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Abstract

In this thesis, we focus on the heavy-light tetraquark system with the quark content
b̄b̄ud. We established the formulation of non-relativistic QCD and derived the required
expressions for a non-relativistic treatment of the tetraquark system. In the framework of
NRQCD, we consider several creation operators for generating a b̄b̄ud state in the I(JP ) =
0(1+) channel and construct the associated correlation matrix. Afterwards, searching for
bound states in this system, we extract the effective masses and compare them to the
BB∗ threshold in order to make reliable statements about stable states. Performing a
detailed analysis including different lattice gauge link ensembles and extrapolating these
results to the physical pion mass, we find a bound b̄b̄ud state with a binding energy of
Eb̄b̄ud = −99 +39

−39 MeV.





Contents

1 Introduction 1

2 Effective Theories for Heavy Quarks 5

2.1 Why Using an Effective Theory . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dynamics of Heavy Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Foldy-Wouthuysen-Tani (FWT) Transformation . . . . . . . . . . . . . . . 8

2.3.1 Derivation of Pauli Equation . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Derivation of FWT Transformation . . . . . . . . . . . . . . . . . . 11

2.4 Power Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Lattice NRQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Euclidean NRQCD Lagrangian . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Derivation of the Green Function . . . . . . . . . . . . . . . . . . . 18

3 Lattice QCD Setup and Error Analysis 23

3.1 Lattice QCD Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Statistical Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Sources of Statistical Errors . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Jackknife Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Sources of Systematic Errors . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Estimating Systematic Errors . . . . . . . . . . . . . . . . . . . . . 27

4 Investigation of Bottomonium States by Means of NRQCD 29

4.1 bb̄ Quantum Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 The ηB(1S) State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 The Υ(1S) State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



Contents

4.2 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Investigation of b̄b̄bb by Means of NRQCD 35

5.1 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Investigation of b̄b̄ud by Means of NRQCD 43

6.1 Creation Operators for the b̄b̄ud System . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Quark Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.2 Momentum Projection . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.3 Listing of All Creation Operators for b̄b̄ud . . . . . . . . . . . . . . 50

6.2 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Hermiticity of the Correlation Matrix . . . . . . . . . . . . . . . . . 51

6.2.2 Correlation Matrix Elements . . . . . . . . . . . . . . . . . . . . . . 52

6.2.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Analysis of the b̄b̄ud System . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Evaluation of Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1 Results for Operator Structures . . . . . . . . . . . . . . . . . . . . 61

6.4.2 Computation for Unphysical Bottom Quark Mass mQ = 5mb . . . . 68

6.4.3 Chiral Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Conclusion 73

A Conventions and Formulas 75

A.1 Gamma Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Quantum Number Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B FWT Transformation - Detailed Calculations 77

B.1 Cancelling Anti-Commuting Terms of Leading Order . . . . . . . . . . . . 77

B.2 Cancelling Anti-Commuting Terms of Order O (1/mQ) . . . . . . . . . . . 80

B.3 Cancelling Quark Mass Term . . . . . . . . . . . . . . . . . . . . . . . . . 83

ii



Contents

C Calculation of Quantum Numbers 85

C.1 Angular Momentum for Υ(1S) . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.2 Quantum Numbers for b̄b̄ud . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.2.1 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.2.2 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C.2.3 Isospin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D Correlation Matrix Elements 97

D.1 Type I Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D.2 Time Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

iii





Chapter 1

Introduction

Mankind has been searching for insight into the deepest and smallest components of our
world as long as anyone can remember. Even Goethe’s Faust desired to discover “what
holds the world together at its core“. In contrast to Goethe’s era, nowadays we have
a much better understanding of the fundamental principles of nature, described by the
Standard Model of Nature.

Therein, the basic constituents of matter are the so-called quarks. All particles composed
of quarks are named hadrons. We distinguish between baryons and mesons: Baryons on
the one hand are half-integer spin particles while the most common ones are composed of
a set of three quarks (or three anti-quarks). Mesons on the other hand have an integer
spin and are built of quark-antiquark pairs.
There are six different types of quarks, called flavours, which are classified in three gen-
erations. The first generation contains the light up (u) and down (d) quark, which are
the constituents of the most common elementary particles: the proton (uud), the neutron
(udd), and the three pions (ud̄, dū, uū−dd̄). The second generation covers the strange (s)
and charm (c) quark, which are a few hundred times heavier than the light ones. Finally,
in the third generation we find the heavy bottom (b) and top (t) quark whose masses are
several thousands times heavier than the light u/d quarks [1].

In the Standard Model, quarks are assumed to be point-like fundamental particles without
any spatial extent. They interact with all four fundamental forces, that means electromag-
netic, weak, strong, and gravitational. The electric charge of quarks assumes non-integer
values (+2/3 or −1/3) which are combined to integers by forming hadrons. The binding of
hadrons is described by the strong force with the associated colour charge. In contrast to
the electromagnetic force where two different charges (positive/negative) exist, the colour
charge comprises three, usually named green, blue, and red. Furthermore, also the gluons
acting as the exchange particles of this theory carry colour charge.

In the mathematical approach, this theory is formulated by a non-abelian SU(3)-gauge
theory called Quantum Chromo Dynamics (QCD). Due to the charged gluons, there are
self-interaction effects. Hence, computing quark interactions becomes extremely challeng-
ing and therefore QCD observables at low energy cannot be extracted easily with an
analytical computation. One well-established approach for performing non-pertubative
QCD calculations from first principles is provided by lattice QCD. For this purpose, the
four dimensional space-time is discretized to a finite-sized Euclidean lattice with a defined
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Chapter 1. Introduction

lattice spacing. In this way, physical observables can be computed numerically without
further assumptions from first principals using high performance computers. For our
theoretical studies, we are applying methods of lattice QCD.

Talking about hadrons, one refers usually to the well-established baryons built of three
quarks (qqq) or mesons consisting of a quark-antiquark pair (qq̄). Additionally the Stan-
dard Model predicts some exotic hadrons, e.g. glueballs, hybrid mesons, tetraquarks
or pentaquarks. However, these states are experimentally extremely difficult to observe
since they are often resonances and rapidly decay to non-exotic hadrons. Even theoretical
investigation of exotic states is quite challenging.

Considering tetraquarks was first initiated by the experimental observations of states like
the a0(980) which could not be identified with known structures. Today, there are studies
suggesting that the a0(980) meson corresponds to a two meson scattering resonance (cf.
e.g. [46]).
Nowadays, plenty of possible tetraquark candidates are known experimentally. In 2003,
the temporarily stable charmonium-like X(3872) was found [3]. Followed by further
tetraquark candidates like the Z(4430) [4, 5, 6, 7] or the bottomonium-like Zb(10610)
and Zb(10650) [8], the first independently confirmed tetraquark resonance is the Zc(3900)
found in 2013 [9, 10, 11, 12]. Recently, further possible tetraquark candidates have been
announced mentioning here only the X(5568) [13] whose existence, however, has not been
confirmed yet.
Obviously, the search for exotic hadrons especially tetraquarks is an ongoing topic with
auspicious possibilities of gaining a deeper insight into QCD.

In this thesis, we theoretically investigate heavy-light four-quark systems containing bot-
tom quarks. Especially, we focus on the promising tetraquark candidates with quark
content b̄b̄ud which might form a bound state. In contrast to the previously mentioned Zb
state which is supposed to contain a heavy quark b, a heavy antiquark b̄ and the associated
light quarks, we are considering two heavy antiquarks b̄b̄. Using two heavy antiquarks
is theoretically less complicated to investigate but experimentally more challenging to
generate and detect.

