to obtain a Brillouin zone of
[−π/a,π/a) and fulfill ñµ ∈ Z. This shift depends on ηµ and is −(Nµ−1)/2 for ηµ = 0 and −(Nµ+1)/2 for
ηµ = 1/2. Odd lattices will not be viable for our investigation (as illustrated in Section 2.2.2); therefore, we
defined Λ̃ for even lattice extents.

From here on, we consider a 1+1-dimensional spacetime with periodic boundary conditions as default.
For fermions we impose antiperiodic boundary conditions in the 0-direction i.e. settingη0 = 1/2 for fermionic
momenta4.

In order to recover the continuum physics we have to perform the continuum limit, i.e. a → 0 while keeping
the volume of the lattice V constant.

2.2 Naive Discretization of Fermions
Also subject to discretization is the derivative operator that acts on the spinors in the Dirac Operator
∂µψ(x). Just as the spacetime discretization itself, a derivative discretization might explicitly break sym-
metries that are realized in the theory we are interested in. These can be recovered in the continuum, but
it might be challenging to do so and therefore it is advisable to choose a discretization that preserves the
symmetries that are important to the investigation. There are various different methods to discretize this
single derivative in the Dirac operator. The following discussion focuses on the so-called naive derivative
discretization. In Section 2.3.1 we briefly remark on other discretizations used for the GN model.

We start by considering the Taylor expansion of the fermion fields for space time points in distance a

ψ
(

x +aeµ

)
=ψ(x)+∂µψ(x) a +∂2

µψ(x) a2 +O (a3), (2.6a)

ψ
(

x −aeµ

)
=ψ(x)−∂µψ(x) a +∂2

µψ(x) a2 +O (a3). (2.6b)

Taking the difference of Eq. (2.6a) and Eq. (2.6b) yields

ψ
(

x +aeµ

)
−ψ

(
x −aeµ

)
= 2∂µψ(x) a +O (a3) ⇒ ∂µψ(x) =

ψ
(

x +aeµ

)
−ψ

(
x −aeµ

)
2a

+O (a2), (2.7)

3Similarly to the lattice sites and points we make a distinction between elements of Γ̃ calling them “physical momenta” with
standard symbol k and elements of Λ̃ calling them just “momenta” with standard symbols p , q .

4To ease notation we refrain from introducing two different sets for fermionic and bosonic momenta and instead set η according
to the context, e.g. in the expression ψ̃(k) it should be clear that k is a fermionic physical momentum that belongs to Γ̃ with
η0 = 1/2
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which defines the naive discretization

∂µψ(x) → ∂naive
µ ψ(an) =

ψ
(
a

(
n +eµ

))
−ψ

(
a

(
n −eµ

))
2a

= ∑
m∈Λ

δn+eµ,m −δn−eµ,m

2a
ψ(am) =

∑
m∈Λ

Dnaive
µ (n|m) ψ(am) , (2.8)

with a discretization error of a2. Therefore, we recover the derivative in the continuum limit of a → 0, albeit
we might retain unphysical lattice artifacts. In order to get a better understanding of the continuum limit,
we consider the momentum representation of the naive derivative operator5

D̃naive
µ

(
p|q)= 1

|Λ|
∑

n,m∈Λ
e−ina·p/a Dnaive

µ (n|m) eima·q/a = δp ,q
i

a
sin

(
qµ

)
= δp ,q D̃naive

µ

(
q

)
, (2.9)

where |Λ| = ∏
µ Nµ is the number of lattice sites and δp ,q compares the integers ñ that belong to the mo-

menta p and q . Next we obtain the naively discretized free Dirac operator Q̃naive
free

(
p

)
by contracting this

derivative with the Dirac matrices γµ and by a subsequent inversion, the propagator

Q̃naive
free

(
p

)= D̃/D
naive (

p
)+m = i

a
γµ sin

(
pµ

)
+m ,

(
Q̃naive

free

)−1
(p) =

m − i γµ sin
(
pµ

)
/a

m2 + sin
(
pµ

)2
/a2

, (2.10)

where m would be the mass of the considered free fermion. For fixed physical momentum k this assumes
the well known form in the continuum limit

lim
a→0

(
Q̃naive

free

)−1
(k a) = lim

a→0

m − i/a γµ sin
(
kµa

)
m2 +

(
sin

(
kµa

)
/a

)2 =
m − iγµkµ

m2 +k2 = Q̃−1
free(k). (2.11)

2.2.1 Fermion Doublers in the Naive Discretization

When we consider a massless fermion, i.e. setting m = 0, the continuum propagator has one pole at p = 0.
This gives rise to one physical fermion, since only the momenta in the vicinity of a pole contribute as the
others are suppressed in the path integral. The naive propagator, however, has multiple poles that remain
in the continuum limit. These occur at the edges of the first Brillouin zone whenever the components of
the momenta are either 0 or ±π. This circumstance is simply due to the fact that the sin has a zero at π
which is not present for the linear dispersion relation of the continuum (compare with Figure 2.1). We
label the poles as

A := (0,0)T , B := (0,±π)T , C := (±π,0)T, D := (±π,±π)T. (2.12)

The poles B ,C ,D also give rise to additional fermions, which are called doublers. Therefore, we end up
with 4 (in D spacetime dimensions 2D ) fermions per “original” fermion flavor. We refer to the fermions
belonging to one original flavor as sub-flavors of that flavor (this includes the original physical fermion).
The momentum region in the vicinity of a pole is associated to the respective sub-flavor. We divide the first
Brillouin zone into these regions R(X ) that we define as squares of edge length π with the corresponding

5Note that this representation is actually obtained by taking the FT of the spinors in ψ̄Dψ.
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Figure 2.1: The 1-dimensional part of the denom-
inator of the massless continuum in
Eq. (2.11) and naive propagator in
Eq. (2.10).

p0

p1A B

C D

R(A)

R(B)

R(C )

R(D)

Figure 2.2: The 2-dimensional momentum domain
divided in the sub-flavor regions.

pole X in the center (see Figure 2.2).6 The regions R(X ) define the set

R := {R(A), R(B ), R(C ), R(D) } . (2.13)

With this in mind we introduce a new notation of a sub-flavor index that depends on the momentum of
the spinor, thus relabeling the original spinors as

ψa

(
(p +X )/a

)→ψX
a

(
p/a

)
, (2.14)

where X denotes one of the poles associated to a certain sub-flavor.

Even though one could expect, that the doublers behave just like additional flavors, they have a deficiency,
which is revealed when considering the naively discretized action of a single free massless fermion ap-
proaching the continuum limit.7 We consider it in momentum space and apply the new notation of re-
gions to it∑

p ∈Λ̃
ψ̄

(
p/a

)
D̃/D

naive (
p

)
ψ

(
p/a

)
= ∑

R(X )∈R

∑
p ∈R(X )

ψ̄
(
p/a

)
D̃/D

naive (
p

)
ψ

(
p/a

)
= i

a

[ ∑
p ∈R(A)

ψ̄
(
p/a

)
γµ sin(pµ)ψ

(
p/a

)+ ∑
p ∈R(B )

ψ̄
(
p/a

)
γµ sin(pµ)ψ

(
p/a

)
+ ∑

p ∈R(C )
ψ̄

(
p/a

)
γµ sin(pµ)ψ

(
p/a

)+ ∑
p ∈R(D)

ψ̄
(
p/a

)
γµ sin(pµ)ψ

(
p/a

)]
= i

a

∑
p ∈R(0)

[
ψ̄A(

p/a
)
γµ sin

(
pµ+ Aµ

)
ψA(

p/a
)+ ψ̄B (

p/a
)
γµ sin

(
pµ+Bµ

)
ψB (

p/a
)

+ ψ̄C (
p/a

)
γµ sin

(
pµ+Cµ

)
ψC (

p/a
)+ ψ̄D(

p/a
)
γµ sin

(
pµ+Dµ

)
ψD(

p/a
)]

6A more rigorous mathematical definition in D spacetime dimensions would make use of the infinity norm as R(X ) ={
p ∈ Λ̃ : ||p −X ||∞ = max{|p0 −X0|, . . . , |pd −Xd |} <π

}
.

7The following short discussion follows the arguments presented in [27].
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2 The Gross-Neveu Model on the Lattice

approaching−−−−−−−−→
continuum

≈ i
∑

p ∈R(0)

[
ψ̄A(k) γµkµ ψA(k)+ ψ̄B (k) (γ0k0 −γ1k1) ψB (k)

+ ψ̄C (k) (−γ0k0 +γ1k1) ψC (k)− ψ̄D (k) γµkµ ψD (k)
]

, (2.15)

where, in the last step, we used that only the momenta close to the poles contribute in the continuum limit
and therefore expanded the sin functions for small momenta pµ, and introduced the physical momentum
k = p/a, which is fixed when taking the continuum limit. This reveals that the doublers have an incor-
rect momentum relation as their kinetic part features additional minus signs in contrast with the original
fermion. This can, however, be remedied by a unitary linear transformation of the spinors

χ̄= ψ̄P †, χ= Pψ, P = diag(1, γ0, γ1, γ0γ1 ), (2.16)

where P acts in sub-flavor space. By applying this transformation to Eq. (2.15) we flip the wrong signs and
recover the standard kinetic term for all four sub-flavors within their respective region

D∑
X=A

∑
p ∈R(0)

χX (
p

)
iγµpµ χX (

p
)

. (2.17)

This transformation does not alter the action, since it is unitary and is merely a rewriting to conventional
field coordinates.

The doubler phenomenon is subject of the well known Nielsen-Ninoyima theorem, which states that a
fermion discretization that

1. has no doublers,

2. preserves chiral symmetry,

3. is local, i.e. its Fourier Transform exists and all its derivatives are continuous,

4. is translationally invariant,

cannot exist [28, 29, 30]. This in turn means that every lattice discretization has to drop one of these
properties. The naive discretization violates, as shown, the first property in order to fulfill the rest. The
preservation of the chiral symmetry is, of course, very important for our investigation in Chapter 3 and
therefore naive fermions are an acceptable choice.

2.2.2 Even and Odd Lattice Extents Nµ

One is restricted to even lattice extents when using the naive derivative. The reason why is evident when
we consider the available momenta in µ-direction on the lattice. Odd lattice extents causes momenta at
the edge of the first Brillouin zone that are associated to antiperiodic/ periodic boundary conditions to be-
have like momenta associated to periodic/ antiperiodic boundary conditions, i.e. for initially antiperiodic
boundary conditions there is now a momentum pµ = −π and for initially periodic boundary conditions
there is no momentum pµ = −π anymore. Therefore, the boundary condition for the doublers in this di-

rection is flipped (compare Figure 2.3). 8 The reason can be understood purely on a geometric level as it is
just not possible to distribute an odd number of points in the appropriate way.

8Note that the same effect also occurs in an asymmetric first Brillouin zone and is not the result of the shift of momenta.
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2 The Gross-Neveu Model on the Lattice

−π 0 π pµ

Nµ=8,
ηµ = 0

Nµ=7,
ηµ = 0

Nµ=8,
ηµ = 1/2

Nµ=7,
ηµ = 1/2

Figure 2.3: Momenta pµ ∈ Λ̃ for even/odd lattice extents Nµ = 8,7 each for periodic/antiperiodic boundary
conditions ηµ = 0,1/2.

The presence of one direction of finite extent with antiperiodic boundary conditions effectively serves
as an infrared regulator for the determinant of the Dirac operator. Having a fermion that has periodic
boundary conditions in all directions removes this regulating feature. This introduces zero eigenmodes
and consequently a divergence of the action. A detailed description of the effects on the GN action can be
found in Appendix C.2 (Note that this description depends on the discussion in the next section).

2.2.3 Introduction of the Chemical Potential

Although an introduction of a chemical potential happens on the level of the path integral, we want to
discuss at this point how it is introduced in the naive discretization. A linear introduction of the chemical
potential into the action as γ0µ as in the continuum in Eq. (1.3) seems sensible. However, doing so leads
to a divergent energy density in the continuum limit. To prevent this, it is common practice when using
the naive discretization (but also Wilson or staggered fermions for example) to introduce the chemical
potential in an exponential to the time derivative (see Ref. [31]) as

Dnaive
0 (n|m) =

δn+eµ,m eµa −δn−eµ,m e−µa

2a
(2.18)

and in momentum space

Dnaive
0

(
p|q)= δp ,q

i

a
sin

(
q0 − iµa

)
. (2.19)

There are also alternative approaches that show that the emerging divergence when using the linear term
is not an artifact of the lattice discretization but rather a continuum effect. The partition function can then
be corrected by adding a µ-dependent constant [32].

The introduction of the chemical potential does not alter the previous discussion about the deficiency of
the doublers as it picks up the same wrong signs in the kinetic term.
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2.3 Discretization of the 1+1-Dimensional Gross-Neveu Action
Applying the previously discussed naive discretization naively without further modifications to the GN
action from Eq. (1.11) results in a discretized action as

Sσ[ψ̄,ψ,σ] =
∫

d2x

(
Nf∑

b=1
ψ̄b(x) QGN(x)ψb(x)+ Nf

2λ
σ(x)2

)
NN disc.−−−−−→ SNN

σ [ψ̄,ψ,σ] = Nf a2

2λ

∑
n∈Λ

σ(na)2 +a2 ∑
n,m∈Λ

Nf/4∑
b=1

ψ̄b(ma)
(

/Dnaive (m|n)+δm,n σ(na)
)
ψb(na)

= Nf

2λ

∑
n∈Λ

σ(n)2 + ∑
n,m∈Λ

Nf/4∑
b=1

ψ̄b(m)
(

/Dnaive (m|n)+δm,n σ(n)
)
ψb(n) , (2.20)

which we call the naive naive (NN) discretization. We rescaled the number of fermions Nf by a factor of
1/4 in the sum to account for the doublers such that Nf is the total number of fermions that are present—
including doublers. Note that we absorbed the lattice spacing into the field variable to obtain only dimen-
sionless quantities as

aσ→σ, a1/2ψ→ψ, a1/2ψ̄→ ψ̄, a /Dnaive (m|n) → /Dnaive (m|n) , aµ→µ (2.21)

and now use elements of Λ instead of elements of Γ as arguments of the fields. The same applies to objects
of momentum space. We continue the discussion for the remainder of this chapter in these variables and
only switch back in Section 2.3.3.

The NN discretization leaves the interaction term ψ̄σψ unchanged, which results in a wrong continuum
limit. To show this, we start by considering the discretized interaction in Fourier space

Nf/4∑
b=1

∑
n∈Λ

ψ̄b(n) σ(n)ψb(n) = 1

|Λ|3/2

Nf/4∑
b=1

∑
n∈Λ

∑
p , q , p ′∈Λ̃

˜̄ψb

(
p

)
e−ip·n σ̃(p ′)eip ′·n eiq ·nψ̃b

(
q

)
= 1

|Λ|3/2

Nf/4∑
b=1

∑
p , q , p ′∈Λ̃

|Λ| δp ′,p−q
˜̄ψb

(
p

)
σ̃(p ′)ψ̃b

(
q

)
= 1p|Λ|

Nf/4∑
b=1

∑
p , q ∈Λ̃

˜̄ψb

(
p

)
σ̃(p −q)ψ̃b

(
q

)
, (2.22)

where p ′ is a bosonic momentum with periodic boundary conditions in all directions, i.e. η= 0. Rewriting
this in terms of sub-flavors yields a vector-matrix-vector multiplication as

1p|Λ|
Nf/4∑
b=1

∑
p , q ∈R(0)


˜̄ψA

b

(
p

)
˜̄ψB

b

(
p

)
˜̄ψC

b

(
p

)
˜̄ψD

b

(
p

)



T
σA σB σC σD

σB σA σD σC

σC σD σA σB

σD σC σB σA




ψ̃A

b

(
q

)
ψ̃B

b

(
q

)
ψ̃C

b

(
q

)
ψ̃D

b

(
q

)

 , (2.23)

where σX = σ(p − q + X ). By applying the transformation P of Eq. (2.16), we obtain the interaction with
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2 The Gross-Neveu Model on the Lattice

fermions with the correct dispersion relation

1p|Λ|
Nf/4∑
b=1

∑
p , q ∈R(0)


˜̄χA

b

(
p

)
˜̄χB

b

(
p

)
˜̄χC

b

(
p

)
˜̄χD

b

(
p

)



T
σA σB γ0 σC γ1 σD γ0γ1

σB γ0 σA σD γ0γ1 σC γ1

σC γ1 σD γ0γ1 σA σB γ0

σD γ0γ1 σC γ1 σB γ0 σA




χ̃A

b

(
q

)
χ̃B

b

(
q

)
χ̃C

b

(
q

)
χ̃D

b

(
q

)

 , (2.24)

which shows the flaws of the NN discretization. The first one is that the off-diagonal elements contain
gamma matrices even though the GN model features only scalar interactions. The second one is that these
off-diagonal inter sub-flavor interactions are unwanted all together. There is no flavor mixing in the GN
model and therefore also sub-flavors should not mix.