In recent years, many efforts have been made to investigate this tetraquark system by
means of lattice calculations and great progress has been made in understanding this
system and extracting important properties (cf. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).
In my thesis, I will continue to work on the heavy-light tetraquark b̄b̄ud by proceeding as
follows:

In Chapter 2 we start to study the theoretical background of heavy quarks on the lattice.
Introducing an effective theory which is in our case non-relativistic QCD (NRQCD), we
discuss how to treat heavy quarks on the lattice, derive the NRQCD-Lagrangian and
present how to compute heavy quark propagators.
The lattice setup including all lattice gauge configurations used is described in Chapter
3. Moreover the methods used for error analysis are discussed. In addition to statistical
error analysis, also quantification of systematic uncertainties is presented in a subsection.
In Chapter 4 we perform a first NRQCD calculation considering the bottomonium states
ηB(1S) and Υ(1S). Using these less complicated systems, we demonstrate computing
quantum numbers, determining the correlation functions and extracting the masses and
mass splitting. We examine how to extract physical masses and how to set the scale.
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Chapter 5 focuses on a four-quark system consisting of four bottom quarks (b̄b̄bb). We
compute the mass of the system and compare it to the masses of its constituents from
the previous chapter in order to investigate possible bound states.
The principal part of this work is presented in Chapter 6 investigating the b̄b̄ud system.
The possible creation operator structures are discussed in detail as well as the components
of the correlation matrix. Finally the results obtained in the framework of NRQCD are
presented.
To conclude, in Chapter 7 we summarize our results and give an outlook about possible
further projects.
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Chapter 2

Effective Theories for Heavy Quarks

The quark model includes six different quark flavours which can be grouped in light quarks
and heavy quarks. Talking about heavy quarks refers in this context to the hadronic
energy scale and involves the charm (c), bottom (b), and top (t) quarks. However, even if
the top quark is the heaviest one, it decays rapidly and thus can be treated perturbatively.
Therefore, when mentioning heavy quarks in this work, we are talking about the charm
and the bottom quark.
Considering the most common particles in nature, like protons, neutrons or pions, we
recognize that light quarks seem to dominate our world. Nevertheless, systems containing
heavy quarks play an important role in understanding elementary features of QCD. Some
reasons to mention can be found in [25]: Heavy quark physics is elementary for a deeper
understanding of the Standard Model’s flavour structure involving also the CP violation
mechanism. Studying decay processes of mesons containing charm or bottom quarks gives
evidence about the flavour mixing in QCD and therefore enables us to precisely determine
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition to that, one can
use heavy quark physics as a starting point for physics beyond the Standard Model: The
relevant loop effects can be examined by considering flavour-changing neutral current
processes, e.g. rare B decays. These processes are suppressed in the Standard Model due
to the Glashow-Iliopuolos-Maiani (GIM) mechanism.

In this thesis, we will work with quark systems containing heavy quarks - especially the
heavy-light b̄b̄ud - and therefore have to establish a formalism to treat these heavy quarks
adequately in lattice QCD simulations. Compared to lattice formulations involving only
light quarks, studying heavy quarks in lattice calculations requires special techniques.
These are based on an effective Lagrangian which will be the non-relativistic QCD La-
grangian in this work. The reason why it is feasible as well as necessary to treat these
systems in the mentioned framework will be illustrated in the next sections.
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Chapter 2. Effective Theories for Heavy Quarks

2.1 Why Using an Effective Theory

Considering heavy quarks, i.e. charm or bottom quarks, the assigned masses in the MS-
scheme are ([26, 27]):

mc ≈ 1.27(9) GeV (2.1)
mb ≈ 4.20(12) GeV (2.2)

We now consider the Compton wavelength, which is proportional to the inverse quark
mass mQ, so λC ∝ 1

mQ
. Comparing the Compton wavelength to the lattice spacing a gives

evidence about the quality of a simulation: If the Compton wavelength is smaller or in
a comparable magnitude like the lattice spacing, there will occur serious discretization
errors. Consequently, for the two heavy quarks λC becomes:

1
mc

≈ 0.16 fm (2.3)

1
mb

≈ 0.05 fm (2.4)

Therefore, an adequate lattice spacing a should be smaller than 0.05 fm for bottom and
smaller than 0.16 fm for charm quarks to guarantee a well-working lattice computation
with small discretization errors. The motivation to develop an effective theory can be
found in the past of lattice theory: The minimal lattice spacing was restricted and could
not be created sufficiently small. Even nowadays, commonly used lattice spacings often
are of the same magnitude as the Compton wavelength (e.g. 0.1 fm).
However, choosing a sufficiently small lattice spacing causes some additional challenges.
For studying hadrons on the lattice, we need an adequate total lattice extent of at least
2 fm: The spatial volume must be large enough to accommodate the hadron while the
temporal extent has to enable us to study the Euclidean propagators and to extract
masses. Concerning these issues, a lattice with small a has to contain about O(100)4

lattice points. Hence, the numerical computation becomes extremely expansive.
In short, using the standard lattice QCD methods does not seem to be the optimal
approach for studying heavy quarks, so consequently a new concept had to be established.

2.2 Dynamics of Heavy Quarks

Aiming for an improved approach to compute heavy quarks on the lattice, we will examine
their dynamics. Having discussed the challenges with regard to heavy quarks on the
lattice, we can recognize one big advantage: We can treat heavy quarks non-relativistically.
For example, we consider the spatial velocity of the charmonium state ψ (cc̄) or the
bottomonium state Υ (bb̄). One can assume that the mass difference between the 2S and
the 1S splitting coincides approximately with the average kinetic energy∼ mQv

2 whilemQ

is the quark mass. For the charmonium, the mass splitting is ψ(2S)− ψ(1S) ∼ 700 MeV
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2.2. Dynamics of Heavy Quarks

while mψ ∼ 3 GeV, so v2 ∼ 0.3. Analogously, for the bottomonium, Υ(2S) − Υ(1S) ∼
600 MeV and mΥ ∼ 9 GeV, thus v2 ∼ 0.1. In a concentrated form this is:

v2 ∼

0.1 for Υ
0.3 for ψ

(2.5)

This involves two important consequences for systems containing heavy quarks (cf. [31]):
First, since the radiation of gluons is proportional to v, we can neglect radiated low-
energetic gluons. Second, an exchanged gluon’s momentum is of order of the quark
momenta and therefore the gluon’s energy is by a factor of 1/v greater than the quark’s
kinetic energy: Eg ∼ pg ∼ pQ � EQ. As a consequence, gluon exchange and thus the
interaction between quark and antiquark is almost immediate.
For quarkonium states, one has to consider three different energy scales in the system:

• the mass ∼ mQ

• the spatial momentum ∼ mQv

• the kinetic energy ∼ mQv
2

Since the quarks are non-relativistic, we can deduce: mQ � mQv � mQv
2. Consequently,

the expansion parameter for an effective theory in a non-relativistic approximation is the
spatial velocity v or rather the spatial momentum k. Accordingly, we will perform a
separation of scales for |k| � mQ with mQ being the heavy quark mass. An important
consequence of this separation is that heavy pair creation will be neglected. However,
for a detailed analysis one has to distinguish between systems containing only one heavy
quark and systems with more than one heavy quark. This will be considered in Sec. 2.4
when focusing on power counting.
We will continue by deriving the effective Lagrangian in the non-relativistic approximation
in Sec. 2.3. The resulting theory is well-known as non-relativistic QCD (NRQCD). In
this work, we will apply the Foldy-Wouthuysen-Tani (FWT) transformation to derive this
effective Lagrangian in the continuum.

We would like to emphasise that there exist several effective theories. Another prominent
example is the heavy quark effective theory (HQET), which is applied when only one
heavy quark is present. However, in this thesis we always consider at least two heavy
quarks and thus work solely in the non-relativistic framework. Therefore, we put our
main focus on NRQCD and the associated effective Lagrangian. Nevertheless, the FWT
transformation is strictly formal and can be applied for both theories, HQET and NRQCD
in consideration of the scaling behaviour. In Sec. 2.4, we illuminate the differences when
discussing power counting.
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Chapter 2. Effective Theories for Heavy Quarks

2.3 Foldy-Wouthuysen-Tani (FWT) Transformation

The Foldy-Wouthuysen-Tani transformation is a well-established formalism to derive the
effective Lagrangian. This paragraph is based on [21, 28]. The initial idea of the FWT
transformation is strongly related to the derivation of the Pauli equation: We aim to split
the Lagrangian into a particle and an antiparticle equation.
Therefore, we will summarize the computation of the Pauli equation to motivate the
following approach for the FWT transformation.

2.3.1 Derivation of Pauli Equation

The starting point for this calculation is the well-known Dirac equation for a particle in
an electromagnetical field [29], namely:

(iγµDµ −mQ) Ψ = 0 (2.6)

with Dµ = ∂µ − iqAµ.

For solving it, we use the ansatz: Ψ =
 ϕ(p)
χ(p)

 e−ipµxµ . In the limit of small velocities,

we can use:

E =
(
m2
Q + |p|2

) 1
2 = mQ

(
1 + |p|

2

m2
Q

) 1
2

= mQ

(
1 + |p|2

2m2
Q

+O
(
|p|4

m4
Q

))
≈ mQ (2.7)

So, the exponential function can be written as:

e−ipµxµ = e−iEteipx ≈ e−imQteipx (2.8)

which makes it possible to transform the spinor to:

Ψ =
 ϕ(x)
χ(x)

 e−imQt (2.9)

Inserting this into the Dirac-equations results in:

0 = (iγµDµ −mQ) Ψ =
(
iγ0D0 − iγjDj −mQ

)
Ψ

=
(
iγ0D0 − iγjDj −mQ

) ϕ(x)
χ(x)

 e−imQt

=
i
 1 0

0 −1

D0 − i

 0 σj

−σj 0

Dj −mQ

 1 0
0 1

 ϕ(x)
χ(x)

 e−imQt

(2.10)
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2.3. Foldy-Wouthuysen-Tani (FWT) Transformation

This leads to the two equations:

iD0ϕ(x)e−imQt − iσjDjχ(x)e−imQt −mQϕ(x)e−imQt = 0
−iD0χ(x)e−imQt + iσjDjϕ(x)e−imQt −mQχ(x)e−imQt = 0

(2.11)

Inserting the derivative for ϕ(x)

iD0ϕ(x)e−imQt = i (D0ϕ(x)) e−imQt + i (−imQ)ϕ(x)e−imQt (2.12)

and analogous for χ(x) yields to:

iD0ϕ(x)− iσjDjχ(x) = 0
−iD0χ(x)− 2mQχ(x) + iσjDjϕ(x) = 0

(2.13)

and can be consequently expressed as:

iD0ϕ(x) = iσjDjχ(x)
(iD0 + 2mQ)χ(x) = iσjDjϕ(x)

(2.14)

Note that χ(x) is smaller than ϕ(x) by a factor 2mQ. We can now neglect the term
iD0χ(x), so the second equation is reduced to:

iD0ϕ(x) = iσjDjχ(x)

χ(x) = i

2mQ

σjDjϕ(x)
(2.15)

If we combine both equations from 2.15, we get:

iD0ϕ(x) = −1
2mQ

σjDjσ
kDkϕ(x) (2.16)

With the relation for the Pauli matrices σjσk = δjk + iεjklσ
l this can be evaluated in the

following way:

iD0ϕ(x) = −1
2mQ

(
δjk + iεjklσ

l
)
DjDkϕ(x)

= −1
2mQ

(
DjD

j + iεjklDjDkσ
l
)
ϕ(x)

(2.17)

Using the extended expression for the covariant derivative, we get:

iεjklDjDkσ
lϕ(x) = iεjkl (∂j − iqAj) (∂k − iqAk)σlϕ(x)

=iεjkl
[
∂j∂kϕ(x)− iq (∂jAk)ϕ(x)− iqAk∂jϕ(x)

−iqAj∂kϕ(x) + qAjqAkϕ(x)
]
σl

=εjklq (∂jAk)σlϕ(x) = qBlσlϕ(x)

(2.18)
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Chapter 2. Effective Theories for Heavy Quarks

Inserting this into (2.17) yields:

iD0ϕ(x) = −1
2mQ

(
DjD

j + qBlσl
)
ϕ(x) (2.19)

Finally, rewriting this expression in vector notation, we receive the well-know Pauli equa-
tion in (2.20):

(
iD0 + D2

2mQ

+ q

2mQ

qσ ·B
)
ϕ(x) = 0 (2.20)

Note that the particle and anti-particle solutions are decoupled.
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2.3. Foldy-Wouthuysen-Tani (FWT) Transformation

2.3.2 Derivation of FWT Transformation

We will use a similar approach to derive the effective Lagrangian for QCD in the non-
relativistic limit. Note that the Pauli equation has been decoupled into particle and anti-
particle solution. We will use a related strategy to decouple particle and anti-particle
components of the Dirac Lagrangian for heavy quarks to a given order in the expansion
parameter 1/m. This parameter is strictly formal, for a more detailed view on this
parameter, see Sec. 2.4. One additional remark to this approach should be mentioned at
this state: Since we are decoupling particles and anti-particles, we are removing quark-
antiquark pair production from our effective theory.

We are using the particle / anti-particle projectors

P± = 1
2
(
1± γ0

)
(2.21)

and the Dirac-Lagrangian

L = Ψ
(
iγ0D0 − iγjDj −mQ

)
Ψ (2.22)

written in Minkowski space.
A transformation decoupling particle and anti-particle solution consequently removes all
contributions from the Lagrangian that do not commute with γ0. Considering (2.22),
the only term which does not commute is iγjDj. At this point, we introduce redefined
spinors:

Ψ = exp
(
− 1

2mQ

iγjDj

)
Ψ(1)

Ψ = Ψ(1) exp
(
− 1

2mQ

iγjDj

) (2.23)

This redefinition cancels the non-commuting term but introduces an infinite number of
terms with higher powers in 1

mQ
. For leading order, the Lagrangian L(1)0 is given by:

L(1)0 =Ψ(1) exp
(
− 1

2mQ

iγjDj

)(
iγ0D0 − iγjDj −mQ

)
exp

(
− 1

2mQ

iγjDj

)
Ψ(1)

=Ψ(1)

(
1− 1

2mQ

iγjDj + . . .

)(
iγ0D0 − iγjDj −mQ

)(
1− 1

2mQ

iγjDj + . . .

)
Ψ(1)

=Ψ(1)

(
iγ0D0 −mQ − iγjDj + 1

2iγ
jDj + 1

2iγ
jDj

)
Ψ(1) +O

(
1
mQ

)

=Ψ(1)
(
iγ0D0 −mQ

)
Ψ(1) +O

(
1
mQ

)
(2.24)

The redefined Lagrangian up to O
(

1
m3
Q

)
including the detailed derivation can be found

in Appendix B.1.
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Chapter 2. Effective Theories for Heavy Quarks

The Lagrangian in closed form in terms of the new spinors reads:

L = Ψ(1)
(
iγ0D0 −mQ

)
Ψ(1) +

∞∑
n=1

1
mn
Q

Ψ(1)O(1)nΨ(1) (2.25)

where O(1)n with n ≥ 1 describes the contributions with higher orders in 1/mQ which
do not commute with γ0. For calculating O(1)1, we have to include the term O

(
1
mQ

)
in

(2.24), which is given by (see Appendix B.1):

O(1)1 = +1
2γ

jDjγ
0D0 + 1

2γ
0D0γ

jDj −
1
2
(
γjDj

)2
(2.26)

We can rewrite this expression using the commutator relation for the covariant derivative

[Dµ, Dν ] = igFµν (2.27)

so that:

O(1)1 =− 1
2
{
−γjγ0DjD0 − γ0γjD0Dj + γjγkDjDk

}
=− 1

2
{
−γjγ0DjD0 + γjγ0D0Dj + γjγkDjDk +DjD

j −DjD
j
}

=− 1
2
{
−γjγ0 (DjD0 −D0Dj) + γjγkDjDk − ηjkDjDk

}
− 1

2DjD
j

=− 1
2

{
−γjγ0 [Dj, D0] + 1

2
(
γjγkDjDk + γjγkDjDk − 2ηjkDjDk

)}
− 1

2DjD
j

= + ig

2 γ
jγ0Fj0 −

1
4
(
γjγkDjDk −

(
2ηjk − γjγk

)
DjDk

)
− 1

2DjD
j

= + ig

2 γ
jγ0Fj0 −

1
4
(
γjγkDjDk − γkγjDjDk

)
− 1

2DjD
j

=− 1
2DjD

j + ig

2 γ
jγ0Fj0

− 1
8
(
γjγkDjDk − γjγkDkDj − γkγjDjDk + γkγjDkDj

)
=− 1

2DjD
j + ig

2 γ
jγ0Fj0 −

1
8
(
γjγk − γkγj

)
(DjDk −DkDj)

=− 1
2DjD

j + ig

2 γ
jγ0Fj0 −

1
8
[
γj, γk

]
[Dj, Dk]

=− 1
2DjD

j + ig

2 γ
jγ0Fj0 −

ig

8
[
γj, γk

]
Fjk

(2.28)

This first order correction can be grouped into a commuting and an anti-commuting part
with regard to γ0 as O(1)1 = OC

(1)1 +OA
(1)1 with:

OC
(1)1 = −1

2DjD
j − ig

8
[
γj, γk

]
Fjk (2.29)

12



2.3. Foldy-Wouthuysen-Tani (FWT) Transformation

OA
(1)1 = +ig2 γ

jγ0Fj0 (2.30)

To cancel the anti-commuting term of first order, we perform a second redefinition

Ψ(1) = exp
(

1
2m2

Q

OA
(1)1

)
Ψ(2)

Ψ(1) = Ψ(2) exp
(

1
2m2

Q

OA
(1)1

) (2.31)

which results in the new Lagrangian:

L = Ψ(2)
(
iγ0D0 −mQ

)
Ψ(2) +

∞∑
n=1

1
mn
Q

Ψ(2)O(2)nΨ(2) (2.32)

Note that we first have to include all terms up to O
(
1/m2

Q

)
in the expansion in (2.24) to

successfully eliminate all terms of O (1/mQ). The relevant expression up to required order
is calculated in Appendix B.1. Afterwards, one has to repeat the expansion using now the
second redefinition (2.31) up to O