To get rid of the incorrect interactions in Eq. (2.24), a modification of the interaction term in Fourier space
to suppress inter sub-flavor coupling is appropriate, where effectively only the diagonal terms contribute.
To do so, we introduce a modification F̃ (p −q) into the interaction

1p|Λ|
Nf/4∑
b=1

∑
p , q ∈Λ̃

˜̄ψb

(
p

)
F̃ (p −q) σ̃(p −q)ψ̃b

(
q

)
, (2.25)

where F̃ (p) should be 1 for momenta of region R(A) and vanish for momenta p belonging to momentum
regions other than R(A). This modification suppresses the incorrect off-diagonal interactions while not
altering the desired diagonal interactions.

We consider two possible choices for F̃

W̃ (p) = w̃(p0)× w̃(p1) with w̃(pµ) = (1+cos(pµ))/2 (2.26)

and

H̃(p) = h̃(p0)× h̃(p1) with h̃(pµ) =Θ(π/2−|pµ|), (2.27)

with the 1-dimensional functions h̃, w̃ depicted in Figure 2.4a. The function H̃ fulfills the requirements
exactly, whereas W̃ is 1 only at A and vanishes only at the edges of the first Brillouin zone. In the contin-
uum limit, however, solely momenta close to the poles contribute, where W̃ is in fair agreement with the
requirements. We also have to consider the properties of H and W —the FTs of H̃ and W̃ — since we want
to formulate the discretization in position space. The non-zero entries of H clearly span the whole lattice
as is illustrated by its 1-dimensional component h (compare Figure 2.4b). On the contrary W uses only
a couple of close lattice sites and is therefore numerically advantageous. Thus, we use W̃ to modify the
interaction and obtain as expression of the interaction in position space

Nf∑
b=1

∑
n,m∈Λ

ψ̄b(n) δn,m

(∑
r

W (n|r )p|Λ| σ(r )

)
ψb(m) , (2.28)
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Figure 2.4: The functions h̃, w̃ ,h, w on a lattice with infinite volume (a) h̃ and w̃ . (b) h and w .
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Figure 2.5: Visualization of W (n|m)/
p|Λ| as a grid of neighboring lattice sites.

where W (n|r ) is the FT of W̃ (p −q) given by (compare Figure 2.5)

W (n|r )p|Λ| = 1

16

[
4δn,r +2

(
δn+e0,r +δn−e0,r +δn+e1,r +δn−e1,r

)
+δn+e0+e1,r +δn−e0−e1,r +δn−e0+e1,r +δn+e0−e1,r

]
. (2.29)

The action with this discretization of the interaction term is then

SND
σ [ψ̄,ψ,σ] = Nf

2λ

∑
n∈Λ

σ(n)2 + ∑
n,m∈Λ

Nf/4∑
b=1

ψ̄b(m)

[
/Dnaive (m|n)+δm,n

(∑
r

W (n|r ) σ(r )

)]
ψb(n) , (2.30)

which we call the naive distributed (ND) discretization.

One can also arrive at this action by starting in the FF formulation of the action and altering the interaction
term so that there is no sub-flavor mixing. This is again achieved by introducing W̃ into the interaction
term in momentum space as

Nf/4∑
b,c=1

∑
p , q , p ′, q ′∈Λ̃

δq−p ,p ′−q ′
[ ˜̄ψb

(
p

)
W̃ (p −q)ψ̃b

(
q

)] [ ˜̄ψc

(
p ′) W̃ (p ′−q ′)ψ̃c

(
q ′)] . (2.31)
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We transform this back to position space

∑
n∈Λ

(
Nf/4∑
b=1

∑
r∈Λ

ψ̄b(r )
W (r |n)p|Λ| ψb(r )

) (
Nf/4∑
c=1

∑
s∈Λ

ψ̄c (s)
W (s|n)p|Λ| ψc (s)

)
(2.32)

and apply the HS transformation as

exp

{
g 2

2

∑
n∈Λ

(
Nf/4∑
b=1

∑
r∈Λ

ψ̄b(r ) W (r |n)ψb(r )

)2}

=
∫

Dσ exp

{
− ∑

n∈Λ

[
1

2g 2 σ(n)2 +
Nf/4∑
b=1

ψ̄b(n)

(∑
r

W (n|r ) σ(r )

)
ψb(n)

]}
. (2.33)

The complete resulting action is again SND
σ [ψ̄,ψ,σ] as in Eq. (2.30).

2.3.1 Other Fermion Discretizations

We briefly review other fermion discretizations that have been used successfully in FF theories. This is by
no means a thorough introduction to their concepts, but serves to put the discussion of naive fermions
into perspective. Among those other fermion discretizations are:

• The WILSON discretization of fermions that introduces an artificial mass term to the Dirac operator
in order to lift the poles at the edges of the first Brillouin zone and thus gets rid of the doublers (see,
e.g. Ref. [33] for an introduction). This, however, breaks chiral symmetry explicitly. It has been shown
for the GN model that the chiral symmetry can be recovered in the continuum limit by fine-tuning
the bare mass and two additional introduced bare couplings [34].

• The SLAC discretization [35, 36], whose basic idea is that the FT of the derivative is just the dis-
cretized momenta (compare with Ref. [18] for additional information), i.e.

Fx [∂SLAC
µ ψ(x)](k) = ikµFx [ψ(x)](k) with k ∈ Γ̃.

This causes a jump at the edge of the Brillouin zone and therefore violates the locality property in
the Nilsen-Ninomiya theorem, which poses severe problems when using it in gauge theories [37].
These problems do not arise in theories without local gauge invariance (see Ref. [38]) including four
fermion theories, where the SLAC discretization has been used successfully (see, e.g. Refs. [27, 39, 40,
16]).

• The STAGGERED discretization (also called Kogut-Susskind fermions) achieves a minimal doubling
of fermions by distributing its degrees of freedom in a particular way on sub-lattices (for an intro-
duction we refer to textbooks such as Refs. [33, 41]); thereby, it breaks parts of the chiral symmetry.
In order to achieve the right continuum limit when discretizing the GN model, one has to distribute
the bosonic field σ in a similar manner as for the ND discretization. A distribution of σ on a dual
lattice as plaquettes was proposed and used in finite Nf simulations in Ref. [27] and also applied
successfully in a large-Nf investigation of inhomogeneous condensates in Ref. [42].
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Figure 2.6: The sequence of available temperatures for three different lattice spacings a1 = 2 a2 = 4 a3 up to
a minimum temperature a1T = 1/64. The colorbar indicates the density of available tempera-
tures by 1/∆T in units of a1, where ∆T = Tn+1 −Tn and Tn+1,Tn are consecutive temperatures
in the sequence of temperatures.

2.3.2 Setting the Temperature

As introduced in Section 1.1, the temperature is the inverse size of the temporal direction T = 1/L0. On
the lattice the size of the temporal direction is L0 = N0 a and consequently a discrete quantity for finite a.
Figure 2.6 shows a comparison of the available temperatures and their density for three different lattice
spacings. This illustrates, that we are restricted to a non-constant temperature resolution and overall the
resolution becomes finer as we approach the continuum. One can also conclude that it is not possible
to truly reach T = 0, which is the region of our interest, and approaching it becomes increasingly costly
for smaller lattice spacings. These circumstances also have a noticeable impact on our ability to resolve
effects at high temperatures in the Lattice simulations as for example a phase transition.

2.3.3 Scale Setting and the Lattice Spacing a

Within this short subsection, we denote previously introduced dimensionless quantities (combinations of
quantity X with the lattice spacing a) as X̂ . The formulation of the simulated equations is in dimensionless
quantities and therefore the observables are as well. As these have no physical meaning we re-express (just
as in the discussion in Section 1.3.3) all dimensionful quantities in units of

σ0 = 〈|σ|〉
∣∣∣
(µ,T )=(0,0)

, (2.34)

i.e. the expectation value of the chiral condensate at chemical potential and temperature zero. As example
the chemical potential will then be given as µ/σ0. Note that this ratio also corresponds to the ratio of the
previously defined dimensionless quantities

µ̂

σ̂0
= µa

σ0 a
= µ

σ0
. (2.35)

This way of scale setting also allows us to recover the lattice spacing a as

σ̂0 = aσ0 ⇒ a = σ̂0/σ0, (2.36)

where σ̂0 would be the value measured in a simulation and σ0 is what would be physically measured.

As we saw in Section 2.3.2, a lattice setup with T = 0 is not possible. Therefore, σ0 is approximated on a
lattice by 〈|σ|〉|(µ,T )=(0,T ) with a sufficiently small temperature T ≈ 0. We can control the lattice spacing by
varying λ, where smaller values of λ correspond to smaller lattice spacings.
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2.3.4 The Large-Nf Limit as a Testbed of the Discretization

As a first check for the quality of the employed discretization, we show that it reproduces the large-Nf

results discussed in Section 1.3.3.

Homogeneous Phase Diagram

We start with the homogeneous phase diagram for which it is quite easy to minimize the lattice regularized
effective action (some notes on doing so can be found in Appendix C.1). Note that for the homogeneous
phase diagram it does not matter which discretization (NN or ND) of the interaction term is used, since
the distribution function drops out of the eigenvalues for homogeneous σ (see Appendix A.2).

Figure 2.7a depicts the continuum calculated phase boundary and the phase boundaries for different lat-
tice spacing in the (µ,T )-plane. The lattice results converge to the continuum boundary for decreasing
lattice spacing, thereby validating the naive discretization in the homogeneous case.

Inhomogeneous Phase Diagram

A calculation of the inhomogeneous phase diagram is also possible, albeit more difficult and numerically
more expensive. In this case, the action is not independent of the discretization of the interaction term
(NN or ND). Figure 2.7b shows results from Ref. [46] obtained with a hybrid discretization, where the 0-
direction is discretized with a finite mode approach (see Refs. [43, 44, 45, 46]) as the condensate is expected
to be translationally invariant in the 0-direction and the 1-direction is discretized with the 1-dimensional
analogon of the NN (inserting h̃ for the spatial momenta in the interaction term) and ND discretization [46].
A stability analysis of the SP is used to produce the results, which only allows for the phase boundaries of
the SP to be found.

Both discretizations approach the continuum result for decreasing lattice spacing. Though they approach
the inhomogeneous phase boundary from “opposite sides” and with different rates. The small inhomoge-
neous phase for ND can be explained by the nature of the discretization. High frequencies of the auxiliary
field σ are suppressed in this discretization and therefore inhomogeneous condensates with high frequen-
cies are suppressed. With decreasing lattice spacing this suppression only affects physical momenta of
increasing magnitude, which causes the phase boundary to converge to the continuum boundary. It is not
yet fully understood why the NN discretization apparently has the same continuum limit in the large-Nf

limit. The jagged phase boundary lines are a result of the finite box in which these lattice calculations take
place. Since we impose periodic boundary conditions, an integer number of wavelengths have to fit into
the box and thus not all wavelengths of the inhomogeneous condensate can be realized. This results in the
visible jumps of the phase boundary (compare to Ref. [42]).

2.4 Lattice Monte Carlo Simulations
This section briefly introduces the concepts needed to compute the lattice discretized path integral and
observables. For an introduction to Monte Carlo simulations in the context of lattice field theory we refer
to the textbooks [18, 33, 41], for the simulation of dynamical fermions to the lecture notes in Ref. [47] and
for the general analysis of Monte Carlo Data to Ref. [48]. The discussion in this section is a condensation of
the information in these references. For details on the implementation of these methods in the code that
was used in the simulations, we refer to the doctoral theses of B. Wellegehausen [49] and D. Schmidt [50].
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Figure 2.7: Phase boundaries of the 1+ 1-dimensional GN model in the large-Nf limit using various dis-
cretization schemes. (a) The homogeneous phase diagram in the continuum (grey line) and
on the lattice with L1 = 25.6/σ0 for different lattice spacings a. (b) The inhomogeneous phase
diagram in the continuum (grey lines) and on the lattice with L1 ≈ 22.2/σ0 for different lattice
spacings and discretizations NN and ND [46].

2.4.1 Pseudofermions

In the path integral ,we can integrate out the fermion bilinear in the action Eq. (2.30) as

Z =
∫

DσDψ̄Dψ exp

[
− ∑

n∈Λ

(
Nf

2λ
σ2(n)+

Nf∑
b=1

ψ̄b(n)QND
GN (n)ψb(n)

)]

=
∫

Dσ det(Q)Nf exp

[
− ∑

n∈Λ

Nf

2λ
σ2(n)

]
. (2.37)

This determinant is possibly difficult and/or expensive to evaluate. To circumvent this, we apply a method
called pseudofermions [51, 52]. The idea is that we raise the determinant back up in the exponent by a
reverse integration of a bosonic field. To do so we rewrite det(Q)Nf 9 as

det(Q)Nf = det
(
Q†Q

)Nf/2 = det(M)Nf/2 = det
(
M−q)−NPF , (2.38)

where we used in the first step that detQ is real, introduced the new Matrix M =Q†Q and variables q, NPF

as Nf/2 = qNPF. We rewrite detQ in Eq. (2.37) according to Eq. (2.38) and apply a reversed Gaussian inte-
gration of a complex bosonic field ϕ

Z =
∫

Dσ det
(
M−q)−NPF exp

(
− ∑

n∈Λ

Nf

2λ
σ2(x)

)
=

∫
DσDϕ† Dϕe−SPF[σ,ϕ†,ϕ], (2.39)

9We omit the superscript “ND” in the following section and consider QGN ≡ QND
GN . The section is, of course, valid for the NN

discretization as well.
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where the positive definiteness of M is a necessary condition for the Gaussian integral to converge, which
is ensured by its definition as Q†Q, and

SPF[σ,ϕ†,ϕ] =− ∑
n∈Λ

(
Nf

2λ
σ2(n)+

NPF∑
b=1

ϕ†
b(n) M−q ϕb(n)

)
. (2.40)

The bosonic fields ϕ†,ϕ are the aforementioned pseudofermions, which have the same degrees of freedom
as the fermion fields ψ̄ and ψ. The number of pseudofermions is arbitrary and the appropriate choice
depends on numerical aspects [49]. We choose NPF = Nf and thus q = 1/2 for all simulations.

2.4.2 Monte Carlo Method

A Monte Carlo method is, in general, a computational algorithm that relies on repeated random samples to
obtain numerical results. For example, integrals can be computed using Monte Carlo techniques. We draw
N samples of the domain of integration A and evaluate the integrand f at these samples. For an infinite
number of samples N , the true value of the integral I is the average of the function samples

I =
∫

A
dx f (x) = lim

N→∞
1

N

N∑
n=1

f (xn), (2.41)

where xn are uniformly distributed random samples in A. If we take N to be finite, the error is ∝ 1/
p

N .
This method is also applicable to high dimensional integrals like the path integral Z in Eq. (2.39), where
the domain of integration contains all possible field configurations σ.10 However, its integrand, the weight
exp(−S), is often sharply peaked and for large parts of the domain of integration ≈ 0. Due to the high
dimensionality, we might not sample the peaks and therefore severely underestimate the integral.

The method of importance sampling samples the field configuration not uniformly random but according
to the probability distribution density

Peq(σ) = e−S[σ]/Z . (2.42)

Therefore it primarily samples the configurations with a large contribution, which enables us to use a small
set of configurations to approximate the integral. Note that exp(−S) has to be real and positive in order
for Eq. (2.42) to be interpreted as a probability weight. This is often spoiled by the determinant of the
fermion operator that is complex in some theories, e.g. in QCD at finite baryon chemical potential. This is
the infamous sign-problem. Fortunately, the 1+1-dimensional GN model has a real fermion determinant
for finite chemical potential as shown in Appendix A.1. Moreover, we restrict the simulations to an even
number of flavors to ensure that the eigenvalues always occur in pairs and thus guarantee the determinant
to be positive.