(
1/m2

Q

)
. Finally, we extract the expressions for O(2)n

while we divide again into commuting and anti-commuting parts O(2)n = OC
(2)n + OA

(2)n.
This calculation can be found in Appendix B.2. In the end, we receive the following terms
for O(2)n:

OC
(2)1 = OC

(1)1

OA
(2)1 = 0

OC
(2)2 = −g8γ

0
(
D∗jFj0 −

1
2
[
γj, γk

]
{Dj, Fk0}

)
OA

(2)2 = i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj,0]

(2.33)

We can continue eliminating anti-commuting terms till we reach the desired order in 1
mQ

.
So if we want to cancel the term OA

(2)2, we have to perform another redefinition in the
same way as before in (2.23) and (2.31):

Ψ(2) = exp
(

1
2m3

Q

OA
(2)2

)
Ψ(3)

Ψ(2) = Ψ(3) exp
(

1
2m3

Q

OA
(2)2

) (2.34)

The Lagrangian reads

13



Chapter 2. Effective Theories for Heavy Quarks

L = Ψ(3)
(
iγ0D0 −mQ

)
Ψ(3) +

∞∑
n=1

1
mn
Q

Ψ(3)O(3)nΨ(3) (2.35)

with:

OC
(3)1 = OC

(2)1

OA
(3)1 = 0

OC
(3)2 = OC

(2)2

OA
(3)2 = 0

(2.36)

At this stage, we stop after the last redefinition, so we have included all terms up to
O
(
1/m2

Q

)
. Thus, we do not explicitly compute higher orders in 1/mQ, namely the term

O(3)3, but apply this redefinition especially to eliminate OA
(2)2. However, further redefi-

nitions can be used to cancel terms like OA
(3)3 and to improve the Lagrangian by further

orders of 1/mQ.
It is important to emphasise that all remaining terms commute with γ0 and there are no
additional time derivatives introduced.
In a final step, we can remove the quark mass term by redefining (see Appendix B.3):

Ψ(3) = exp
(
−imQx

0γ0
)

Ψ̃

Ψ(3) = Ψ̃exp
(
imQx

0γ0
) (2.37)

The final Lagrangian is given by:

L = Ψ̃
[
iγ0D0 −

1
2mQ

DjD
j − ig

8mQ

[
γj, γk

]
Fjk

− g

8m2
Q

γ0
(
D∗jFj0 −

1
2
[
γj, γk

]
{Dj, Fk0}

)]
Ψ̃ +O

(
1
m3
Q

) (2.38)

For further simplification of (2.38), we use the relation

[
γj, γk

]
= −2iεjklΣl with Σl =

 σl 0
0 σl

 (2.39)

insert the definition of the chromoelectric and chromomagnetic fields

Ej = F0j and Bj = −1
2εjklFkl (2.40)

14



2.4. Power Counting

and obtain accordingly:

L = Ψ̃
[
iγ0D0 + D2

2mQ

+ g

2mQ

Σ ·B

+ g

8m2
Q

γ0
(
D∗ · E + iΣ · (D× E− E×D)

)]
Ψ̃ +O

(
1
m3
Q

) (2.41)

Remembering the initial idea to decouple the Lagrangian into a particle and an anti-
particle equation, we introduce the two components ψ and χ of the spinor Ψ̃ explicitly:

Ψ̃ =
 ψ

χ

 , Ψ̃ =
(
ψ†, −χ†

)
(2.42)

Inserting (2.42) in (2.41), we get the decoupled Lagrangian:

L = ψ†
[
iD0 + D2

2mQ

+ g

2mQ

σ ·B + g

8m2
Q

(
D∗ · E + iσ · (D× E− E×D)

)]
ψ

+χ†
[
iD0 −

D2

2mQ

− g

2mQ

σ ·B + g

8m2
Q

(
D∗ · E + iσ · (D× E− E×D)

)]
χ

+O
(

1
m3
Q

) (2.43)

Here, E are the chromoelectric and B the chromomagnetic fields.
As expected, the Lagrangian has been decoupled into a particle and an anti-particle
solution. If we compare (2.43) with the Pauli equation in (2.20), we see that the two
equations coincide up to O (1/mQ). We conclude that we made a reasonable choice for
our ansatz and successfully determined the effective Lagrangian.

2.4 Power Counting

The effective Lagrangian derived in Sec. 2.3 is equivalent for systems containing heavy-
light hadrons as well as heavy-heavy mesons. However, the expansion parameter and thus
the order of the contributions varies (cf. [21, 28]).
For systems containing only one heavy quark, the energy scale is dominated by the gluon
dynamics and thus controlled by ΛQCD. Moreover, momentum exchange between the
heavy quark and the light components is also of order ΛQCD. Consequently, for the
covariant derivatives, we find:

|D| ∼ |D0| ∼ ΛQCD. (2.44)

The same is given for the gluon potential Aµ:
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Chapter 2. Effective Theories for Heavy Quarks

|gA| ∼ |gA0| ∼ ΛQCD (2.45)

and:
|gE| ∼ |gB| ∼ Λ2

QCD. (2.46)

One can show, that the contributions in the Lagrangian (2.43) represented by the formal
expansion parameter 1/mn

Q are of order:

(
ΛQCD

mQ

)n
(2.47)

So, (2.43) includes all terms up toO
(ΛQCD

mQ

)2
. In the static limitmQ →∞, the Lagrangian

reduces to

L = ψ†iD0ψ (2.48)

This Lagrangian is referred to as the heavy quark effective theory (HQET) Lagrangian.

Nevertheless, in this thesis we consider systems with more than one heavy quark and
therefore we chose the framework of NRQCD. It can be applied for heavy-heavy systems
as well as for light-heavy systems and is therefore more appropriate to be used for our
purposes. As already discussed in Sec. 2.2, the order parameter is the spatial velocity v,
so we will consider the physical quantities in powers of v.

The spatial momentum and the kinetic energy are given by:

|k| ∼ mQv, Ekin ∼ mQv
2 (2.49)

and thus the covariant derivative is also of order:

|D| ∼ mQv (2.50)

For small distances, the quark-antiquark potential is similar to the Coulomb potential.
Therefore, the kinetic and potential energy are also of the same order, so consequently:

|gA0| ∼ Ekin ∼ mQv
2 (2.51)

From the Schrödinger equation, we can conclude that:

|D0| ∼
∣∣∣∣∣ D

2

2mQ

∣∣∣∣∣ ∼ mQv
2 (2.52)

Finally, using the Yang-Mills equations [30] gives evidence about the vector potentials:

|gE| ∼ m2
Qv

3, |gB| ∼ m2
Qv

4 (2.53)
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2.5. Lattice NRQCD

Referring to the Lagrangian in (2.43), we realise that the included contributions are
up to order v4. In other words, our formal expansion parameter 1/mn

Q is replaced by
1/(v2)n. However, there is one term of O (v4) missing. To detect this term we consider
the expansion of the kinetic energy:

Ekin =
(
m2
Q + k2

) 1
2 −mQ = k2

2mQ

− k4

8m3
Q

+ k6

16m5
Q

+O
(

1
m7
Q

)
(2.54)

We remark that the term D4

8m3
Q
is not included in (2.43), so we have to add it by hand.

The final NRQCD Lagrangian for the particle solution takes on the following shape:

LNRQCD = ψ†
[
iD0 + D2

2mQ

+ gσ ·B
2mQ

+ D4

8m3
Q

+ g

8m2
Q

(
D∗ · E + iσ · (D× E− E×D)

)]
ψ

+O
(
v6
)

(2.55)

2.5 Lattice NRQCD

To continue, we have to put our effective theory on the lattice. Therefore we will first
convert the continuum Lagrangian (2.55) given in Minkowski space-time to Euclidean
space-time. In the next step, we deduce the Green function which makes it possible to
evolve the heavy quark propagator.

2.5.1 Euclidean NRQCD Lagrangian

For transforming to Euclidean space-time, we use the identities

x
(M)
0 = −ix(E)

0 , D
(M)
0 = iD

(E)
0 , E

(M)
i = −iE(E)

i (2.56)

whereas all other quantities remain the same. We use the relation between the actions in
Minkowski and Euclidean space iS(M) = −S(E), so we get:
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Chapter 2. Effective Theories for Heavy Quarks

iS(M) = i
∫
d3x dx

(M)
0 L(M)

NRQCD

= i
∫
d3x dx

(M)
0 ψ†

[
iD

(M)
0 + D2

2mQ

+ gσ ·B(M)

2mQ

+ D4

8m3
Q

+ g

8m2
Q

(
D∗ · E(M) + iσ ·

(
D× E(M) − E(M) ×D

) )]
ψ

= i
∫
d3x

(
−idx(E)

0

)
ψ†
[
i
(
iD

(E)
0

)
+ D2

2mQ

+ gσ ·B(E)

2mQ

+ D4

8m3
Q

+ g

8m2
Q

(
−iD∗ · E(E) + σ ·

(
D× E(E) − E(E) ×D

) )]
ψ

= −
∫
d3x dx

(E)
0 ψ†

[
D

(E)
0 − D2

2mQ

− gσ ·B(E)

2mQ

− D4

8m3
Q

+ ig

8m2
Q

(
D∗ · E(E) + iσ ·

(
D× E(E) − E(E) ×D

))]
ψ

= −
∫
d3x dx

(E)
0 L

(E)
NRQCD = −S(E)

(2.57)

Consequently, the Euclidean Lagrangian is given by (note that we omit the index (E)):

LNRQCD = ψ†
[
D0 −

D2

2mQ

− gσ ·B
2mQ

− D4

8m3
Q

+ ig

8m2
Q

(
D∗ · E + iσ · (D× E− E×D)

)]
ψ

(2.58)

2.5.2 Derivation of the Green Function

In this section we will sketch the derivation of the Green function, i.e. the quark propa-
gator for the lowest order ∝ v2. For a more detailed discussion of the Green function and
further improvements used, cf. [28, 30, 31].
The O (v2) Lagrangian is given by:

L = ψ†
[
D0 −

D2

2mQ

]
ψ +O

(
v4
)

(2.59)

For lattice calculations, we have to discretise our theory so we are moving to a four-
dimensional space-time grid with a total extent of Lµ (µ = 0, 1, 2, 3) and a finite number
of lattice points xµ for each direction with a lattice spacing of a. The quark fields are
located at the nodes of the lattice whereas the gauge fields are represented by gauge links
connecting the lattice points. Mathematically, they are expressed by a unitary matrix
Uµ(x) which connects the lattice point x with the following point in µ-th direction.
In order to transform the Lagrangian (2.59) to a lattice version, the derivatives are re-
placed by forward, backward or centred differences:
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2.5. Lattice NRQCD

a∆(+)
µ ψ(x) = Uµ(x)ψ(x+ aµ̂)− ψ(x)

a∆(−)
µ ψ(x) = ψ(x)− U †µ(x− aµ̂)ψ(x− aµ̂)

∆±µ = 1
2
(
∆(+)
µ + ∆(−)

µ

) (2.60)

The Laplacian operator on the lattice is defined as:

∆(2) =
∑
i

∆(+)
i ∆(−)

i =
∑
i

∆(−)
i ∆(+)

i (2.61)

Consequently, the lattice version of (2.59) looks like:

L = ψ†a

[
∆0 −

∆(2)

2m̂Q

]
ψ (2.62)

with the mass transformed also to dimensionless lattice units m̂Q = a ·mQ.

For the sake of briefness, we introduce the abbreviation

H0 = −∆(2)

2m̂Q

(2.63)

In the next step, we will develop the evolution equation for the heavy quark propagator
by determining the Green function.
The Green function is the inverse of the full Lagrangian kernel, so it is given by:

a (∆0 +H0)Gψ(x, x′) = δ4(x− x′) (2.64)

with x = (τ,x) and x′ = (τ ′,x′). For the time evolution of the Green function, we have
to use the retarded one with τ < τ ′, so

a (∆0 +H0)Gψ(τ,x, τ ′,x′) = 0 (2.65)

Inserting the discrete covariant forward derivative given in (2.60) and using the abbrevi-
ation Gψτ ≡ Gψ(τ,x, τ ′,x′), we find:

U0(x)Gψτ+1 −Gψτ + aH0Gψτ = 0
U0(x)Gψτ+1 = (1− aH0)Gψτ

Gψτ+1 = U †0(x) (1− aH0)Gψτ

(2.66)

Since we are including only terms of O(a), we can rewrite U †0(x) (1− aH0) in a symmetric
way using U †0(x) = e−iaA0 = 1− iaA0 +O(a2), thus:
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U †0(x) (1− aH0) +O(a2)

=U †0(x)− 2U †0(x)aH0

2 +O(a2)

=− aH0

2 U †0(x) + U †0(x)− U †0(x)aH0

2 +O(a2)

=
(

1− aH0

2

)
U †0(x)

(
1− aH0

2

)
+O(a2)

(2.67)

Consequently, we find:

Gψτ+1 =
(

1− aH0

2

)
U †0(x)

(
1− aH0

2

)
Gψτ (2.68)

Note that we are considering the limit mQ → ∞ in the expansion above, but we would
like to perform the calculation with finite mass. However, (2.68) becomes unstable for
small masses (cf. [31]). To solve this problem, one introduces a parameter n to provide
stability:

Gψτ+1 =
(

1− aH0

2n

)n
U †0(x)

(
1− aH0

2n

)n
Gψτ (2.69)

In this work though we are using an improved version of the Green function which is
illustrated in (2.70). A more detailed discussion can also be found in [28, 30].

Gψ(τ,x, τ ′,x′) =
(

1− δH

2

)(
1− H0

2n

)n
U †0(τ − 1,x)

×
(

1− H0

2n

)n (
1− δH

2

)
Gψ(τ − 1,x, τ ′,x′)

(2.70)

In this formulation, Symanzik improvement is applied to remove discretisation errors and
we are working with tree-level values. H0 contains the kinetic terms of leading order
O (v2) and is defined in the same way as introduced in (2.63) (we omit the hat indicating
lattice units in the following):

H0 = −∆(2)

2mQ

(2.71)

The term δH contains additional corrections like the already mentioned Symanzik im-
provement. We can distinguish between O(v4) and O(v6) corrections which are given
by:

δH = δHv4 + δHv6 (2.72)
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2.5. Lattice NRQCD

δHv4 =− c1

(
∆(2)

)2

8m3
Q

+ c2
ig

8m2
Q

(
∇ · Ẽ − Ẽ ·∇

)
− c3

g

8m2
Q

σ
(
∇̃× Ẽ − Ẽ × ∇̃

)

− c4
g

2mQ

σ · B̃ + c5
∆(4)

24mQ

− c6

(
∆(2)

)2

16nm2
Q

(2.73)

δHv6 =− c7
g

8m3
Q

{
∆(2),σ · B̃

}
− c8

3g
64m4

Q

{
∆(2),σ

(
∇̃× Ẽ − Ẽ × ∇̃

)}
− c9

ig2

8m3
Q

σẼ × Ẽ
(2.74)

The contributions with coefficients c1 to c4 are order v4 corrections while c3 and c4 indicate
the leading spin dependent terms. c5 and c6 belong to the temporal and spatial corrections
for H0. The corrections of O(v6) with coefficients c7 to c9 include only spin dependent
terms, i.e. the first correction for the spin. For this work, however, we set c7 = c8 = c9 = 0.
Since we are working at tree-level, all other coefficients ci are equal to 1.

Additionally, the action is tadpole improved using the Landau gauge u0L. For a more
detailed discussion of the tadpole improvement, we refer to [32, 33].
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Chapter 3

Lattice QCD Setup and Error
Analysis

In this chapter, we present the lattice gauge configurations used as well as a discussion of
errors occurring in lattice calculations.
Our computations are performed for different sets of gauge configurations which differ in
lattice spacing, spatial and temporal extent, and pion mass. Lattice results depend on
these parameters, so consequently for a detailed study, one has to estimate the influence
of these values and extrapolate them to real world physics. The ensembles used are
characterised in the following section.
As a consequence, the results extracted from lattice calculations must not be assumed as
exact but are rather including errors caused by several different reasons. In this chapter,
we will therefore also specify and discuss the different sources of errors and introduce the
methods used in this thesis to estimate their numerical values.

In general, one distinguishes between statistical errors and systematic errors which to-
gether form the total error.
As the name suggests, the statistical error is caused by statistical variations due to the
probability distribution used in lattice calculations. There are well-established methods
to compute the value of this error. In Sec. 3.2 we describe the reason for statistical
uncertainties in more detail and present how to compute them.
Systematic error sources are multiple. They arise as a consequence of incorrect or rather
imprecise frameworks or measurement methods. For lattice calculations, one example is
the utilization of a finite lattice spacing and hence the lattice discretization instead of a
continuous space-time. We will discuss all occurring systematic errors in Sec. 3.3. In
contrast to determining statistical errors, no standard method is available for systematic
uncertainties. However, we present our method of choice applied in this thesis.
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Chapter 3. Lattice QCD Setup and Error Analysis

3.1 Lattice QCD Setup

There are several different sets of gauge link configurations available which have been
used to perform computations. All of them are generated by the RBC and UKQCD
collaboration using an Iwasaki gauge action and Nf = 2 + 1 domain-wall fermions. The
first one is named ensemble C54 which comprises 1676 configurations. Information about
this ensemble can be found in Table 3.1 or [18, 42].
The following ensembles are generated using all-mode-averaging (AMA) with 32 or 64
sloppy and 1 or 2 exact measurements per configuration. They differ in the number of
lattice points, lattice spacing, and pion mass. Depending on the ensemble, there are
different numbers of measurements available. We distinguish between the two coarse
lattices C005 and C01, the fine lattices F004 and F006, and finally the coarse lattice
C00078 at almost physical pion mass. More details about these ensembles are included
in Table 3.1 or [45].