10Pseudofermions are not simulated, but are dealt with differently. Therefore our discussion of the generation of field configura-
tions is restricted to σ.
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2 The Gross-Neveu Model on the Lattice

Markov Chains

In practice, these field configurations are generated in a Markov chain. This is a stochastic process, that
builds a sequence of field configurations, where the next configuration is generated from the previous one

. . .
T (σn−1|σn )−−−−−−−→σn

T (σn |σn+1)−−−−−−−→σn+1
T (σn+1|σn+2)−−−−−−−−−→σn+2

T (σn+2|σn+3)−−−−−−−−−→ . . . ,

where σn denotes n-th state of the Markov chain and T (σn |σn+1) is the transition probability to go from
configuration σn to σn+1. These transition probabilities have to meet three properties:

1. T (σ|σ′) ≥ 0 ∀σ,σ′,

2.
∑

σ′ T (σ|σ′) = 1 ∀σ,

3.
∑

σ′ T (σ|σ′)Peq(σ) = Peq(σ′) ∀σ′.

The first property ensures that we can reach any possible configuration in a single step of the chain, which
is called strong ergodicity. The second property assures that all probabilities are normalized and the third
property characterizes an important property of the Markov chain: The probability distribution Peq is a
fix point of the Markov chain, which means that any amount of subsequent steps in the chain continue to
follow this desired equilibrium distribution. This is important, as this ensures that we can use the configu-
rations in the estimation of the integral and, later, observables.

The beginning of the chain is an arbitrary initial configuration σI with the initial distribution PI (σ) =
δ(σ−σI ). Each subsequent step of the Markov process changes this distribution and it can be shown (see
Ref. [41]) that the deviation from the equilibrium distribution Peq decreases with each step. After a num-

ber of steps N therm, which we call thermalization time, the chain approximately follows the equilibrium
distribution.

The generation of the configurations is done by an algorithm, which, in principle, has to fulfill properties
1–3 of the Markov chain transition probabilities. In practice, the first property is often exchanged for the
weaker relaxed ergodicity

T m(σ|σ′) ≥ 0 with m ¿ N , (2.43)

where T m(σ|σ′) is the transition probability to go from state σ to σ′ with m intermediate steps. This de-
mands that the chain is able to eventually reach any state and the number of intermediate steps m should
be small compared to the total number of generated configurations.

The third property is usually met by requiring the algorithm to fulfill the stronger condition of detailed
balance

Peq(σ)T (σ|σ′) = Peq(σ′)T (σ′|σ) ∀σ,σ′, (2.44)

which yields the third property by summing it over σ′ and using property 2.

Rational Hybrid Monte Carlo Algorithm

A particularly efficient algorithm for the simulation of dynamical fermions (as they are in our simulations)
is the rational Hybrid Monte Carlo (rHMC) algorithm and we start by introducing the regular HMC algo-
rithm. Contrary to local algorithms like the Metropolis-Hastings algorithm, the HMC updates the whole
lattice simultaneously. This is significantly more effective for fermionic systems as updates require an
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2 The Gross-Neveu Model on the Lattice

evaluation of M−q , which is expensive to calculate. It’s basic principle is the reformulation of a QFT path
integral to a partition function known from classical mechanics, where the former time dimension is a
space dimension as well. The fields are then evolved via Hamiltonian equations of motion in a fictitious
Molecular dynamics time.

We introduce a conjugate momenta field π to the bosonic field σ in the path integral Z

Z =
∫

DσDϕ† DϕeSPF[σ,ϕ†,ϕ] =
∫

DσDπDϕ† Dϕe−H [σ,π,ϕ†,ϕ], (2.45)

where the conjugate momentum does not change the expectation value of observables as its contribution
is canceled by the normalization 1/Z and

H [σ,π,ϕ†,ϕ] := 1

2

∑
n∈Λ

π(n)2 +SPF[σ,ϕ†,ϕ]. (2.46)

The corresponding Hamiltonian equations of motion (EOM) are

π̇(n) =− ∂H

∂σ(n)
=− ∂S

∂σ(n)
, σ̇(n) = ∂H

∂π(n)
=π(n), (2.47)

where the time derivatives are taken with respect to the Molecular dynamics time.

One update, i.e. a step in the Markov chain with the HMC algorithm, can then be characterized in four
steps:

Step 1: Generation of the pseudofermion fields ϕ†,ϕ.

As mentioned earlier, the pseudofermions are a numerical “trick” to evaluate the determinant of Q.
We do not evolve them like σ and π, but rather draw them at the beginning of the update according
to their distribution

PPF(ϕ) ∝ exp

(
− ∑

n∈Λ

NPF∑
b=1

ϕ†
b(n) M−q ϕb(n)

)
= exp

( ∑
n∈Λ

NPF∑
b=1

ξ†
b(n)ξb(n)

)
, (2.48)

with ξ = M−q/2ϕ and therefore ϕ = M q/2ξ. Consequently, we can generate the pseudofermion
fields by drawing complex, Gaussian distributed random fields ξ and a subsequent multiplication
with M q/2.

Step 2: Generation of the conjugate momentum field π.

At each step, we draw new conjugate momenta, which puts the system on different energy shells
along which we evolve the fields. The momenta are drawn according to a Gaussian distribution

Pπ(π) ∝ exp

(
−1

2

∑
n∈Λ

π†(n)π(n)

)
. (2.49)

This is not an arbitrary choice as it is required that

Pπ(π)e−S ∝ e−H

to fulfill the condition of detailed balance (see Ref. [18] for a short proof). This in turn requires Pπ

to be a Gaussian distribution for the Hamiltonian that we chose to construct in Eq. (2.46).
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2 The Gross-Neveu Model on the Lattice

Step 3: Integration of the fields σ,π via the EOM in Eq. (2.47) for a period of time τ, which yields the new
field configurations σ′,π′.

An exact integration of these EOM preserves the energy (and therefore also H), as it is a constant of
motion, and generates new field configurations σ′,π′. In the actual simulations, the integration is
a numeric procedure, which has an error. The integration is done with a symplectic algorithm such
as the leap-frog algorithm (see Ref. [47] for a discussion of other more sophisticated algorithms),
which ensures the time reversibility and the area preservation in phase space that are properties
needed for the detailed balance condition. The integrator evolves the EOM in N time steps δτ with
N ·δτ= τ. Note that in each time step of the integration, one has to calculate S and therefore also
M−q , which can become very costly with increasing lattice size.

Step 4: Accepting the new configuration σ′ as the next configuration in the Markov chain with the probabil-
ity

A(σ,π→σ′,π′) = min
(
1,exp

(
H [σ,π,ϕ†,ϕ]− [σ′,π′,ϕ†,ϕ]

))
. (2.50)

If the configuration is rejected, the last configuration σ is considered to be the new configuration in
the chain.

The acceptance step corrects for the numerical error in the integration and ensures that the de-
tailed balance condition is met.

The difference between rHMC and HMC is that instead of calculating M−q exactly, it is only rationally
approximated in the rHMC algorithm by

M−s ≈α0

NR∑
r=1

αr (M +βr )−1, (2.51)

where s ∈ Q, NR is the total number of terms, that determine the accuracy of the approximation and the
coefficients α0,αr ,βr , which are constant throughout the simulation, can be computed with the Remez al-
gorithm [53] . It is sufficient to use a less accurate approximation in the integration step, since the resulting
additional error in the integration is also compensated in the acceptance step where M−q is approximated
to machine precision. Note that a less accurate approximation decreases the acceptance rate of config-
urations and therefore might increase computational cost. The parameters of the algorithm such as the
accuracy of the rational approximation or step size of the EOM integrator δτ are usually chosen so that
acceptance rates are ≈ 80%. The rational approximation is also used to calculate M q/2, which is needed
for the generation of the pseudofermion fields.

Estimation of Observables

We can estimate the path integral expectation value 〈O〉 of an observable O[σ] as

〈O〉 ≈O = 1

N

N∑
n=1

O[σn], (2.52)

where O is the estimator for the expectation value 〈O〉 and σn are the generated field configurations after
the thermalization time. The estimator itself is again a random variable that would have different values
if we perform the same simulation again. For N uncorrelated generated configurations σn used in the
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2 The Gross-Neveu Model on the Lattice

calculation of O, we can estimate this statistical error of the estimation as

εO =
√

σ2
O

N
, (2.53)

with the variance estimator

σ2
O
= 1

N −1

N∑
n=1

(
O[σn]−O

)2
. (2.54)

The configurations are obviously not uncorrelated since the algorithm generates new configurations based
on the previous configuration. This effect is called autocorrelation. The time it takes the system to “forget”
the information of a past configuration is the autocorrelation time τO and depends on the considered
observable. This quantity can be measured and enters the error of our estimate as

εO =
√

σ2
O
·τO

N
=

√√√√ σ2
O

Neff
, (2.55)

where Neff is the number of effective configurations, i.e. uncorrelated configurations.

We can also remove the correlation of the data by binning, where we divide the N measurements O[σn]
into M bins of size 2τO and calculate their mean values. The mean values of the bins are then used as a
new set of uncorrelated data of size M .

Jackknife Error

The previous calculation of errors does not hold for observables O that are functions of the expectation
value of another observable X ,

O = f (〈X 〉) . (2.56)

We could either try and propagate the error, which is not always possible, or use a technique like the Jack-
knife method. This method is used to estimate the error of derived quantities like O for uncorrelated data
sets of size N . Therefore, we have to ensure that the data set is uncorrelated, e.g. by binning. The idea of
the Jackknife method is that we calculate O on subsets of our data from which a single configuration of the
original data has been removed and observe how much the value of O varies. We start by calculating the
Jackknife estimators

O J
n = f

(
X J

n

)
with X J

n = 1

N −1

N∑
m=1
m 6=n

Xm , (2.57)

where Xm is the measured quantity X on the m-th configuration. We can now estimate the variance of the
Jackknife estimators

σ2

O
J = N −1

N

N∑
n=1

(
O J

n −O
J
)2

with O
J = 1

N

N∑
n=1

O J
n , (2.58)

which we can use to estimate the error of O by εO = σ
O

J . The error of all observables measured in the
simulations as presented in Chapter 3 is given by the Jackknife method. Note that for f = 〈X 〉 the Jackknife
estimated error reduces to Eq. (2.53) and therefore gives the correct error for directly measured quantities.
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3 The Phases of the Gross-Neveu Model in 1+1
Dimensions at Finite Nf

This chapter discusses the observables required to detect the different phases of the GN model in 1+ 1
dimensions and subsequently presents the obtained results. Note that we continue to use the term “phase”
even though we will not be able to differentiate a found region in the (µ,T )-plane between a phase in a
thermodynamic sense and a regime, that merely shows a distinct behavior.

3.1 Benchmark Model
From the investigation in Ref. [15], we do know that an inhomogeneous auxiliary field σ is already visible
on a single configuration. Figure 3.1 shows a configuration from our own simulations that features a visible
oscillation. By comparison of our configurations and the large-Nf phases, it seems appropriate to assume
that deep within a phase the configurations are of similar shape as the large-Nf phases plus an additional
distortion by noise. We devise a simple model ς that crudely mimics the generated configurations in our
Monte Carlo simulation and is used to benchmark the ability of observables to detect the different phases
of the GN. It also helps us to understand how different properties of the field σ influence the observables.
The full model is then

ς(x) = A cos

(
2π

L1

(
x1 +δx

)(
q +δq

))+Bσ0 +εη(x), (3.1)

where the parameters A, q,B ,ϵ are fixed to values in order to mimic one of the three phases and the pa-
rameters η(x),δq,δx are randomly distributed variables that approximate the fluctuating character of a
simulation. The parameters and their purposes are explained in Table 3.1. The parameter δx allows for
a spatial shift of the oscillation. The occurrence and distribution of such a shift is connected to whether
translation symmetry is spontaneously broken and therefore, we do not assume a distribution of the shift
for now. We also expect that the frequency can slightly fluctuate between configurations. The bench-
mark model is obviously not able (and not intended) to mimic any sort of phase transition. Moreover, the
Gaussian uncorrelated noise of η is most certainly too simplified as the noise is likely to be correlated in
spacetime.

The behavior in the individual phases is obtained by setting either A or B or both to zero:

ςSP(x) = εη(x) in the symmetric phase, (3.2a)

ςHBP(x) = Bσ0 +εη(x) in the homogeneously broken phase, (3.2b)

ςIP(x) = A cos

(
2π

L1

(
x1 +δx

)(
q +δq

))+εη(x) in the inhomogeneous phase. (3.2c)

As already explained, we want to use this benchmark model to predict the behavior and usefulness of
observables that depend on σ. To do so, we carry out analytical calculations of these observables using ς
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Figure 3.1: Typical configurations of the bosonic field σ generated in the simulations with parameters Nf =
8, a ≈ 0.1253/σ0, Ns = 128 at (µ/σ0,T /σ0) ≈ (0.59,0.1).

Var. Domain Fix/random Distribution Purpose

ε R fix — Controls the strength of the noise.

B R fix —
Sets the value of a homogeneous
condensate.

A R fix — Sets the amplitude of the oscilla-
tion.

q Z fix —
Sets the wave number of the oscilla-
tion.

η(x) R random pη(η(x)) = 1p
2π

e−η(x)2/2 Approximates the noise in the gen-
erated configurations.

δq Z random
pq (δq) =C −1 e−δq2/2∆q2

C =∑∞
δq=−∞ e−δq2/2∆q2 a

Allows the wave number to fluctu-
ate between configurations in inte-
ger steps.

δx R random px (δx)
Allows the oscillation to be shifted.
No assumption about the distribu-
tion of the shift is made.

a As the model ς should only mimic the condensate deep inside a phase, we impose the condition q À∆.

Table 3.1: Variables of the model ς.
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3 The Phases of the Gross-Neveu Model in 1+1 Dimensions at Finite Nf

as input. Expectation values of observables O[σ] are then computed as

〈Oς〉 =
∫

Dηpη(η)
∫ ∞

−∞
dδx px (δx)

∞∑
δq=−∞

pq (δq) O [ς] , (3.3)

where the subscript ς indicates that the observable is calculated with the model ς as input, Dη=∏
x ∈ Γ dη(x)

and pη(η) = ∏
x ∈ Γ pη(η(x)). The detailed calculations of all observables within the model ς can be found

in Appendix D.

3.2 Observables

3.2.1 The Chiral Condensate

The averaged chiral condensate

〈σ̄〉 =
〈

1

|Λ|
∑

n∈Λ
σ(n)

〉
(3.4)

is an interesting observable since a non-zero expectation value would signal the (homogeneous) breaking
of chiral symmetry. On the lattice at finite Nf this observable needs to be modified. The reason for this
can be illustrated when we restrict σ to being homogeneous and consider the effective potential from Fig-
ure 1.1. In the HBP, the action has two degenerate minima symmetric around the origin (for T = 0 at ±σ0).
In an infinite volume, the energy barrier between these minima is infinitely large and thus enables spon-
taneous symmetry breaking, where 〈σ̄〉 assumes a non-zero value. A lattice, however, is a finite volume
and thus it only takes a finite amount of energy to pass the energy barrier between the two minima. In
a Monte Carlo simulation, an ergodic algorithm will eventually sample configurations belonging to both
minima. This can be seen in Figure 3.2, where the algorithm spends most of the time in the vicinity of the
two minima of the action and occasionally quickly tunnels through the energy barrier that separates them.
This would then lead to 〈σ̄〉 ≈ 0. Therefore, it is advisable to use an observable independent of the sign of
σ̄ like 〈|σ̄|〉 or 〈σ̄2〉. We use the latter, since it greatly simplifies the results of analytic calculations for the
model ς and define

Σ2 =
〈
σ̄2

〉
σ2

0

. (3.5)

This observable yields for the different phases in the model ς (the corresponding calculation is found in
Appendix D.2)

Σ2
ςSP

= ε2

|Λ|σ2
0

in the SP, (3.6a)

Σ2
ςHBP

= B 2 + ε2

|Λ|σ2
0

in the HBP, (3.6b)

Σ2
ςIP

= ε2

|Λ|σ2
0

in the IP. (3.6c)

This shows that within the benchmark model the quantity Σ2 is not able to distinguish the SP and the
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Figure 3.2: The averaged field σ̄ plotted for every configuration of a Monte Carlo timeline in the HBP fea-
turing the tunneling of the auxiliary field σ between the two minima of the action.

IP from one another. The information about an oscillation vanishes in the spacetime average, leaving
only the part that originates from the noise. One might also consider 〈σ(x)〉 without the average. This
would depend on a potential spatial drift in configurations (δx in ς). If such a drift would be present,
the oscillations might also vanish in the ensemble average. Such a spatial drift of an oscillation would in
principle not be forbidden and might occur in a Monte Carlo simulation in an analogous manner to the
case in Figure 3.2 regardless of the actual spontaneous breaking of translation symmetry being present or
not.