For all cases, the light quark propagators are computed using point-to-all propagators
(cf. [41]). That means, for each measurement, there is one fixed point source with a
determined location which is the starting point for the light quark propagator connected
to all other points. The heavy quark propagators are treated in the framework of NRQCD
(cf. Sec. 2) with tadpole improved action (for more details, cf. [28, 42]). For all quark
propagators, Gaussian smearing is enabled.

The all-mode-averaging is applied for each configuration n independently by evaluating:

O
(n)
AMA = O(n)

ex −O
(n)
sl,i=1 + 1

32

32∑
i=1

O
(n)
sl,i (3.1)

where O describes an observable, e.g. the correlation function C(t) for a sloppy (O(n)
sl,i )

or exact (O(n)
ex ) measurement. Here, n is the current configuration number, with n =

1, . . . , Nmeas,ex while i labels the sloppy measurements for the given configuration. O(n)
sl,i=1

names the first sloppy observable, which has equal source location as the exact measure-
ment O(n)

ex . O(n)
AMA is the final value for the n-th configuration.

Ens. N3
s ×Nt a [fm] am

(sea)
u;d am(sea)

s am
(val)
u;d mπ [MeV] Nmeas

C54 243 × 64 0.1119(17) 0.005 0.04 0.005 336(5) 1676
C005 243 × 64 0.1106(3) 0.005 0.04 0.005 340(1) 9952 sl, 311 ex
C01 243 × 64 0.1106(3) 0.01 0.04 0.01 431(1) 9056 sl, 283 ex
F004 323 × 64 0.0828(3) 0.004 0.03 0.004 303(1) 8032 sl, 251 ex
F006 323 × 64 0.0828(3) 0.006 0.03 0.006 360(1) 14144 sl, 442 ex

C00078 483 × 96 0.1141(3) 0.00078 0.0362 0.00078 139(1) 2560 sl, 80 ex

Table 3.1: Gauge link ensembles C54, C005, C01, F004, F006, and C00078. Each en-
semble, except for C54, uses all-mode-averaging with 32 or 64 sloppy and 1 or 2 exact
measurements per configuration. Ns/Nt: spatial/temporal lattice extent in units of a, a:
lattice spacing, am(sea)

u;d : light sea quark mass, am(sea)
s : strange sea quark mass, am(val)

u;d :
light valence quark mass, mπ: pion mass, Nmeas: number of measurements taken on dif-
ferent gauge link configurations and/or point source locations, “sl“: sloppy, “ex“: exact.
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3.2 Statistical Errors

3.2.1 Sources of Statistical Errors

Statistical uncertainties arise as a consequence of observables which are generated by
probability distributions. In the case of lattice calculations, path integrals describing
physical observables are evaluated via Monte Carlo simulations. Therefore, every gener-
ated configuration is based on the associated probability distribution and hence statistical
discrepancies appear. To reach a sensible result, a large number of such configurations
is necessary while the statistical fluctuations are expressed by the computed statistical
error.

3.2.2 Jackknife Method

In this thesis, our final results and the associated statistical errors based on the available
configurations are computed using the Jackknife method.
We call the number of samples - which is equal to the number of configurations - N . For
each sample, the observable of interest xi is computed independently where i = 1, . . . , N
denotes the number of the sample. For uncorrelated data, we constructN reduced samples
by removing the i-th entry of the original data and computing the average x̃i for each
reduced sample:

x̃i = 1
N − 1

N∑
k 6=i

xk (3.2)

We also compute the average of the original sample defined by:

x̄ = 1
N

N∑
k

xk (3.3)

The Jackknife error is then computed via:

σ2
x̄ ≡

N − 1
N

N∑
i=1

(x̃i − x̄)2 (3.4)

Finally, the statistical error is given by the square root of the variance, so we call it σx̄.

If the data are correlated, it is possible to take this into account by using a binning
method. If the number of data points assembled in one bin is Nbin, then the total number
of data is reduced to N/Nbin, while additional data which do not completely fill one bin
are discarded. The data set is now composed of the averages Xi with i = 1, . . . , N/Nbin of
every bin. The Jackknife error is computed in the same way as explained for uncorrelated
data but using now the binned averages Xi instead of the raw data xi.
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Chapter 3. Lattice QCD Setup and Error Analysis

3.3 Systematic Errors

3.3.1 Sources of Systematic Errors

For a successful and meaningful lattice computation it is essential to consider all possible
systematic errors which might affect the results. In the following paragraph we will there-
fore discuss occurring systematic uncertainties on the lattice. An enormous advantage of
lattice QCD as a first principle approach is that all occurring errors can be controlled and
systematically decreased.

First, we are introducing a four-dimensional space-time grid with a finite lattice spacing
a instead of a continuous space-time. However, real world physics is only valid for a zero
lattice spacing a which is not feasible. Therefore, it is obvious that assuming a discrete
space-time with a lattice spacing a 6= 0 causes uncertainties, the so-called discretization
errors. Since each lattice QCD result is depending on the lattice spacing a, one aims
to quantify these errors and extrapolate the results to the physical point. This can be
done by applying the continuum limit a→ 0. Technically, one performs calculations with
various lattice spacings while keeping all additional parameters constant. Finally, using
these results, one can extrapolate them to the physical point at a = 0.
Further systematic errors are caused by the finite volume of the space-time grid. If this
lattice is chosen too small, particles cannot be accommodated inside or particle interac-
tions are strongly affected. Such results are not reliable and cannot represent the real
world physics in an infinite volume. Therefore, one has to ensure that the lattice extent
is sufficiently large. For this purpose, one repeats the calculation for different physical
volumes with fixed lattice spacing. Comparing the computed results, one can estimate
the influence of finite volumes. The lattices used in this work are comparatively large, so
we neglect finite volume effects.
Another systematic error appears as a consequence of unphysical heavy quark masses. Lat-
tice calculations become the more expansive the lighter the quark masses are. Therefore
it is numerically cheaper and more efficient to perform calculations using heavier quark
masses. However, we have to extract reliable physical values so we extrapolate our results
to the physical mass in a similar way as done for discretization errors. Instead of using
different lattice spacings, we choose several (unphysical) quark masses and extrapolate
the results to the physical point.
For completeness, we also mention systematic errors due to quenching. This refers to the
fact that the spontaneous creation and annihilation of quark pairs (so-called sea quarks)
from the vacuum is neglected in our theory. However, the occurring errors are usually
much smaller compared to statistical errors and therefore will not be discussed in this
thesis.
Finally, there are also systematic errors which arise during the data analysis. Our data
are fitted to a certain functional relation, however, the fitting range is generally chosen
only eye-guided and thus determined very subjectively. In the following paragraph we
discuss how to roughly estimate an associated systematic error.
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3.3.2 Estimating Systematic Errors

Having generated the raw data in the numerical simulation, we apply the generalized
eigenvalue problem (GEP) and evaluate our data using a χ2 minimizing plateau fit. More
details about the GEP will be given in Sec. 6.3. However, the fit range [tmin, tmax] for
the least-χ2 fit has to be chosen manually, thus the actual choice influences the obtained
results. In order to estimate the incorporated systematic error we perform a large number
N of fits with

• Tmin ≤ tmin ≤ Tmax − 1

• tmin < tmax ≤ Tmax

Tmin and Tmax are the lower/upper boundary for possible fit regions while they are spec-
ified in such a way that fits are feasible as well as sensible.

For each fit, we get a result xi with an associated statistical error ∆xi and χ2
i determining

the quality of the fit. The index i = 1, . . . , N denotes the different fits performed.
In the next step, we construct a distribution using the results xi weighted by e(−χ2

i /d.o.f.).
The central value is finally determined by the median xi=Med of this distribution while the
final statistical error is given by the associated statistical error ∆xi=Med. The lower/upper
systematic error is constructed using the difference between the 16th/84th percentiles and
the median. We chose the 16th/84th percentiles, since this represents 1σ corresponding to
a Gaussian distribution. As our constructed distribution will not be symmetric in general,
the systematic error will consequently be asymmetric, too. For a more detailed discussion
of this method, cf. [34].
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Chapter 4

Investigation of Bottomonium States
by Means of NRQCD

This chapter focuses on the investigation of the well-known bottomonium states ηB(1S)
and Υ(1S). It provides a first test of the non-relativistic QCD concepts and allows us
to study the implementation of heavy quark propagators for well-established states. Fur-
thermore, it enables us to set the scale for the lattice configuration used, since the heavy
quark masses are shifted to unphysical values as a consequence of applying NRQCD. We
will follow the standard method in lattice QCD for hadron spectroscopy: After deter-
mining the analytic form of the correlation function and computing its value numerically,
we will extract the bottomonium masses by solving the generalized eigenvalue problem
(GEP).
We use the two creation operators

OηB(t) =
∑

x
b̄(x, t)γ5b(x, t)

OΥ(t) =
∑

x
b̄(x, t)γjb(x, t)

(4.1)

which generates the ηB(1S) and Υ(1S) states with their associated quantum numbers.

The two discussed bottomonium states are both bb̄ pairs. We can distinguish between
them by their quantum numbers and especially their angular momenta. Whereas the
ηB has quantum numbers JPC = 0−+ and is accordingly a pseudo scalar meson, the
Υ is characterized as a vector meson with JPC = 1−−. Nevertheless, their masses are
quite similar at approximately 9 GeV. More precisely, they have been measured with
mηB = 9399.0(2.3) MeV and mΥ = 9460.30(26) MeV (cf. [1]). We aim to achieve
agreement with these experimental data by performing calculations in the framework
of NRQCD.

Our discussion starts by proving that the chosen operators generate the correct quantum
numbers and will continue afterwards by deriving the correlation functions.
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Chapter 4. Investigation of Bottomonium States by Means of NRQCD

4.1 bb̄ Quantum Numbers

The two bb̄ creation operators are specified in (4.1) and can be generalized via Oi with
i ∈ {ηB,Υ}. A bottomonium state is generated if the creation operator Oi is acting on
the vacuum state |Ω〉:

|Φi〉 = Oi|Ω〉 (4.2)

In the next step, we will apply the quantum number operators given in Appendix A.2
to the two bottomonium states and extract their associated quantum numbers for parity,
charge conjugation, and angular momentum. We formulate the calculations in Euclidean
representation and omit the space-time arguments for the sake of simplicity.

4.1.1 The ηB(1S) State

Applying the creation operator OηB to the vacuum yields the particle state |ΦηB〉 =
b̄γ5b|Ω〉. Subsequently we will compute its quantum numbers explicitly.

Parity

First of all, we determine the parity of the ηB state. It is defined as the eigenvalue of the
parity operator (A.1) acting on the particle state.

P|ΦηB〉 = P(b̄γ5b)|Ω〉 = P(b†)γ0γ5P(b)|Ω〉 = (γ0 b)†γ0γ5γ0 b|Ω〉
= b†γ0γ0γ5γ0 b|Ω〉 = b†γ5γ0 b|Ω〉 = −b†γ0γ5 b|Ω〉 = −1 · |ΦηB〉

(4.3)

Conveniently, the parity is negative (P = −).

Charge Conjugation

We proceed with the charge conjugation whose transformation behaviour is given in (A.2).
Applying it to |ΦηB〉 yields:

C|ΦηB〉 = C(b̄γ5b) |Ω〉 = C(b̄)γ5C(b) |Ω〉 = −bTCγ5C−1b̄T |Ω〉
= −bTγ2γ0γ5γ0γ2b̄

T |Ω〉 = −bTγ2γ0γ0γ2γ5b̄
T |Ω〉 = −bTγ5b̄

T |Ω〉
= −bTγT5 b̄T |Ω〉 = b̄γ5b |Ω〉 = +1 · |ΦηB〉

(4.4)

Therefore the charge conjugation is positive (C = +).

Angular momentum

The last quantum number to be calculated is the angular momentum. We will restrain
the computation to the z-component while the other directions are completely analogous.
The rotation operator for small angular is applied, i.e. we use the rotation operator’s
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4.1. bb̄ Quantum Numbers

expansion including terms up to order O(α) given in (A.3). Concerning the ηB state, we
get:

R3(α)|ΦηB〉 =R3(α)(b̄γ5b) |Ω〉

=
[(

1 + α

4 [γ1, γ2]
)
b
]†
γ0γ5

(
1 + α

4 [γ1, γ2]
)
b |Ω〉+O(α2)

=b†
(

1 + α

4
(
γ†2γ

†
1 − γ

†
1γ
†
2

))
γ0γ5

(
1 + α

4 (γ1γ2 − γ2γ1)
)
b |Ω〉+O(α2)

=b†γ0γ5

{
1 + α

4 [(γ2γ1 − γ1γ2) + (γ1γ2 − γ2γ1)]
}
b|Ω〉+O(α2)

=b̄γ5b |Ω〉+O(α2) = |ΦηB〉+O(α2)

(4.5)

Comparing to R3(α)|Ψ〉 = [1 + iαJ3] |Ψ〉 + O(α2), it is obvious that J3 = 0. It can be
easily shown that the analogous calculation for R1,2(α) yields also J1,2 = 0. Therefore,
the total angular momentum is J = 0 and the supposed quantum numbers JPC = 0−+

are verified.

4.1.2 The Υ(1S) State

We proceed with the same calculation for |ΦΥ〉 = b̄γjb|Ω〉 which is generated by applying
OΥ - given in (4.1) - to the vacuum. The quantum numbers are computed analogously to
the previous section.

Parity

P|ΦΥ〉 = P(b̄γjb)|Ω〉 = P(b†)γ0γjP(b)|Ω〉 = (γ0 b)†γ0γjγ0 b|Ω〉
= b†γ0γ0γjγ0 b|Ω〉 = b†γjγ0 b|Ω〉 = −b†γ0γj b|Ω〉 = −1 · |ΦηB〉

(4.6)

Consequently, we find a negative parity (P = −).

Charge Conjugation

C|ΦΥ〉 = C(b̄γjb) |Ω〉 = C(b̄)γjC(b) |Ω〉 = −bTCγjC−1b̄T |Ω〉
= −bT

(
−γTj

)
b̄T |Ω〉 = bTγTj b̄

T |Ω〉 = −b̄γjb |Ω〉 = −1 · |ΦΥ〉
(4.7)

with:

CγjC−1 = γ2γ0γjγ0γ2 =

−γ2 , j = 2
+γj , j 6= 2

=

−γT2 , j = 2
−γTj , j 6= 2

= −γTj (4.8)

So the charge conjugation is negative (C = −).
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Angular momentum

R3(α)|ΦΥ〉 =R3(α)(b̄γjb) |Ω〉

=
[(

1 + α

4 [γ1, γ2]
)
b
]†
γ0γj

(
1 + α

4 [γ1, γ2]
)
b |Ω〉+O(α2)

=b†
(

1− α

4 [γ1, γ2]
)
γ0γj

(
1 + α

4 [γ1, γ2]
)
b |Ω〉+O(α2)

(4.9)

We have to evaluate this expression for all three components j = 1, 2, 3 to determine
the transformation behaviour of the 3-dimensional spinor. The detailed calculation is
performed in Appendix C.1 and yields J = 1. Finally, the quantum numbers of Υ are
given by JPC = 1−−.

4.2 Correlation Functions

Besides the operators given in (4.1) the associated daggered operators are required to
compute the correlation functions Ci(t):

O†ηB(t) = −
∑

x
b̄(x, t)γ5b(x, t)

O†Υ(t) = −
∑

x
b̄(x, t)γjb(x, t)

(4.10)

In the following calculation the space-time arguments are omitted after the first line to
enhance readability. Moreover, the arguments (x, t) are included in the unprimed indices
while the arguments (y, 0) are expressed by the primed ones. The correlation functions
for the two bottomonium states are consequently given by:

Correlation Function for ηB(1S) State

CηB(t) =
〈
OηB(t)O†ηB(0)

〉
= −

∑
x,y

〈
b̄(x, t)γ5b(x, t) b̄(y, 0)γ5b(y, 0)

〉
= −

∑
x,y

〈
b̄aAγ5ABb

a
B b̄

a′

A′γ5A′B′b
a′

B′

〉
= −

∑
x,y

γ5ABγ5A′B′
〈
b̄aAb

a
B b̄

a′

A′b
a′

B′

〉
=
∑
x,y

〈
Ba′a
B′Aγ5AB B

aa′

BA′γ5A′B′
〉

=
∑
x,y

〈
Tr
[
B(x, y)γ5B(y, x)γ5

]〉
=
∑
x,y

〈
Tr
[
B(x, y)B(x, y)†

]〉
(4.11)

Correlation Function for Υ(1S) State

CΥ(t) =
〈
OΥ(t)O†Υ(0)

〉
= −

∑
x,y

〈
b̄(x, t)γjb(x, t) b̄(y, 0)γjb(y, 0)

〉
= −

∑
x,y

γjABγjA′B′
〈
b̄aAb

a
B b̄

a′

A′b
a′
B′

〉
=
∑
x,y

〈
Ba′a
B′AγjAB B

aa′

BA′γjA′B′
〉 (4.12)
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=
∑
x,y

〈
Tr
[
B(x, y)γjγ5B(x, y)†γ5γj

]〉
=
∑
x,y

〈
Tr
[
γ5γjB(x, y) [B(x, y)γ5γj]†

]〉

Bab
AB ≡ baAb̄

b
B is the heavy quark propagator. We apply the γ5-hermiticity for the quark

propagators: B(y, x) = γ5 [B(x, y)]† γ5 ≡ γ5B(x, y)†γ5.