As an alternative, one could consider the FT of the field, where a spatial shift would only influence its phase.
Therefore we define the next observable

Σ̃2(k) =
〈∑

x0∈Γ0
|σ̃(x0,k)|2

〉
N0σ

2
0

, (3.7)

where Γ0 is the set of temporal lattice points given by Γµ = {0, a,2a, . . . , (Nµ−1)a} and σ̃(x0, p) is the spatial
FT of σ(x) as

σ̃(x0,k) =Fx1
[σ(x)](x0,k). (3.8)

This independence of the shift is also present in the model ς, where Σ̃2 is able to distinguish all three phases
as (the corresponding calculation is found in Appendix D.3)

Σ̃2
ςSP

= ε2

σ2
0

in the SP, (3.9a)

Σ̃2
ςHBP

= B 2N1 +
ε2

σ2
0

in the HBP, (3.9b)

Σ̃2
ςIP

= A2N1

4σ2
0

(
pq

(
k − 2π

L1
q

)
+

(
k + 2π

L1
q

))
+ ε2

σ2
0

in the IP. (3.9c)
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The Susceptibility of Σ2

The susceptibility χΣ2 of Σ2 is an indicator for phase transitions that Σ2 is sensitive to. It diverges at such a
phase boundary in an infinite volume (peaks in a finite volume) and is defined as

χΣ2 =V

(〈
(Σ4

〉
−

〈
Σ2

〉2
)

. (3.10)

This observable is not suited to be tested by the benchmark model since it is only interesting in the vicinity
of a phase boundary, where the model ς is (as already established) not valid. Since Σ2 does not distinguish
between the SP and the IP, we expect that it will be blind to a phase transition between the two. Neverthe-
less, it could be useful to map the phase boundary of the HBP.

3.2.2 Spatial Correlator

As an alternative to the chiral condensate we consider a spatial correlator, which might be able to detect
inhomogeneities. We first define the quantity

c(x, y) = 1

N0

∑
y0∈Γ0

σ(y0, y)σ(y0, y +x), (3.11)

where y is a spatial reference point. When calculating the ensemble average of this observable using ςIP as
input (see Appendix D.4.1 for the detailed calculations with the full model ς) one finds that〈

cςIP
(x, y)

〉
=

∫ ∞

−∞
dδy py (δy)

〈
cςIP

(x, y)
〉
η,δq

=
∫ ∞

−∞
dδy py (δy)

[
cos

(
2π

(
2y +2δy +x

)
q/L1

)
ϑ

(
(2y +2δy +x)/L1, i/2π∆q2

)
+cos

(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)]
A2

2ϑ
(
0, i/2π∆q2

) +ε2δx,0, (3.12)

where 〈·〉η,δq indicates that only the ensemble averages of η,δq are to be taken and we introduced the Jacobi
theta function of the third kind

ϑ (z, s) =
∞∑

τ=−∞
eiπτ2s+i2πτz = 1+2

∞∑
τ=1

eiπτ2s cos(2πτz). (3.13)

This expression still depends on the distribution of the shift, since we refrained from doing any assumption
about the shift so far. In an exploratory manner we assume different distributions in order to see how this
influences 〈cςIP

(x, y)〉. We consider the following cases:

I In a scenario where spontaneous breaking of translational symmetry is realized, we would assume that
the oscillation is locked in position and therefore no shift occurs. A delta peak distribution mimics this
case: pI

y (δy) = δ(δy).

II In the case that there is no spontaneous symmetry breaking or it is just invisible to the Monte Carlo
algorithm, we would assume all shifts to be allowed. This corresponds to a uniformly distributed shift
over the lattice: pII

y (δy) =Θ(δy)Θ(L1 −δy)/L1.
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Figure 3.3:
〈

cςIP
(x, y)

〉I
for A = 1,L1/a = 128, q = 4,ε= 0. (a) ∆q = 0.7. (b) ∆q = 0.0.

By inserting the distributions in Eq. (3.12) we obtain in case I

〈
cςIP

(x, y)
〉I = A2

2ϑ
(
0, i/2π∆q2

) [
cos

(
2π

(
2y +x

)
q/L1

)
ϑ

(
(2y +x)/L1, i/2π∆q2

)

+cos
(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)]
+ε2δx,0 (3.14)

and in case II〈
cςIP

(x)
〉II = A2

2ϑ
(
0, i/2π∆q2

) [
exp

(
− q2

2∆q2

)
+cos

(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)]
+ε2δx,0

≈ A2

2ϑ
(
0, i/2π∆q2

) cos
(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)
+ε2δx,0, (3.15)

where we used q À∆q in the last step and the corresponding calculations are found in Appendix D.4.2.

Figure 3.3 shows 〈cςIP
(x, y)〉I for a fictitious lattice of N1 = 128 for a wide range of reference points y with

frequency fluctuation width ∆q = 0.7 (Figure 3.3a) and ∆q = 0.0 (Figure 3.3b). Even though 〈cςIP
(x, y)〉I

depends strongly on the reference point y , for most y the curves follow a general oscillating shape. How-
ever, the curves for some y are systematic outliers, e.g. for ∆q = 0 the curve for y = L/4q is constant zero.
This failure to detect an inhomogeneity would be an undesirable effect as we could miss an oscillation or
severely underestimate its amplitude.

〈cςIP
(x, y)〉II on the other hand does not depend on y anymore as the uniform drift restores translational

invariance in this observable, which is favorable, but is achieved in an uncontrolled way.

Although
〈

c(x, y)
〉

appears to be unsuited for an actual investigation of the IP, it might come in handy
when we want to gain an insight into the distribution of a spatial shift in our simulations as its behavior is
apparently sensitive to the shift distribution. In an effort to construct a more “robust” observable that is
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.

independent of the shift, we consider the full spacetime average over y of c

c̄(x) := 1

|Λ|
∑

y ∈Γ
σ(y)σ(y0, y1 +x). (3.16)

The calculation of 〈c̄(x)〉η,δq using ςIP as input yields

〈
c̄ςIP

(x)
〉
η,δq

= A2

2ϑ
(
0, i/2π∆q2

) cos
(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)
+ε2δx,0 ≡

〈
c̄ςIP

(x)
〉

, (3.17)

where the resulting expression is not dependent on the spatial shift δy anymore and thus is equal to the
full expectation value 〈c̄(x)〉. We define

C (x) := 〈c̄(x)〉 =
〈

1

|Λ|
∑

y ∈Γ
σ(y)σ(y0, y1 +x)

〉
, (3.18)

which we simply call the spatial correlator and is calculated within the model ς to be (the corresponding
calculation is found in Appendix D.4.3)

CςSP
(x) = ε2δx,0 in the SP, (3.19a)

CςHBP
(x) = B 2σ2

0 +ε2δx,0 in the HBP, (3.19b)

CςIP
(x) = A2

2ϑ
(
0, i/2π∆q2

) cos
(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)
+ε2δx,0 in the IP. (3.19c)

Note that C (x) is equal to 〈c(x)〉II, because the uniform distribution leads to the same mathematical op-
erations as the spacetime average. The spatial correlator can distinguish all three phases and features an
oscillation in the inhomogeneous phase with the same wave length as the original oscillation.

To analyze the oscillation within the correlator, we employ the FT of C

C̃ (k) =Fx [C (x)](k), (3.20)
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which takes the following form in the benchmark model:

C̃ςSP
(k) = ε2√

N1

in the SP, (3.21a)

C̃ςHBP
(k) = B 2√N1 +

ε2√
N1

in the HBP, (3.21b)

C̃ςIP
(k) = A2√N1

4

(
pq

(
k − 2π

L1
q

)
+

(
k + 2π

L1
q

))
+ ε2√

N1

in the IP. (3.21c)

Figure 3.4 shows CςIP
and C̃ςIP

for various ∆q . The amplitude of the oscillation in CςIP
is modulated by the

Jacobi theta function, which results in a stronger fall-off for larger ∆q . The emergence of the jacobi theta
function in the fall-off is solely caused by our choice of the frequency fluctuation distribution and other
choices might produces other fall-offs. Moreover, the correlator is symmetric around L/2. The frequency
spectrum is symmetric around k = 0 and features peaks at k =±q (q being the frequency of the oscillation
in ςIP) and the neighboring frequencies follow the Gaussian distribution of pq (k ±q).

C̃ (k) is proportional to Σ̃2 (only differing by a multiplicative factor) as the two quantities are related via the
convolution theorem. We show the equality explicitly:

C̃ (k) = 1√
N1

∑
x∈Γ1

1

|Λ|
∑

y ∈Γ
σ(y)σ(y0, y1 +x)eikx = 1

|Λ|√N1

∑
y ∈Γ

σ(y)
∑

x∈Γ1

σ(y0, y1 +x)eikx

= 1

|Λ|3/2

∑
y ∈Γ

σ(y)
∑

x∈Γ1

σ(y0, x1)eik(x−y1) = 1√
N1N0

∑
y0 ∈Γ0

σ̃(y0,k) σ̃(y0,k)∗ = σ2
0√

N1

Σ̃2, (3.22)

where we used the periodic boundary conditions for the bosonic field σ to shift the sum. This relationship
enables us to gain insights into the present frequencies in σ by analyzing C̃ (k).

3.2.3 Minimum of the Spatial Correlator

The spatial correlator can distinguish the three phases within the model ς by its shape. It would, however,
be favorable to encode the information about the phase in a scalar quantity. From Eq. (3.19), we can deduct
that the minimum of the correlator in the three phases is

Cmin := min
x

C (x) =


> 0, inside the homogenously broken phase

≈ 0, inside the symmetric phase

< 0, inside the inhomogenous phase

. (3.23)

This quantity should then be able to distinguish the phases and enables us to plot a phase diagram with it.

3.3 Simulation Parameters
In the following section we discuss the more numerical aspects and parameters of the performed simu-
lations. Note that for the simulations and depicted results only the ND discretization was used unless
explicitly stated otherwise.
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Figure 3.5: Simulation results needed for the determination of σ0. (a) Scan over λ for Nf = 8,16,24, N0 =
64, N1 = 64. (b) Scan over 1/N0 for Nf = 8, N1 = 32,64, λ= 1.8132 to determine σ0.

3.3.1 Determination of σ0

In order to set the scale and the relative lattice spacing, we need to determine aσ0. To do so, we first
perform a scan over λ at N0 = 64, N1 = 64 and the corresponding Nf, and measure a 〈|σ̄|〉. Figure 3.5a
shows this scan for various Nf.

We choose a coupling λ that approximately corresponds to the wanted aσ0. Subsequently, we perform a
scan over N0 for different N1 for the selected λ, where a 〈|σ̄|〉 quickly approaches a constant value a 〈|σ̄|〉 ≈
aσ0. This is depicted in Figure 3.5b for λ= 1.8132.

3.3.2 Thermalization and Starting Configuration

The number of steps it takes the system to thermalize depends on the parameters of the algorithm (fore-
most τ), the system size but also on the starting configuration. We use two different starting configurations
for the auxiliary field σ:

1. Hot start: The auxiliary field σ is set to values drawn from a Gaussian distribution. This sort of
configuration is similar to the configurations found in the SP and therefore, the system thermalizes
quickly if this is the preferred phase.

2. Cold start: The auxiliary field σ is set to a constant non-zero value. This is very close to the configu-
rations of the HBP and facilitates thermalization in such a phase.

Depending on the starting configuration and physical parameters the algorithm can be trapped in the
“wrong” phase in a metastable minimum. As an example Figure 3.6 shows the Monte Carlo timelines of
the action of two simulations for very low temperature at a chemical potential where the IP with several
oscillations is preferred. One simulation is performed with a hot start, the other with a cold start where
all other simulation parameters are exactly the same. The cold start needs over 1000 configurations to
leave the homogeneous configurations and produce an oscillation, whereas the hot start needs about 350
configurations to be thermalized.1 These thermalization times might be longer than the number of to-
tal configurations generated and thus one needs to be cautious. As a good practice one should perform
simulations with both starts and only trust them when they agree. This procedure greatly increases the nu-
merical effort and therefore we only follow it in problematic regions exemplary to gain more insight into
magnitude of the effect or when we are interested in the exact position of a phase transition.

1Note that the exact thermalization time is difficult to determine for the hot start. There is no scalar quantity that is able to
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Figure 3.6: The Monte Carlo timelines of the action from simulations that have all parameters in common
except for the starting configuration.

3.3.3 Simulated Ensembles

In order to obtain the results presented in the following, a large number of field configuration ensembles
had been generated for a wide range of Nf, N1, N0, µ, a with 500–4000 configurations per ensemble. Ta-
ble 3.2 is a compilation of these generated ensembles.

3.4 Results on the Gross-Neveu Model in 1+1 Dimensions at Nf = 8

This section is structured according to the available observables and discuss them one by one. All results
are obtained with Nf = 8 and the ND discretization unless stated otherwise.

3.4.1 Results Obtained with Σ2

Phase Transition at µ= 0

We investigate the phase transition at µ = 0 for varied temperature as a first test of volume and lattice
spacing dependence. Figure 3.7 shows simulation results of Σ2 for a ≈ 0.4113/σ0 and various L1. The
critical temperature Tc of the phase transition is indicated by the peak of the susceptibility in Figure 3.7b.
The flat peaks of the blue and orange curves are likely caused by the fact that Tc is between the available
temperatures. Overall the critical temperature does not depend strongly on the volume in the regime of
the simulated volumes. We conclude that a physical size of L1 ≥ 13.16σ0 seems to be sufficiently large for
a qualitative investigation.

An infinite volume is required when one performs the continuum limit, where L1 is kept constant and the
limit a → 0 is taken. This limit is shown in Figure 3.8 where the phase transition is shown for various a
and L1 = 13.16/σ0. The shape of the chiral condensate Σ2 and the critical temperature is quite similar for
the two smaller lattice spacings. The difference of the largest lattice spacing shows how much the naive
fermions are plagued by discretization effects.

Due to the limited temperature resolution (as discussed in Section 2.3.2) a reliable determination of Tc in
the continuum is not possible without considerably smaller lattice spacings or the application of multiple-
histogram methods. This would, however, go far beyond the scope of this thesis as its goal is not the exact
determination of Tc .

differentiate between the IP and the SP on a single configuration. Therefore the given number was determined in this case by
reviewing the spatial correlators on the single configurations.
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N1 = L1/a N0 = 1/Ta µ/σ0 λ aσ0

Nf = 8

16 2,4, . . . ,16 0.0, . . . ,1.0 1.8132 0.4113(3)

32 2,4, . . . ,32 0.0, . . . ,1.0
1.8132 0.4113(3)
2.0619 0.5036(9)
3.0710 0.8206(6)

64
2,4, . . . ,44,48,

52, . . . ,64
0.0, . . . ,1.4 1.8132 0.4113(3)
0.0, . . . ,1.1 1.4172 0.2518(5)

128

12,14, . . . ,52,
56, . . . ,70,76,80,100 0,0.59

1.0960 0.1253(3)
80,100 0.5, . . . ,0.9

Nf = 16

64
2,4, . . . ,28,32, . . . ,48 0.0

1.3687 0.2518(5)
48 0.0, . . . ,1.0

Nf = 24

64
2,4, . . . ,28,32, . . . ,48 0.0

1.3567 0.2518(5)
48 0.0, . . . ,1.0

Table 3.2: Ensembles of field configurations.

Σ2 in the (µ, T )-Plane

Of more interest is the region of µ> 0, which we will investigate thoroughly with Cmin as it is able to differ-
entiate all phases. Nevertheless we consider also Σ2 in the (µ,T )-plane for completeness. All data in the
(µ,T )-plane is shown as heatmaps where the color corresponds to the measured value of the correspond-
ing observable mapped by the colorbar. The data is linearly interpolated in these heatmaps as it drastically
facilitates the interpretation of the data and the position of the actual data is indicated by grey dots. The
corresponding plots with the uninterpolated data are to be found in Appendix E.

Figure 3.9 depicts Σ2 for L ≈ 16.12/σ0 and a ≈ 0.2518/σ0 with the phase boundary of the HBP from the
large-Nf results in white. The SP corresponds to the black region, the HBP to the yellow region. The HBP
is of similar shape as in the large-Nf case, albeit smaller in size with the difference in the temperature

direction being larger. The blue dots corresponds to max
µ

χΣ2

∣∣∣
T

, i.e. the susceptibility χΣ2 maximized over

the chemical potential µ for fixed temperature T 2 and the determined maxima align with the perceived
phase transition. The data around the phase transition for the lowest simulated temperatures shows an
unexpected behavior, which is likely caused by irreconcilable thermalization effects. Therefore, in this
case, the data points in the vicinity of the phase transition at temperatures below T /σ0 ≈ 0.1 are, in general,
unreliable.

2The upper temperature limit for this procedure was set to Tc at µ = 0—determined by a peak in a scan of the susceptibility at
µ= 0.
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Figure 3.7: Temperature scan at µ= 0 for various L1 and a ≈ 0.4113/σ0. (a) Σ2. (b) χ2
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Figure 3.8: Temperature scan at µ= 0 for various a and L1 ≈ 16/σ0. (a) Σ2. (b) χ2
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3.4.2 The Spatial Correlator

The spatial correlator is able to clearly distinguish the different phases within the benchmark model and
thus appears also able to achieve this in the simulations. Figure 3.10 shows C (left column) and C̃ (right
column), where each row corresponds to different (µ,T ). The x-axis in the C plots extends up to L1/2 as
the correlator is symmetric and likewise the plot of C̃ depicts only data for positive k.

The first row with (µ/σ0,T /σ0) ≈ (0,0.665) (Figures 3.10a and 3.10b) corresponds to the SP and the second
row (Figures 3.10c and 3.10d) with (µ/σ0,T /σ0) ≈ (0,0.080) to the HBP. The spatial correlator in the SP and
HBP does not show behavior that is qualitatively different from the one shown by Σ2. It is in fair agreement
with the benchmark model only differing in the fall-off of the x = 0 peak. The noise η in the model ς is not
spatially correlated and thus produces only a δ peak at x = 0. This is of course unlikely to be realistic and
thus causes a difference to the simulations.

The third and fourth row (Figures 3.10e to 3.10h) with (µ/σ0,T /σ0) ≈ (0.7,0.08),(µ/σ0,T /σ0) ≈ (0.9,0.1) cor-
respond to the IP with combined fits of the benchmark correlator CςIP

and its FT C̃ςIP
to the data of the

smallest lattice spacing in a limited fit range as grey curves. The spatial correlator obtained from the sim-
ulations shows a clear oscillation, which is in fair agreement to the behavior of CςIP

—given its simplicity.
Recalling the connection of C̃ (k) and |σ̃(y0,k)| from Eq. (3.22), we can conclude that there is also a pro-
nounced oscillation with a dominating frequency present in σ itself. Furthermore, it also displays an in-
crease in frequency and decrease in amplitude of the oscillation for increasing µ similar to the large-Nf

results.

For larger lattice spacing the oscillations of C in the IP have a considerably smaller amplitude or vanish
altogether. The reason why this is happening becomes clear when we recall that the ND discretization
suppresses the large momenta of σ in order to decouple the sub-flavors from one another. This, however,
decouples the large momenta of σ altogether. For large lattice spacings, the Brillouin zone can be small
enough for the relevant frequency of the oscillation to be affected by the suppression. This is prominent
in Figure 3.10f, where the true peak of the largest lattice spacing is suppressed in such a magnitude that
the peak is located at a neighboring frequency and in a similar manner in Figure 3.10h that features a
cusp, which is the remnant of a completely suppressed peak. The suppression procedure also causes the
decoupled large momenta of C̃ to be constant. The onset of this effect moves to smaller k for larger lattice
spacings. This happens for the green curve at k ≈ 3 and for the orange curve at k ≈ 6 in Figures 3.10f
and 3.10h.

Probing of the Spatial Drift with
〈

c(x , y)
〉

The benchmark model calculations indicated that
〈

c(x, y)
〉

shows different behavior depending on the dis-
tribution of a spatial shift. The absence of a spatial drift (case I) would result in a strong dependence of〈

c(x, y)
〉

on y , where
〈

c(x, y ′)
〉 ≈ 0 for certain y ′. A uniform distribution of a spatial shift in the configura-

tions (case II) would result in an independence of
〈

c(x, y)
〉

from y and the same behavior as C . Figure 3.11
shows a scan over all possible y of

〈
c(x, y))

〉
for (µ/σ0,T /σ0) ≈ (0.9,0.08). The curves all follow the same

shape with no curves apparently being systematic outliers with, e.g. an amplitude of approximately zero.
In conjunction with the observed behavior of 〈cςIP

(x, y)〉I and 〈cςIP
(x, y)〉II this indicates that there is in-

deed a somewhat uniform spatial drift and thus also translation symmetry in the simulations. This is the
expected behavior of the ergodic rHMC algorithm and was also observed in exemplary inspections of the
other lattice ensembles.
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Figure 3.10: Simulation results of the spatial correlator C (left column) and its FT C̃ (right column) for vari-
ous (µ,T ),T, a and L1 = 16/σ0.
(a),(b) (µ/σ0,T /σ0) ≈ (0,0.665) corresponding to the SP with a ≈ 0.1253/σ0.
(c),(d) (µ/σ0,T /σ0) ≈ (0,0.080) corresponding to the HBP with a ≈ 0.1253/σ0.
(e),(f ) (µ/σ0,T /σ0) ≈ (0.7,0.08) and (g),(h) (µ/σ0,T /σ0) ≈ (0.9,0.08) corresponding to the IP.
The grey lines are combined fits of CςIP

and C̃ςIP
to the simulation data of the smallest lattice

spacing in a limited fitting window.
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at (µ/σ0,T /σ0) ≈ (0.9,0.08) for a ≈ 0.1253/σ0, L1 = 16.04/σ0.

3.4.3 The Phase Diagram Obtained with Cmin

Now that it is established that the spatial correlator C indeed indicates inhomogeneous behavior of the
auxiliary field σ, we can use its spatial minimum Cmin as a scalar indicator as to whether there is an IP
for a given (µ,T ). From Figure 3.10a we expect Cmin in the SP to have mostly small negative values due to
noise—contrary to the expectation from the benchmark model.

Figures 3.12a to 3.12c depict Cmin in the (µ,T )-plane for decreasing a (and similar L1) with the large-Nf

phase boundaries in white as comparison. According to our expectation of Cmin, the yellow region indi-
cates an HBP, the black region an SP and the blue region an IP. The structure of the phase diagram shows
strong similarities to the large-Nf results, albeit the IP and the HBP are smaller. This is likely due to the
quantum fluctuations that are present at finite Nf and increase disorder—favoring an SP.

As we have seen in Figure 3.10, the lattice spacing has a significant impact on the IP, which is also promi-
nent in the Cmin plot. For the largest lattice spacing the IP barely exists and increases in size for decreas-
ing lattice spacing just as in the large-Nf limit (compare to Figure 2.7b). This is further illustrated by Fig-
ures 3.12d to 3.12f where the differences of the Cmin data for the various lattice spacings are shown.3 These
plots also uncover that the HBP/IP phase boundary moves considerably for low temperatures for varied
lattice spacing. The differences for high temperatures are likely a combination of the limited temperature
resolution and the interpolation procedure as they are of limited magnitude.

We know from the large-Nf results that the chiral condensate right after the HBP to IP transition contains a
single oscillation with an “infinite” wavelength. This leads to the expectation that the location of this phase
boundary is governed by finite size effects, since there is a maximum wavelength that is able to fit inside
the box. Therefore, the realization of the first oscillation might be delayed to a larger µ corresponding to
the first wavelength that fits inside the box. In order to verify this expectation, we compare Cmin of differ-
ent volumes L1 at fixed lattice spacing a in Figures 3.12g to 3.12i and the difference plots in Figures 3.12j
to 3.12l. It appears as though the influence of finite size on the HBP/IP transition at low temperatures is
negligible as the difference region becomes quite small. The reason for the large difference regions at high
temperature can be illustrated by Figure 3.7a, where the value of Σ2 in the SP is larger for smaller volumes,
where the noise is less suppressed in the average. This effect is present in a similar manner in Cmin, albeit
not shown explicitly.

Figure 3.12b also shows a “backbending” of the HBP/IP phase boundary for low temperatures, which is

3Note that whenever one of the compared ensembles lacked data, their difference is set to zero (black) for visualization purposes.
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not a thermalization issue (as both hot and cold start exhibit this behavior). This effect is also present in
large-Nf lattice calculations and is a combined effect of finite volume and finite lattice spacing, which was
found to vanish non-monotonically in the respective limits (compare with Ref. [42]).

As the HBP/IP phase transition is of particular interest and apparently sensitive to the lattice spacing, we
consider Cmin at fixed temperature T for varied chemical potential µ for different a in Figure 3.13a. The
location of the phase transition seems to converge nicely. The continuous decrease of Cmin during the
phase transition resembles a second order phase transition. This can be further illustrated by Figure 3.13b
which shows the action S and σ̄ per configuration of the circled data point in Figure 3.13a. Although 〈σ̄〉 is
not able to differentiate the three phases, σ̄ allows us to categorize configurations to certain phases (with
the categorization being backed up by exemplary review of spatial correlators on the configurations). By
this categorization we are able to observe the algorithm freely tunneling between the phases. The action
stays seemingly constant for the brief tunneling and the different phases.

Figure 3.14 shows scans of Cmin for fixed µ = 0 and µ/σ0 ≈ 0.59. The scan at µ = 0 is of similar shape as
the Σ2 scans depicted in Figures 3.7 and 3.8. This is not surprising as the two observables are expected to
behave similarly for homogeneous phases as indicated by the behavior of Cς and Σ2

ς . The slice at finite
chemical potential reveals how the amplitude of the oscillation increases for decreasing temperature, but
does not show any plateau behavior as for the µ= 0 case. This, however, is likely attributed to the fact that
the temperatures are not sufficiently low as the results in Ref. [16] feature a plateau for even lower temper-
atures. Moreover, the transition seems to be smooth and resembles a second order transition, higher order
transition or even a crossover.

3.4.4 Comparison of the Naive Naive and Naive Distributed Discretization

Now that we thoroughly discussed the phase diagram obtained by simulations with the ND discretization,
we want to illustrate the difference to the phase diagram obtained with the NN discretization. Figures 3.15a
and 3.15c show the phase diagrams obtained with the NN and ND discretization for a ≈ 0.41/σ0, L1 ≈
26.24 and Figure 3.15b shows a difference plot of the two. The phase diagrams seem to be quite similar
in structure as both posses all three phases. Compared to the ND discretization, the NN discretization
features a considerably smaller HBP both in T and µ direction. The IP on the other hand is larger, which is
explained by the fact that high frequencies of oscillations σ are not suppressed and are only limited by the
resolution of the lattice spacing.

In contrast to the continuum limit in the large-Nf case depicted in Figure 2.7b, the agreement of the two
discretizations does not increase for decreasing lattice spacing in our finite Nf simulations. The correctness
of the ND discretization is backed up by the agreement to the SLAC discretization as presented in Ref. [16].

3.5 Dependence on Nf

As shown before, the phase diagram at Nf = 8 is qualitatively similar to the large-Nf phase diagram and we
want to check whether the phase diagram becomes increasingly similar to the large-Nf case for increasing
Nf. We check this with simulations on a ≈ 0.25/σ0, L1 ≈ 16/σ0 lattices for Nf = 8,16,24. A temperature scan
at µ = 0 (see Figure 3.16a) nicely shows how the shape of Σ2 at the phase transition approaches the large-
Nf result for increasing Nf. Moreover, the value of Σ2 in the SP decreases with increasing Nf as quantum
fluctuations are increasingly suppressed. Figure 3.16b features a scan over µ at T /σ0 ≈ 0.08. The transition
moves slightly towards the critical chemical potential from the large-Nf results at this temperature. The

43



3 The Phases of the Gross-Neveu Model in 1+1 Dimensions at Finite Nf

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

0.0

0.2

0.4

0.6

T
/σ

0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

0.0

0.2

0.4

0.6

T
/σ

0

(d)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(e)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(f )

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

0.0

0.2

0.4

0.6

T
/σ

0

(g)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(h)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(i)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

0.0

0.2

0.4

0.6

T
/σ

0

(j)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(k)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(l)

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

-1.0 -0.2 0.0 0.2 1.0

(Cmin, (a) −Cmin, (b))//σ2
0

-1.0 -0.2 0.0 0.2 1.0

(Cmin, (b) −Cmin, (c))/σ2
0

-1.0 -0.2 0.0 0.2 1.0

(Cmin, (a) −Cmin, (c))/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

-1.0 -0.2 0.0 0.2 1.0

(Cmin, (g) −Cmin, (h))/σ2
0

-1.0 -0.2 0.0 0.2 1.0

(Cmin, (h) −Cmin, (i))/σ2
0

-1.0 -0.2 0.0 0.2 1.0

(Cmin, (g) −Cmin, (i))/σ2
0

Figure 3.12: Simulation results for various lattice ensemble in the (µ,T )-plane with Cmin in (a)-(c), (g)-(i)
and the difference of these data sets in (d)-(f), (j)-(l). The data is linearly interpolated with the
(µ,T ) values of the actual simulated data given by the grey dots. The white lines represent the
large-Nf phase boundaries [3, 4]. (a) a ≈ 0.5036/σ0, L1 = 16.12/σ0. (b) a ≈ 0.4113/σ0, L1 =
26.32/σ0. (c) a ≈ 0.2518/σ0, L1 = 16.12/σ0. (g) a ≈ 0.4413/σ0, L1 = 6.58/σ0. (h) a ≈ 0.4413/σ0,
L1 = 13.16/σ0. (i) a ≈ 0.4413/σ0, L1 = 26.32/σ0.
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Figure 3.14: Cmin at µ= 0, µ≈ 0.59/σ0 for varied temperature T and for a ≈ 0.1258σ0, L1 = 16.04/σ0.
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ence of the data from (a) and (c). (c) NN discretization.

45



3 The Phases of the Gross-Neveu Model in 1+1 Dimensions at Finite Nf

0.0 0.2 0.4 0.6

T /σ0

0.00

0.25

0.50

0.75

1.00

Σ
2

(a)

Nf = 8

Nf = 16

Nf = 24

Nf =∞

0 0.25 0.5 µc,Nf=∞0.75

µ/σ0

0.0

0.5

1.0

C
m

in
/σ

2 0

(b)

Nf = 8

Nf = 16

Figure 3.16: Simulation results for different flavors Nf = 8,16,24 on a ≈ 0.25/σ0, L1 ≈ 16/σ0 lattices. (a) Σ2

at µ= 0 for varied temperature with the large-Nf result in grey. (b) Cmin at T /σ0 ≈ 0.08 for var-
ied chemical potential. The critical chemical potential in the large-Nf limit at this temperature
is shown as the vertical dashed line.

simulations were done both for a hot and cold start, thus ruling out that the discrepancy is caused by ther-
malization effects. It would be interesting to compare to an even higher Nf. However, the thermalization
times in this (µ,T )-region are quite long and increase with Nf. Therefore, the simulations of higher Nf

proved to be too costly.
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4 Conclusions and Outlook

The main focus of this work was the investigation of the possible existence and characterization of the
IP in the 1+ 1-dimensional GN model at finite Nf. The main tool for this investigation was the spatial
correlator C , which shows a distinctly different behavior for three regions in the (µ,T )-plane. In a region
at low temperatures and high chemical potential it showed a strong oscillation and its FT features a single
dominating frequency. By its relationship to the auxiliary field σ, one can conclude that the field itself
has to contain a dominant oscillation. However, by the nature of the employed numerical techniques it is
not possible to draw any conclusion about the presence of spontaneous symmetry breaking. This question
remains unanswered even after a thorough investigation of the correlator’s long-range behavior in Ref. [16],
where it could, however, be argued by the distinctly different behavior of the correlator in the symmetric
and inhomogeneous region that a phase transition has to happen.

All three found phases persist for decreasing lattice spacing and the obtained phase diagram at finite Nf

has a similar structure as the large-Nf phase diagram. The phase boundaries seem to converge to the large-
Nf results for increasing Nf, which is a reassuring observation since this means that the often employed
large-Nf limit is, in principle, able to retain information on the finite Nf case.

This renders finite Nf investigation of other models featuring IPs in the large-Nf limit a promising endeavor.
Only very recently the rich phase diagram of the isoNJL model in 1+1 dimensions for multiple chemical
potentials was studied in the large-Nf case [9, 10]. Motivated by the findings in this work, this appears to
be a promising candidate for further finite Nf investigations in 1+1 dimensions. A variation of the GN, that
comes to mind, would be the extension to 2+1 dimensions, where an early work found an inhomogeneous
chiral condensate, that is energetically degenerate to the translation invariant solution [54] and a preferred
IP was found in an exploratory lattice study [45]. The latter result, however, proved to be a lattice artifact
that vanishes in the continuum limit [55, 46] and thus discourages a finite Nf study. The 3+1-dimensional
NJL model features an IP, but it is not renormalizable and therefore depends on a cutoff scale (compare,
e.g. Ref. [5]), which raises questions about the predictive capabilities for QCD. The Quark-meson model
on the other hand is renormalizable and shares some characteristics of the NJL (including an IP). As it
is mostly studied in the mean field approach or other approximations, a full lattice simulation could be
interesting.

The phenomenon of color superconductivity (particle-particle pairing ψψ instead of antiparticle-particle
pairing ψ̄ψ in the chiral condensate) occurs in some models, e.g. the NJL model and also in the ground
state of QCD at asymptotically high densities. In the NJL model one finds, with a specific inhomogeneous
ansatz for the chiral condensate and the assumption of constant diquark condensate ψψ, that a color su-
perconducting phase overlaps with the IP resulting in a region where both phases compete [56, 57]. Even
more interestingly, an inhomogeneous color superconducting phase could occur in isospin asymmetric
systems, e.g. neutron stars (compare to Ref. [5] and references therein). As these color superconducting
phases seem to occur in the same (µ,T )-regions (and might even be inhomogeneous themselves) as in-
homogeneous chiral condensates, an investigation of the latter should eventually include color supercon-
ductivity.
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A Properties of the Dirac Operator

A.1 Properties of detQGN and Proof that detQGN ∈R

We consider the GN Dirac operator Q 1 from Eq. (1.12)

Q(x , y)[σ,µ] = δ(x − y)
(

/∂y +γ0µ+σ(x)
)

, (A.1)

where we explicitly write the dependence on σ,µ in order to keep track of their signs. The momentum
representation of Q is then

Q(q , p)[σ,µ] = 2πδ(q −p)(iγµpµ+γ0µ)+
∫

d2x e−ix(q−p)σ(x)︸ ︷︷ ︸
2πσ̃(q−p)

, (A.2)

with the eigenvalue equation ∫
d2p

2π
Q(q , p)[σ,µ]χ j (p) =λ j (q)χ j (q) , (A.3)

where j ∈ {1,2} and the determinant

detQ[σ,µ] =∏
q

2∏
j=1

λ j (q). (A.4)

By applying γch from left and inserting γchγch = 1 left of χ j (p) in Eq. (A.3) we obtain∫
d2p

[
δ(q −p)(iγchγµγch︸ ︷︷ ︸

=−γµ

pµ+γchγ0γch︸ ︷︷ ︸
=−γ0

µ)+ σ̃(q −p)
]
γchχ j (p) =λ j (q)γchχ j (q), (A.5)

which shows that the determinant is an function of σ, i.e.

detQ[σ,µ] = detQ[−σ,µ]. (A.6)

Taking the complex conjugate of Eq. (A.3) yields∫
d2p

[
δ(q −p)(−iγ∗µpµ+γ∗0µ)+ σ̃∗(q −p)

]
χ∗

j (p) =λ∗
j (q)χ∗

j (q), (A.7)

where a subsequent application of C ∗
+ from the left and insertion of

(
C ∗

+
)−1

C ∗
+ = 1 left of χ∗(p) on the left

1Note that we omit the subscript “GN” in this section to ease notation.
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A Properties of the Dirac Operator

hand side yields∫
d2p

[
δ(q −p)(−iC ∗

+γ
∗
µ

(
C ∗

+
)−1︸ ︷︷ ︸

=γ†
µ=γµ

pµ+C ∗
+γ

∗
0

(
C ∗

+
)−1︸ ︷︷ ︸

=γ†
0=γ0

µ)+ σ̃∗(q −p)
]
C ∗

+ χ∗
j (p) =λ∗

j (q)C ∗
+ χ∗

j (q). (A.8)

This new eigenvalue equation leads to

detQ[σ,µ] = detQ[−σ,−µ]
(A.6)= detQ[σ,−µ], (A.9)

showing that the determinant is also an even function of the chemical potential.

To show that detQ ∈R we apply the variable transformation p , q →−p ,−q to Eq. (A.8)∫
d2p

[
δ(p −q)(iγµpµ+γ0µ)+ σ̃∗(p −q)︸ ︷︷ ︸

σ̃(q−p)

]
C ∗

+ χ∗
j (−p ′) =λ∗

j (−q)C ∗
+ χ∗

j (−q), (A.10)

where we assumed that σ(x) ∈R and therefore σ̃∗(p −q) = σ̃(q −p). On the left hand side Q(q , p) is recov-
ered and therefore is again an eigenvalue equation expressed through the original eigenvalues. Now we
can conclude

detQ =∏
q

2∏
j=1

λ j (q)
(A.10)= ∏

q

2∏
j=1

λ∗
j (−q) =

(∏
q

2∏
j=1

λ j (−q)

)∗
=

(∏
q

2∏
j=1

λ j (q)

)∗
= (detQ)∗ , (A.11)

where we used that the momenta in the product are symmetric with respect to the origin.

A.2 Eigenvalues of the Gross-Neveu Model Dirac Operator for
Homogeneous σ

Consider a generalization of Eq. (1.12) as a matrix

Q(x , y) →Q A,B (n|m) = /D A (n|m)+δn,m

∑
r
σ(r )F B (n|r ) , (A.12)

where D A is a general derivative of type A, F B is a distribution function for σ of type B and the sum is
representative for either a discrete sum or integral. The momentum representation of Q A,B (n|m) is then

Q̃ A,B (
p|q)= D̃/D

A (
p|q)+ 1p|Λ|

∑
p ′

σ̃
(
p ′) F̃ B (

p −q |p ′) , (A.13)

where D̃/D
A

, F̃ B , σ̃ are the Fourier transforms of /D A , F B , σ respectively. We continue this calculation with
the assumption that D̃/D

A
, F̃ B are diagonal in momentum space and σ is constant. Its Fourier transform is

then σ̃(p) =p|Λ|δp ,0σ. The matrix Q̃ then assumes the simpler form

Q̃ A,B (
p|q)= δp ,q D̃/D

A (
q

)+∑
p ′

δp ′,0σδp−q ,p ′ F̃ B (
p −q

)
= δp ,q

(
D̃/D

A (
q

)+σ F̃ B (0)
)

. (A.14)
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A Properties of the Dirac Operator

We assume that F B is normalized such that F̃ B (0) = 1 and therefore omit it and the index B in the following.
Since the matrix is diagonal in momentum space, we only need to determine the eigenvalues for the Dirac
block matrix at p , q

λA
j (q)χ j (q) = Q̃ A,B (

p|q)
χ j (q) = δp ,q

(
D̃/D

A (
q

)+σ
)
χ j (q) = δp ,q

(
d A

j (q)+σ
)
χ j (q), (A.15)

where λA
j (q), d A

j (q) are the eigenvalues to eigenvector χ j (q) of Q̃ A,B (
p|q)

, D̃/D
A (

q
)
respectively. The eigen-

values d A
j (q) can be found by applying D̃/D

A (
q

)
twice to the eigenvector χ j (q), i.e.(

d A
j (q)

)2
χ j (q) = D̃/D

A (
q

)
D̃/D

A (
q

)
χ j (q) = D̃ A

µ

(
q

)
γµD̃ A

ν

(
q

)
γνχ j (q) = D̃ A

µ

(
q

)
D̃ A

µ

(
q

)
χ j (q) (A.16)

⇒ d A
± (q) =±

√
D̃ A

µ

(
q

)
D̃ A

µ

(
q

)
, (A.17)

where we used

γµaµγνaν =
1

2

(
γµaµγνaν+γνaνγµaµ

)
= δµ,νaµaν. (A.18)

It then follows that the general eigenvalues are

λA
±(q) =σ±

√
D̃ A

µ

(
q

)
D̃ A

µ

(
q

)
, λA(q) =σ2 − D̃ A

µ

(
q

)
D̃ A

µ

(
q

)
. (A.19)

By setting, e.g. D A
µ = ∂µ+µδµ,0 we recover the known continuum eigenvalues

λ(q) =σ2 + (q0 − iµ)2 +q2
1 . (A.20)
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B Renormalization of the Effective Potential for
Homogeneous σ in the Continuum

We start the discussion with the bosonized effective action Seff from Eq. (1.35) and assume σ to be constant.
We then define the effective potential

Ueff(σ) = 1

NfβL1
Seff =

1

2λ
σ2 − 1

βL1
lndetQ. (B.1)

We express detQ via the eigenvalues of Eq. (A.20)

detQ =∏
p1

∏
ωn

β2
[

(ωn − iµ)2 +ε2
]
=∏

p1

d(β,µ,ε), (B.2)

where ε2 = p2
1 +σ2, the factor β2 is a remnant of the momentum delta function in Eq. (A.14), and we

renamed p0 according to convention to ωn , which are called the fermionic matsubara frequencies and are
given by

ωn = 2π

β

(
n + 1

2

)
with n ∈Z. (B.3)

We proceed to reshape d

d(β,µ,ε) =∏
ωn

β2
{

(ωn − iµ)2 +ε2
}
=∏

ωn

β
{

(ωn − iµ)2 +ε2
}1/2 ∏

−ωn

β
{

(ωn + iµ)2 +ε2
}1/2

=∏
ωn

β2
{[

ε2 +ω2
n −µ2

]2 +4µ2ω2
n

}1/2

=∏
ωn

β2
{[

(ε+µ)× (ε−µ)+ω2
n

]2 +2ω2
n(ε2 +µ2)−2ω2

n(ε2 −µ2)

}1/2

=∏
ωn

β2
{[

(ε−µ)2 +ω2
n

]
×

[
(ε+µ)2 +ω2

n

]}1/2
, (B.4)

which we reinsert into the effective potential in Eq. (B.1) and thereby obtain

Ueff(σ) = 1

2λ
σ2 − 1

β

∫
dp1

2π

1

2

∞∑
n=−∞

{
ln

[
β2(ε−µ)2 +π2(2n +1)2

]
+ ln

[
β2(ε+µ)2 +π2(2n +1)2

]}
, (B.5)

where the sum over p1 is an integral since we consider infinite spatial volume and we inserted Eq. (B.3).
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We proceed to rewrite the logarithm and perform the Mastubara sum:

1

2

∞∑
n=−∞

ln
[
β2(ε±µ)2 +π2(2n +1)2

]
=

∫ β(ε±µ)

0
dx x

∞∑
n=−∞

1

x2 +π2(2n +1)2 + 1

2
ln

[
π2(2n +1)2

]
=

∫ β(ε±µ)

0
dx x

[ ∞∑
n=0

1

x2 +π2(2n +1)2 +
∞∑

n=1

1

x2 +π2(2n −1)2

]
=

∫ β(ε±µ)

0
dx x

[ ∞∑
n=1

1

x2 +π2(2n −1)2 +
∞∑

n=1

1

x2 +π2(2n −1)2

]
=

∫ β(ε±µ)

0
dx x

2

π2

∞∑
n=1

1

(x/π)2 + (2n −1)2

=
∫ β(ε±µ)

0
dx x

2

4x
tanh

x

2
=

∫ β(ε±µ)

0
dx

1

2
tanh

x

2

=
∫ β(ε±µ)

0
dx

(
1

2
− 1

ex +1

)
= −β(ε±µ)

2
+ ln

(
1+eβ(ε±µ)

)
=β(ε±µ)

2
+ ln

(
1+e−β(ε±µ)

)
, (B.6)

where we

• used the integral identity ∫
x

x2 +a2 = 1

2
ln(x2 +a2), (B.7)

• neglected the red term as it is a thermodynamically irrelevant constant,

• used the series identity (found, e.g. in Ref. [58])

∞∑
n=1

1

x2 + (2n −1)2 = π

4x
tanh

πx

2
. (B.8)

The effective potential is then

Ueff(σ) = 1

2λ
σ2 − 1

β

∫
dp1

2π

{
βε+ ln

(
1+e−β(ε+µ)

)
+ ln

(
1+e−β(ε−µ)

)}
, (B.9)

where the green term is obviously UV-divergent. In order to renormalize the theory, we first calculate the
so-called gap equation by minimizing the effective potential

0
!= dUeff(σ)

dσ
= σ

λ
−

∫
dp1

2π

σ

ε

{
1− 1

1+eβ(ε+µ)
− 1

1+eβ(ε−µ)

}
. (B.10)

We regularize the theory by a spatial momentum cutoff Λ and require that the minimum of Ueff is at σ0 > 0
for T = 0 and µ= 0. The purple terms in Eq. (B.10) vanish for this µ,T and we obtain the simple expression

1

λ
= 2

∫ Λ

0

dp1

2π

1√
p2

1 +σ2
0

= 1

π
arsinh

(
Λ

σ0

)
−−−−−−→
Λ/σ0À1

1

λ
= 1

π
ln

(
2Λ

σ0

)
, (B.11)
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which gives us a relation between the coupling λ, the cutoff Λ and the finite σ0. We insert this into Eq. (B.9)

Ueff(σ) = σ2

2π
ln

(
2Λ

σ0

)
− 2

β

∫ Λ

0

dp1

2π

{
βε+ ln

(
1+e−β(ε+µ)

)
+ ln

(
1+e−β(ε−µ)

)}
. (B.12)

We calculate the green part first∫ Λ

0

dp1

π
ε= 1

2π

[
Λ2

√
(σ/Λ)2 +1+σ2 arsinh

(
Λ

|σ|
)]

−−−−−−→
|σ|/Λ¿1

1

2π

[
Λ2

(
1+ σ2

2Λ2

)
+σ2 ln

(
2Λ

|σ|
)]

, (B.13)

where we neglect the red term in the following as it is again a thermodynamically irrelevant constant.

We rewrite the purple term in Eq. (B.12) as

1

πβ

∫ Λ

0
dp1

{
ln

(
1+e−β(ε+µ)

)
+ ln

(
1+e−β(ε−µ)

)}
=

− 1

π

∫ Λ

0
dp1

p2
1

ε

[ −1

1+eβ(ε+µ)
+ −1

1+eβ(ε−µ)

]
+ p1

πβ

[
ln

(
1+e−β(ε+µ)

)
+ ln

(
1+e−β(ε−µ)

)]∣∣∣∣p1=Λ

p1=0
, (B.14)

where the green integral is finite for Λ→∞ and the red term vanishes at the evaluation points for Λ/σÀ 1.

Inserting Eqs. (B.13) and (B.14) into Eq. (B.12) results in the properly renormalized effective potential

Ueff(σ) = σ2

2π

[
ln

( |σ|
σ0

)
−2

]
− 1

π

∫ ∞

0
dp1

p2
1

ε

(
1

1+eβ(ε+µ)
+ 1

1+eβ(ε−µ)

)
. (B.15)

Although we minimize this effective potential numerically to calculate the whole phase diagram, we want
to derive the critical temperature Tc for µ= 0 analytically. To do so, we use the gap equation from Eq. (B.10)

ln

(
σ

σ0

)
=−2

∫ ∞

0
dp1

1

ε

1

1+eβcε
=+

∫ ∞

0
dp1

1

ε

[
tanh

(
εβc

2

)
−1

]
, (B.16)

where we set µ = 0,β = βc and used the condition Eq. (B.11). We are interested in the transition temper-
ature for which there is a non-trivial solution of the gap equation and thus assume σ to be small (as σ

vanishes smoothly), thereby approximating the right hand side as (we follow the prescription in Ref. [59]
for the approximation)∫ ∞

0
dp1

[
p−1

1 tanh

(
p1βc

2

)
− 1

ε

]
=

∫ ∞

0
dy y−1 tanh(y)−

∫ ∞

0
dp1

1

σ

√
(p1/σ)2 +1

=
[

ln

(
p1βc

2

)
tanh

(
p1βc

2

)]p1=∞

p1=0
−

∫ ∞

0
dy ln(y) sech2(y)︸ ︷︷ ︸
=ln(4eγ/π)

−
[

arsinh
( p1

σ

)]p1=∞

p1=0

=
[

ln

(
p1βc

2

)
tanh

(
p1βc

2

)
− ln

(
p1

σ
+

√
(p1/σ)2 +1

)
︸ ︷︷ ︸

p1=0= 0

]p1=∞

p1=0
+ ln

(
4eγ

π

)
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=
[

ln
(
p1

) (
tanh(

p1βc

2
)−1

)
︸ ︷︷ ︸

p1→∞−−−−→0

+ ln

(
βc

2

)
tanh

(
βc p1

2

)
︸ ︷︷ ︸

p1→∞−−−−→1

− ln

(
2

σ

)]p1=∞
+ ln

(
4eγ

π

)

= ln

(
βcσeγ

π

)
, (B.17)

where γ= 0.57721. . . is the Euler-Mascheroni constant. We insert this expression into Eq. (B.16) and obtain
the critical temperature

Tc =σ0
eγ

π
. (B.18)
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C Notes on the Naively Discretized Gross-Neveu
Model

C.1 Minimization of Ueff in the Naive Discretization for Homogeneous σ

In this section, we briefly cover the necessary numerical steps in order to calculate the homogeneous large-
Nf phase diagram in the naive discretization. The ease notation we express everything in dimensionless
lattice quantities e.g. aσ→ σ. Just as in the continuum, we have to minimize the effective potential with
respect to σ. This effective potential for homogeneous σ is given by

U ND
eff = 1

2λ
σ2 − 1

L0L1
lndetQND, (C.1)

where detQND can be calculated with the help of Eq. (A.19) to be

detQND = ∏
p0∈Λ̃

∏
p1∈Λ̃

(
σ2 + sin2 (

p0 − iµ
)+ sin2 (

p1

))
. (C.2)

In the homogeneous case, the shape of the effective potential is rather simple and the minimization is not
very complicated. Figures 1.1b and 1.1c show that we have to distinguish two cases. The first being that
Ueff has a single minimum either at σ= 0 or smoothly connected to σ= 0 without a potential barrier and
the other case being that there are two competing minima separated by a potential barrier. Algorithm 1
depicts the algorithm that we employ in the function minimize that minimizes the effective potential in the
interval [0,σu]. See Ref. [60] for a description of the golden section search that is used in the minimization.
Every following minimization of the effective potential is carried out in this way. If σ0 is known, the default
upper boundary given to minimize is σu = 1.1×σ0.

The calculation of the phase diagram can then be characterized in two steps:

1. Determine the right λ for the desired aσ0.

We choose the value of aσ0 for which we want to determine the phase diagram. Then we perform
a bisection (see, e.g. Ref. [60] for a description of the algorithm) and search the root of the function
f (λ′) = minimize(λ = λ′) −σ0, where the σu given to minimize is chosen reasonably large. The
determined λ′ then produces the desired σ0 and is then used in the next step.

2. Determination of the phase boundary.

We fix the temporal extent N0 and then perform kind of a bisection search in the interval µ ∈
[µl ,0,µb,0] to minimize g (µl ,µu) = |µu −µl | with the constraints minimize(µ=µl ) 6= 0, minimize(µ=
µu) = 0 and the precision |µu −µl | < ε. The midpoint µ = (µb +µs)/2 is then the critical chemical
potential for the respective temperature. Algorithm 2 depicts this procedure.
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C Notes on the Naively Discretized Gross-Neveu Model

Algorithm 1: Function minimize that is used to minimize the effective potential.

Require: a function ueff(σ) that calculates the effective potential for the physical parameters
given to minimize, a function minimizeInt(σ1,σ2) that minimizes the effective
potential with the golden section search in the interval [σ1,σ2] and returns the
minimzing σ for the physical parameters given to minimizes,

Input: upper bound for the minimization σu , physical parameters

for σ= 0 to σ=σu do
Calculate ueff(σ) and the numerical derivative

end
if Sign of derivative changes from + to - then

Maximum in the interval
σ′

1=minimizeInt(0,0.5×σu)
σ′

2=minimizeInt(0.5×σu,σu)
σ′

3=minimizeInt(0.8×σu,σu)
σ′

4=0
return σ′ with the smallest ueff(σ′)

else
No Maximum in the interval
σ′

1=minimize(0,σu)
σ′

2=0
return σ′ with the smallest ueff(σ′)

end

Algorithm 2: Determination of the critical chemical potential for fixed temperature.

Result: Critical chemical potential
Input: lower bound µl ,0 with σl ,0=minimize(µ=µl ,0) 6= 0,
upper bound µu,0 with σu,0=minimize(µ=µu,0) == 0, the precision ε

µu=µu,0

µl =µl ,0

while |µu −µl | > ε do
µ′ = (µl +µu)/2
σm=minimize(µ=µ′)
if σm > 0 then

µl =µ

else
µu =µ

end
end
return (µl +µu)/2
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C.2 Odd Lattice Extents in the Naively Discretized Gross-Neveu Model
We illustrate the effects of odd lattice extents on the effective potential of the naively discretized GN model
by considering σ = 0 and µ = 0 as the distortion of the potential is then most severe. The determinant of
the Dirac operator detQND from Eq. (C.2) is then

detQND =
N0−1∏
ñ0=0

N1−1∏
ñ1=0

(
sin2

(
(2ñ0 +1)

π

N0

)
︸ ︷︷ ︸

:=A0

+sin2
(
2ñ1

π

N1

)
︸ ︷︷ ︸

:=A1

)
, (C.3)

where we chose an asymmetric first Brillouin zone as we are not interested in the continuum limit and
this choice eases notation. The term A1 is zero for ñ′

1 = 0, N1/2. Only for an even N1 is the latter value an
integer and thus realized. We separate these special ñ′

1 from the product in Eq. (C.3) and thereby obtain

detQND =
(

N0−1∏
ñ0=0

A#
0

)
N0−1∏
ñ0=0

N1−1∏
ñ1=0

ñ1 6=ñ′
1

(
A0 + A1

)
with # =

{
1 if N1 is odd.
2 if N1 is even.

. (C.4)

The term A0 is zero for the special ñ′
0 = (N0 −1)/2, which is realized for odd N0. This results in detQND = 0

and thus introduces divergences into the effective potential, because U ND
eff ∝ lndetQND. For N0 even, there

are no zero modes as (N0 −1)/2 is not integer and therefore A0 6= 0 for all possible ñ0.

An odd N0 also deforms the effective potential U ND
eff for σ 6= 0. Figure C.1a shows this effect for homoge-

neous σ, where the effective potential for odd N1 is considerably deformed around σ = 0. An artificially
potential barrier of infinite height arises at σ = 0 and the minimum is also at an incorrect position. The
deformation compared to even N0 is expected to be weaker for large N0, which is confirmed by Figure C.1b,
where the deviation from even N0 is limited to small σ. Large volumes cause the boundary conditions to
lose importance and therefore for temperature T = 0 this effect should vanish completely. For high tem-
peratures that belong to the SP, odd N0 also cause a divergence at σ= 0 that prevents the minimum of Ueff

to be at σ= 0 and thus the restoration of chiral symmetry (compare Figure C.1c). The minimum is then at
even larger σ> σ0, which diverges for T →∞ as illustrated in Figure C.1d.1 This effect was also observed
in Ref. [2], where temporal periodic boundary conditions for the fermions were assumed on purpose.

1Note that the upper bound of the minimizing interval of σ defined in Appendix C.1 clearly has to be expanded for odd N0 as the
minimum can be σÀσ0.

57



C Notes on the Naively Discretized Gross-Neveu Model

0.0 0.5 1.0 1.5

σ/σ0

5.0

5.2

5.4

5.6

U
ef

f/
σ

2 0

(a)

N0 = 15,T /σ0 ≈ 0.333

N0 = 16,T /σ0 ≈ 0.312

0.0 0.5 1.0 1.5

σ/σ0

2

3

4

5

6

7

U
ef

f/
σ

2 0

(c)

N0 = 3,T /σ0 ≈ 1.667

N0 = 4,T /σ0 ≈ 1.250

N0 = 5,T /σ0 ≈ 1.000

N0 = 6,T /σ0 ≈ 0.833

0.0 0.5 1.0 1.5

σ/σ0

5.0

5.2

5.4

5.6

U
ef

f/
σ

2 0

(b)

N0 = 63,T /σ0 ≈ 0.079

N0 = 64,T /σ0 ≈ 0.078

0 1 2 3 4 5

σ0/T

0.0

0.5

1.0

1.5

2.0

2.5

σ
′ /σ

0

(d)

Even N0

Odd N0

Figure C.1: (a)-(c) Ueff for homogeneous σ in 1+ 1-dimensional GN in the ND discretization with µ = 0,
a = 0.2/σ0 and N1 = 64. The minima are indicated by a dot. (a) N0 = 15,16. (b) N0 = 63,64.
(c) N0 = 4,5,6. (d) Temperature scan of the minimum of the effective action σ′ = min

σ
U ND

eff for

a ≈ 0.055/σ0, N1 = 256 and even/odd temporal lattice extents N0.
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D Benchmark Model Calculations

D.1 Preceding Remarks and Notation
This section serves to introduce the needed tools for the benchmark model calculation and its contents
are based on Ref. [61].

Basic Notation Regarding Random Variables and Related Quantities

The expectation value of an observable O with respect to a continuous random variable X is calculated as

〈O〉X =
∫ ∞

−∞
dX pX (X ) O(X ) (D.1)

and for an integer random variable X as

〈O〉X =
∞∑

X=−∞
pX (X ) O, (D.2)

where we call pX the probability density function (PDF) of the random variable X and we assume in the
following that all PDFs are normalized such that∫ ∞

−∞
dX pX (X ) = 1. (D.3)

The expectation value with respect to all random variables is simply denoted as 〈O〉.
Of particular interest is the Gaussian distribution denoted as N (µ,σ2) with mean µ, variance σ2 and PDF
as

p(x |µ,σ2) = 1√
2πσ2

exp

(
− (x −µ)2

2σ2

)
. (D.4)

The special case of N (0,1) is called the normal distribution. The PDF for two independent Gaussian dis-
tributed random variables X1, X2 is

pX (x1, x2) = 1

2πσ1σ2
exp

(
− (x1 −µ1)2

2σ2
1

− (x2 −µ2)2

2σ2
2

)
= pX1

(x1|µ1,σ2
1) ·pX2

(x2|µ2,σ2
2). (D.5)
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Rescaled Random Variables

Consider the random variable Y = aX with X being a random variable with PDF pX (u) and a ∈C. Then it
holds for the PDF of Y that

pY (u) = 1

a
pX (u/a). (D.6)

If X is normally distributed according to pX (x |µ,σ2), the PDF of Y is then

pY (u) = pX (u |aµ, a2σ2). (D.7)

Sum of Normal Random Variables

Consider N independent Gaussian distributed random variables Xi with i = 0,1, . . . , N −1 with NXi
(µi ,σ2

i )

and their sum Z =∑N−1
i=0 Xi . Then Z is a random variable that is also Gaussian distributed with

NZ

(
N−1∑
i=0

µi ,
N−1∑
i=0

σ2
i

)
. (D.8)

D.2 Squared Spacetime Average Σ2

In the first step we calculate the spacetime average of the full model ς

ς̄= 1

|Λ|
∑

x ∈Γ

(
A cos

(
2π

L1

(
x1 +δx

)(
q +δq

))+Bσ0 +εη(x)

)
= A

|Λ|
∑

x ∈Γ
cos

(
2π

L1

(
x1 +δx

)(
q +δq

))
︸ ︷︷ ︸

=0

+ 1

|Λ|
∑

x ∈Γ

(
Bσ0 +εη(x)

)= Bσ0 +
1

|Λ|
∑

x ∈Γ
η′(x) = Bσ0 + η̄′, (D.9)

where according to Eq. (D.8) and Eq. (D.7) η̄′ is also a Gaussian distributed random variable with the PDF
pη̄′

(
η̄′ |0,ε2/|Λ|). Now we can calculate the ensemble average of ς̄2 as

〈
ς̄2

〉
=

∫ ∞

−∞
dη̄′

(
B 2σ2

0 +Bσ0η̄
′+ (

η̄′
)2

)
p

(
η̄′ |0,ε2/|Λ|)= B 2σ2

0 +0+ ε2

|Λ|2
, (D.10)

where we neglected the integration over the random variables δq,δx since the observable does not depend
on them anymore and thus the integrals separate. For the different phases Σ2

ς is then

Σ2
ςSP

= ε2

|Λ|σ2
0

in the SP, (D.11a)

Σ2
ςHBP

= B 2 + ε2

|Λ|σ2
0

in the HBP, (D.11b)

Σ2
ςIP

= ε2

|Λ|σ2
0

in the IP. (D.11c)
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D.3 Fourier Transformed Chiral Condensate Σ̃2

We start with calculating the spatial FT of ς

ς̃(x0,k) = 1√
N1

∑
x1 ∈Γ1

[
A cos

(
2π

L1

(
x1 +δx

)(
q +δq

))+Bσ0 +εη(x)

]
e−ikx1

= A

2
√

N1

∑
x1 ∈Γ1

[
exp

(
i

2π

L1

(
x1 +δx

)(
q +δq

))+exp

(
−i

2π

L1

(
x1 +δx

)(
q +δq

))]
e−ikx1

+√
N1Bσ0 +

ε√
N1

∑
x1 ∈Γ1

[
η(x)cos

(
kx1

)− iη(x)sin
(
kx1

)]
= A

√
N1

2

[
δ2π(δq+q)/L1,k exp

(
i

2π

L1
(q +δq)︸ ︷︷ ︸
=k

δx

)
−δ2π(δq+q)/L1,−k exp

(
− i

2π

L1
(q +δq)︸ ︷︷ ︸
=−k

δx

)]

+√
N1Bσ0 +Re

(
η̃′(x0,k)

)︸ ︷︷ ︸
:=R

+i Im
(
η̃′(x0,k)

)︸ ︷︷ ︸
:=I

= A
√

N1

2
eikδx

(
δ2π(δq+q)/L1,k −δ2π(δq+q)/L1,−k

)
+√

N1Bσ0 +R + i I , (D.12)

where R, I are sums of rescaled independent normal distributed variables with variances calculated as

var
(
R

)= ε2

N1

∑
x1 ∈Γ1

cos2
(

2πñx1

L1

)
=

{
ε2 if ñ = m N1/2, with m ∈Z

ε2/2 otherwise
, (D.13)

var
(
I
)= ε2

N1

∑
x1 ∈Γ1

sin2
(

2πñx1

L1

)
=

{
0 if ñ = m N1/2, with m ∈Z

ε2/2 otherwise
, (D.14)

where we represented the physical momentum k by 2πñ/L1 with ñ ∈ [−N1/2, N1/2−1] (compare Eq. (2.5))
in order to calculate the result of the sum. Before we continue with calculating the ensemble averages, we
remark on the independence of R and I .

Independence of Re
(
η̃′(x0, k)

)
and Im

(
η̃′(x0, k)

)
Any function can be represented as a linear combination of its even and odd part f (x) = fe (x)+ fo(x), with
fe,o = ( f (x)± f (−x))/2. In the FT f̃ of a real function f only the even part fe contributes to the real part
of f̃ and only its odd part fo to the imaginary part of f̃ . Therefore, an independent fe and fo results in an
independent real and imaginary part of f̃ .

Now consider two independent normal distributed random variables X1, X2 and the transformation

Y1,2 =
1

2

(
X1 ±X2

)
, X1,2 =

(
Y1 ±Y2

)
. (D.15)

Since X1 and X2 are normal distributed and independent, they have a common bivariate normal distribu-
tion. According to Eq. (D.5) their joint PDF is trivially the product of their PDFs

pX1,X2
(x1, x2) = pX1

(x1 |0,1)pX2
(x2 |0,1). (D.16)

Now we can apply the transformation from (D.15) to this joint PDF to obtain the joint PDF of Y1,2 (compare
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with Ref. [61])

pY1,Y2
(y1, y2) = pX1,X2

(g1(y1, y2), g2(y1, y2)) |J |
= (2π)−1 exp(−((y1 + y2))2/2) ·exp(−((y1 − y2))2/2) ·2

= ((π)−1/2 exp(−y2
1)) · ((π)−1/2 exp(−y2

2)) = pY1
(y1 |0,1/2) ·pY2

(y2 |0,1/2), (D.17)

with g1,2(y1, y2) = (y1 ± y2) and |J | as the determinant of the Jacobian matrix of this transformation. The
factorization of fY1,Y2

(y1, y2) into two independent normal distributions together with the fact that they
are sums of independent normal variables shows the independence of Y1,2 (see Ref. [61]). If we set X1 =
η(x0, x1), X2 = η(x0,−x1), we have shown the independence of the spatial even and odd part of η(x0, xy ) for

fixed x0 and consequently the independence of the real and imaginary part of η̃′(x0,k).

Ensemble Average of |ς̃(x0, k)|2

We proceed to calculate the ensemble average of |ς̃(x0,k)|2

〈
|ς̃(x0,k)|2

〉
=

〈∣∣∣∣∣ A
√

N1

2
eikδx

(
δ2π(δq+q)/L1,k −δ2π(δq+q)/L1,−k

)
+√

N1Bσ0 +R + i I

∣∣∣∣∣
2〉

=
〈

A2N1

4

(
δ2π(δq+q)/L1,k +δ2π(δq+q)/L1,−k +δδq,−qδk,0

)
+B 2σ2

0N1 +R2 + I 2

〉

= A2N1

4

(
pq

[
k − 2π

L1
q|0,∆q2

)
+pq

(
k − 2π

L1
+q |0,∆q2

)
+pq (q|0,∆q2)δk,0

]
+B 2σ2

0N1 +var(R)+var(I )︸ ︷︷ ︸
=ε2

≈ A2N1

4

[
pq

(
k − 2π

L1
q|0,∆q2

)
+pq

(
k − 2π

L1
+q |0,∆q2

)]
+B 2σ2

0N1 +ε2, (D.18)

where we used that the independence of all random variables results in the vanishing of terms that are
linear in a symmetrically distributed random variables and used that q À δq to neglect the term propor-
tional to pq (q|0,∆q2). The result clearly does not depend on x0 anymore; therefore, we can read off Σ̃2

ς for
the different phases

Σ̃2
ςSP

= ε2

σ2
0

in the SP, (D.19a)

Σ̃2
ςHBP

= B 2N1 +
ε2

σ2
0

in the HBP, (D.19b)

Σ̃2
ςIP

= A2N1

4σ2
0

[
pq

(
k − 2π

L1
q

)
+

(
k + 2π

L1
q

)]
+ ε2

σ2
0

in the IP. (D.19c)
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D.4 Spatial Correlator
We calculate the product ς(y0, y)ς(y0, y +x):

ς(y0, y)ς(y0, y +x) =

= A2 cos

(
2π

L1

(
y +δy

)(
q +δq

))
cos

(
2π

L1

(
y +δy +x1

)(
q +δq

))
+Bσ0 A

[
cos

(
2π

L1

(
y +δy

)(
q +δq

))+cos

(
2π

L1

(
y +δy +x1

)(
q +δq

))]
+εA

[
η(y0, y +x) cos

(
2π

L1

(
y +δy

)(
q +δq

))+η(y0, y) cos

(
2π

L1

(
y +δy +x1

)(
q +δq

))]
+B 2σ2

0 +εBσ0

(
η(y0, y)+η(y0, y +x)

)+ε2η(y0, y)η(y0, y +x), (D.20)

where we renamed the random variable δx to δy to avoid confusion.

D.4.1 Ensemble Averages over η,δq

We continue by taking the ensemble averages only over η and δq

〈ς(y0, y)ς(y0, y +x)〉η,δq =

= A2
〈

cos

(
2π

L1

(
y +δy

)(
q +δq

))
cos

(
2π

L1

(
y +δy +x1

)(
q +δq

))〉
δq︸ ︷︷ ︸

:=P

+Bσ0 A

〈
cos

(
2π

L1

(
y +δy

)(
q +δq

))+cos

(
2π

L1

(
y +δy +x1

)(
q +δq

))〉
δq︸ ︷︷ ︸

:=S

+εA

〈〈
η(y0, y +x)

〉
η︸ ︷︷ ︸

=0

cos

(
2π

L1

(
y +δy

)(
q +δq

))+〈
η(y0, y)

〉
η︸ ︷︷ ︸

=0

cos

(
2π

L1

(
y +δy +x1

)(
q +δq

))〉
δq

+B 2σ2
0 +εBσ0

〈
η(y0, y)+η(y0, y +x)

〉
η︸ ︷︷ ︸

=0

+ε2 〈
η(y0, y)η(y0, y +x)

〉
η︸ ︷︷ ︸

=δx,0 var(η(y0,y))=δx,0

= A2 P +Bσ0 A S +B 2σ2
0 +ε2δx,0 =

〈
cς(x, y)

〉
η,δq

, (D.21)

where the result does not depend on y0 anymore, thus we are able to identify it with the observable c as
defined in Eq. (3.11). We introduce the short hand notation

X := x1

L1
, Y := y

L1
, δY := δy

L1

and continue with calculating the term P as

P =〈
cos

(
2π (Y +δY )

(
q +δq

))
cos

(
2π (Y +δY +X )

(
q +δq

))〉
δq

= 1

4C

∞∑
δq=−∞

e−δq2/2∆q2 (
ei2π(2Y +2δY +X )(q+δq) +e−i2πX (q+δq) +ei2πX (q+δq) +e−i2π(2Y +2δY +X )(q+δq)

)
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= 1

4C

(
ei2π(2Y +2δY +X )q

∞∑
δq=−∞

e−δq2/2∆q2+i2π(2Y +2δY +X )δq +e−i2πX q
∞∑

δq=−∞
e−δq2/2∆q2−i2πX δq

+ei2πX q
∞∑

δq=−∞
e−δq2/2∆q2+i2πX δq +e−i2π(2Y +2δY +X )q

∞∑
δq=−∞

e−δq2/2∆q2−i2π(2Y +2δY +X )δq
)

= 1

4C

[
ei2π(2Y +2δY +X )qϑ

(
2Y +2δY +X , i/2π∆q2

)
+e−i2πX qϑ

(
−X , i/2π∆q2

)
+ei2πX qϑ

(
X , i/2π∆q2

)
+e−i2π(2Y +2δY +X )qϑ

(
−2Y −2δY −X , i/2π∆q2

)]
= 1

2ϑ
(
0, i/2π∆q2

) [
cos

(
2π (2Y +2δY +X ) q

)
ϑ

(
2Y +2δY +X , i/2π∆q2

)

+cos
(
2πX q

)
ϑ

(
X , i/2π∆q2

)]
, (D.22)

where

• we introduced the Jacobi theta function of the third kind

ϑ (z, s) =
∞∑

τ=−∞
eiπτ2s+i2πτz = 1+2

∞∑
τ=1

eiπτ2s cos(2πτz), (D.23)

• we used in the last step that ϑ (z, s) =ϑ (−z, s) ,

• we identified C =ϑ
(
0, i/2π∆q2

)
.

Analogously, we calculate S:

S =〈
cos

(
2π (Y +δY )

(
q +δq

))+cos
(
2π (Y +δY +X )

(
q +δq

))〉
δq

= 1

2C

∞∑
δq=−∞

e−δq2/2∆q2 (
ei2π(Y +δY )(q+δq) +e−i2π(Y +δY )(q+δq) +ei2π(Y +δY +X )(q+δq) +e−i2π(Y +δY +X )(q+δq)

)
= 1

2C

(
ei2π(Y +δY )q

∞∑
δq=−∞

e−δq2/2∆q2+i2π(Y +δY )δq +e−i2π(Y +δY )q
∞∑

δq=−∞
e−δq2/2∆q2−i2π(Y +δY )δq

+ei2π(Y +δY +X )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(Y +δY +X )δq +e−i2π(Y +δY +X )q

∞∑
δq=−∞

e−δq2/2∆q2−i2π(Y +δY +X )δq
)

= 1

ϑ
(
0, i/2π∆q2

) [
cos

(
2π (Y +δY ) q

)
ϑ

(
Y +δY , i/2π∆q2

)

+cos
(
2π (Y +δY +X ) q

)
ϑ

(
Y +δY +X , i/2π∆q2

)]
. (D.24)
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We proceed to insert the expressions for P and S into Eq. (D.21) and thereby obtain

〈
cς(x, y)

〉
η,δq

= A2

2ϑ
(
0, i/2π∆q2

) [
cos

(
2π (2Y +2δY +X ) q

)
ϑ

(
2Y +2δY +X , i/2π∆q2

)

+cos
(
2πX q

)
ϑ

(
X , i/2π∆q2

)]

+ Bσ0 A

ϑ
(
0, i/2π∆q2

) [
cos

(
2π (Y +δY ) q

)
ϑ

(
Y +δY , i/2π∆q2

)

+cos
(
2π (Y +δY +X ) q

)
ϑ

(
Y +δY +X , i/2π∆q2

)]
+B 2σ2

0 +ε2δx,0. (D.25)

D.4.2 Ensembles Averages with Assumed Distributions of δy

We calculate the ensemble average of cς(x, y)

〈
cς(x, y)

〉= ∫ ∞

−∞
dδy py (δy)

〈
cς(x, y)

〉
η,δq

(D.26)

under the assumption of two special cases of the distribution of the spatial shift py (δy):

I A delta peak distribution where no shift occurs: pI
y (δy) = δ(δy)

II A uniformly distributed shift over the whole lattice: pII
y (δy) =Θ(δy)Θ(L1 −δy)/L1

Case I

Case I is easily calculated as

〈
cς(x, y)

〉I =
∫ ∞

−∞
dδy δ(δy)

〈
cς(x, y)

〉
η,δq

= A2

2ϑ
(
0, i/2π∆q2

) [
cos

(
2π (2Y +X ) q

)
ϑ

(
2Y +X , i/2π∆q2

)
+cos

(
2πX q

)
ϑ

(
X , i/2π∆q2

)]

+ Bσ0 A

ϑ
(
0, i/2π∆q2

) [
cos

(
2πY q

)
ϑ

(
Y , i/2π∆q2

)
+cos

(
2π (Y +X ) q

)
ϑ

(
Y +X , i/2π∆q2

)]
+B 2σ2

0 +ε2δx,0. (D.27)

Case II

Case II limits the integration interval and we need to perform integrals over terms T (s,α,β,γ) for the case
α,β,γ ∈Z, β 6= 0 as

1

L

∫ L

0
dδyT

(
s,α,β,γ

)= 1

L

∫ L

0
dδy es i2π(αY +βδY +γX )q

∞∑
δq=−∞

e−δq2/2∆q2+i2π(αY +βδY +γX )δq
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=es i2π(αY +γX )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(αY +γX )δq 1

L

∫ L

0
dδy ei2πβδY (δq+sq)

=es i2π(αY +γX )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(αY +γX )δqδδq,−sq

=es i2π(αY +γX )q e−δq2/2∆q2−i2π(αY +γX )sq = e−δq2/2∆q2

(D.28)

and for β= 0

1

L

∫ L

0
dδyT

(
s,α,0,γ

)= T
(
s,α,0,γ

)
. (D.29)

Using this, we can calculate the ensemble average for Case II

〈
cς(x, y)

〉II = 1

L

∫ L

0
dδy

〈
cς(x, y)

〉
η,δq

= 1

L

∫ L

0
dδy

[
A2

4ϑ
(
0, i/2π∆q2

) (
T (+,2,2,1)+T (−,2,2,1)+T (+,0,0,1)+T (+,0,0,1)

)

+ Bσ0 A

2ϑ
(
0, i/2π∆q2

) (
T (+,1,1,0)+T (−,1,1,0)+T (+,1,1,1)+T (−,1,1,1)

)

+B 2σ2
0 +ε2δx,0

]
= A2

2ϑ
(
0, i/2π∆q2

) (
e−δq2/2∆q2 +cos

(
2πX q

)
ϑ

(
X , i/2π∆q2

))
+ 2ABσ0

ϑ
(
0, i/2π∆q2

)e−δq2/2∆q2 +σ2
0 +ε2δx,0

≈ A2

2ϑ
(
0, i/2π∆q2

) cos
(
2πX q

)
ϑ

(
X , i/2π∆q2

)
+B 2σ2

0 +ε2δx,0 ≡
〈

c̄ς(x)
〉

. (D.30)

D.4.3 Spatial Average over y

The expression in Eq. (D.25) (more precisely the terms S and P ) still depends on the shift. This dependence
vanishes when we perform the spatial average over y . To show this, we have to perform summations over
similar terms of the general form

T
(
s,α,β,γ

)= es i2π(αY +βδY +γX )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(αY +βδY +γX )δq . (D.31)

We perform the y average over this general term assuming that α,β,γ ∈Z, α 6= 0 and obtain

1

N1

∑
y ∈Γ1

T
(
s,α,β,γ

)= 1

N1

∑
y ∈Γ1

es i2π(αY +βδY +γX )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(αY +βδY +γX )δq

=es i2π(βδY +γX )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(βδY +γX )δq 1

N1

∑
y ∈Γ1

ei2παY (δq+sq)

66



D Benchmark Model Calculations

=es i2π(βδY +γX )q
∞∑

δq=−∞
e−δq2/2∆q2+i2π(βδY +γX )δqδδq,−sq

=es i2π(βδY +γX )q e−δq2/2∆q2−i2π(βδY +γX )sq = e−δq2/2∆q2

(D.32)

and for α= 0

1

N1

∑
y ∈Γ1

T
(
s,0,β,γ

)= T
(
s,0,β,γ

)
. (D.33)

Now we can calculate the spatial averages S̄, P̄ of S,P respectively

S̄ = 1

N1

∑
y ∈Γ1

S = 1

N1

∑
y ∈Γ1

1

ϑ
(
0, i/2π∆q2

)[
cos

(
2π (Y +δY ) q

)
ϑ

(
Y +δY , i/2π∆q2

)

+cos
(
2π (Y +δY +X ) q

)
ϑ

(
Y +δY +X , i/2π∆q2

)]

= 1

2ϑ
(
0, i/2π∆q2

) 1

N1

∑
y ∈Γ1

(T (+,1,1,0)+T (−,1,1,0)+T (+,1,1,1)+T (−,1,1,1))

= 2

ϑ
(
0, i/2π∆q2

)e−δq2/2∆q2

(D.34)

and

P̄ = 1

N1

∑
y ∈Γ1

P = 1

N1

∑
y ∈Γ1

1

2ϑ
(
0, i/2π∆q2

) [
cos

(
2π (2Y +2δY +X ) q

)
ϑ

(
2Y +2δY +X , i/2π∆q2

)

+cos
(
2πX q

)
ϑ

(
X , i/2π∆q2

)]

= 1

4ϑ
(
0, i/2π∆q2

) 1

N1

∑
y ∈Γ1

(
T (+,2,2,1)+T (−,2,2,1)+T (+,0,0,1)+T (−,0,0,1)

)
= 1

2ϑ
(
0, i/2π∆q2

) [
e−δq2/2∆q2 +cos

(
2πX q

)
ϑ

(
X , i/2π∆q2

)]
. (D.35)

With the calculated P̄ and S̄ we are able to perform the spatial average over y of Eq. (D.25):

〈
c̄ς(x)

〉
η,δq

= 1

N1

∑
y ∈Γ1

〈
c(x, y)

〉
η,δq =A2P̄ +Bσ0 A S̄ +B 2σ2

0 +ε2δx,0

= A2

2ϑ
(
0, i/2π∆q2

) [
e−δq2/2∆q2 +cos

(
2πX q

)
ϑ

(
X , i/2π∆q2

)]
+ 2ABσ0

ϑ
(
0, i/2π∆q2

)e−δq2/2∆q2 +B 2σ2
0 +ε2δx,0

≈ A2

2ϑ
(
0, i/2π∆q2

) cos
(
2πX q

)
ϑ

(
X , i/2π∆q2

)
+B 2σ2

0 +ε2δx,0
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≡〈
c̄ς(x)

〉
, (D.36)

where we neglected terms ∝ exp
(
−q2/2∆q2

)
under the assumption that q À∆q . The resulting expression

does not depend on the spatial shift δy anymore and thus is equal to the full expectation value
〈

c̄ς(x)
〉

. The
observable Cς(x) reduces in the different phases to

CςSP
(x) = ε2δx,0 in the SP, (D.37a)

CςHBP
(x) = B 2σ2

0 +ε2δx,0 in the HBP, (D.37b)

CςIP
(x) = A2

2ϑ
(
0, i/2π∆q2

) cos
(
2πxq/L1

)
ϑ

(
x/L1, i/2π∆q2

)
+ε2δx,0 in the IP. (D.37c)
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Figure E.1: The uninterpolated data corresponding to Figure 3.9.

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

0.0

0.2

0.4

0.6

T
/σ

0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

0.0

0.2

0.4

0.6

T
/σ

0

(d)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(e)

0.0 0.2 0.4 0.6 0.8 1.0

µ/σ0

(f )

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

−0.2 0.0 0.5 1.0

Cmin/σ2
0

Figure E.2: The uninterpolated data corresponding to Figure 3.12. (a) Figure 3.12a. (b) Figure 3.12b.(c)
Figure 3.12c. (d) Figure 3.12g. (e) Figure 3.12h. (f ) Figure 3.12i.
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