4.3 Numerical Results

Our calculations are performed for ensemble C54 presented in Table 3.1.

The correlation function is explicitly given by:

Ci(t) =
〈
Oi(t)O†i (0)

〉
=
∑
n

〈Ω|Oi(0)|n〉
〈
n|O†i (0)|Ω

〉
e−E

(i)
n t (4.13)

E(i)
n denotes the n-th energy eigenvalue while E(i)

0 corresponds to the ground state energy.
For sufficiently large times t we can approximate the sum by omitting all contributions
with n ≥ 1 so that only the ground state energy level remains. To extract now the ground
state energy, we compute the so-called effective mass aE(i)

eff (t) which is given by:

aE
(i)
eff (t) = ln

(
Ci(t)
Ci(t+ a)

)
(4.14)

For large times t, it reaches a plateau which can be identified with the ground state energy,
so aE(i)

eff (t) t→∞−−−→ aE
(i)
0 . The results for the two bottomonium states are presented in Fig.

4.1.
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Figure 4.1: Effective masses for bottomonium states. (left): ηB meson. (right): Υ
meson. Results are extracted by a plateau fit in the region 5 ≤ t ≤ 30.

Extracting the effective masses from Fig. 4.1 and converting them to physical units
using the lattice spacing from Table 3.1 and the convention for natural units 1 fm−1 =
197.3 MeV, we find:
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mηB = 0.2486(2) · 1
0.1119(17) fm = 438.33 MeV± 7.01 MeV

mΥ = 0.2841(3) · 1
0.1119(17) fm = 500.92 MeV± 8.14 MeV

(4.15)

Note that in the NRQCD framework the heavy quark masses are shifted and therefore
these results do not represent the physical bottomonium masses. However, the mass
differences are unaffected and thus the mass splitting between the calculated bottomo-
nium masses has to coincide with the experimental energy splitting. Taking advantage of
this fact, we consider the numerically determined energy splitting and compare it to the
experimental one in order to prove the validity of our results.

The mass difference for our calculated effective masses is given by:

∆m = mΥ −mηB = 62.59 MeV± 15.15 MeV (4.16)

while the physical mass splitting can be computed using the data from [1]:

∆mphys = mΥ,phys −mηB ,phys = 61.30 MeV± 2.56 MeV (4.17)

Accordingly, we can state good agreement for our numerical results with the experimental
data.

We will conclude by setting the scale for ensemble C54. Therefore, we choose one hadron,
in this case the ηB meson, and identify its mass mηB with the associated physical mass
mηB ,phys = 9399.0 MeV±2.3 MeV. In the next step, we do not extract absolute values from
our lattice calculations but the relative differences compared to the mass mηB . Finally,
this mass difference is added to the specified mass mηB ,phys to receive the physical mass
of the investigated hadron.
So for instance, the real mass mΥ,real is computed by adding the difference ∆m in (4.16)
to mηB ,phys:

mΥ,real = mηB ,phys + ∆m = 9461.59 MeV± 17.45 MeV (4.18)

This is consistent with the experimental results for the Υ mass of mΥ,phys = 9460.30 MeV
± 0.26 MeV.

4.4 Summary

In this chapter, we successfully determined the energy splitting between the two bot-
tomonium states ηB(1S) and Υ(1S) by means of NRQCD and proved agreement with the
experimental results. Moreover, we illustrated how to set the scale in the framework of
NRQCD using the bottomonium states exemplarily.
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Chapter 5

Investigation of b̄b̄bb by Means of
NRQCD

In this chapter, we concentrate on a four-quark system consisting of four bottom quarks.
The b̄b̄bb system has recently been intensely discussed in high-energy physics and there
have arisen conflicting views if a bound state exists or not (e.g. cf. [36, 37, 38]). This
system enables us to focus only on heavy quarks and depicts an ideal approach for dis-
cussing four-quark systems with lattice NRQCD. We restrict ourselves to the JPC = 1+−

channel and use a simplified operator basis containing two creation operators. Here, we
search for a b̄b̄bb tetraquark with a mass below the lowest non-interacting bottomonium
pair threshold. However, we do not claim to discuss the system in detail. For a more
elaborate lattice QCD investigation, we refer to [36].
In our investigation, we include the two bottomonium states ηB and Υ presented in Chap-
ter 4 to generate the four-quark system. We distinguish between a mesonic molecule and
a scattering state. The creation operators are obtained by combining OηB and OΥ from
(4.1). The quantum numbers can be derived in the same way as done in Sec. 4.1 or easily
extracted from the quantum numbers of ηB and Υ.

Mesonic Molecule:

The mesonic molecule is gained by an equal spatial location for both bottomonium mesons.
Mathematically, this means that we project the total momentum to zero. The operator
reads:

O[ηBΥ](0)(t) =
∑

x
b̄(x, t)γ5b(x, t) b̄(x, t)γjb(x, t) (5.1)

Scattering State:

For the scattering state, the mesons are spatially separated, so we distinguish the space-
time indices for the ηB and the Υ meson. This case coincides with projecting the momenta
separately to zero for each meson. The operator is given by:

OηB(0)Υ(0)(t) =
∑
x,y

b̄(x, t)γ5b(x, t) b̄(y, t)γjb(y, t) (5.2)

A detailed discussion of the two possible momentum projections and the associated oper-
ator shapes will be given in Sec. 6.1.2.

35



Chapter 5. Investigation of b̄b̄bb by Means of NRQCD

5.1 Correlation Matrix

Instead of single correlation functions as in the previous chapter (cf. Chapter 4) we have
got a set of two creation operators which can be used both as sink and source operators.
Consequently, we get a 2 × 2 correlation matrix with Oi,Oj ∈ {O[ηBΥ](0),OηB(0)Υ(0)} in
contrast to a single correlation function:

Cij(t) = 〈Oi(t)O†j(0)〉 (5.3)

sink
source

O†[ηBΥ](0) O†ηB(0)Υ(0)

O[ηBΥ](0) c. n.c.
OηB(0)Υ(0) c. n.c.

Table 5.1: The correlation matrix for b̄b̄bb. Elements labelled with c. are computed in
this chapter by numerical calculation while elements labelled n.c. are not computed due
to numerical efficiency.

Due to the numerical efficiency, we restrict ourselves to the mesonic operator O†[ηBΥ](0)
at the source and compute the two associated correlation matrix elements. We do not
consider the scattering state operator O†ηB(0)Υ(0) at the source since calculations would
become numerically extremely expansive as a consequence of the spatial separated source
locations. Additionally, we keep the source position fixed.

The two included correlation functions are given by:

C11(t) ≡
〈
O[ηBΥ](0)(t)O†[ηBΥ](0)(0)

〉
=
∑

x

〈
b̄(x, t)γ5b(x, t) b̄(x, t)γjb(x, t) b̄(y, 0)γ5b(y, 0) b̄(y, 0)γjb(y, 0)

〉 (5.4)

C21(t) ≡
〈
OηB(0)Υ(0)(t)O†[ηBΥ](0)(0)

〉
=
∑
x,y

〈
b̄(x, t)γ5b(x, t) b̄(y, t)γjb(y, t) b̄(z, 0)γ5b(z, 0) b̄(z, 0)γjb(z, 0)

〉 (5.5)

We will perform the calculation for these correlation functions in detail to illustrate the
proceeding which is equivalent to the approach for the heavy-light tetraquark discussed
in Chapter 6.

Both correlation matrix elements presented can be evaluated together if we first compute
C21(t) and finally identify y = x and omit the sum over y to gain C11(t).

For our computation, we start with the latter term in (5.5):
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∑
x,y

〈
b̄(x, t)γ5b(x, t) b̄(y, t)γjb(y, t) b̄(z, 0)γ5b(z, 0) b̄(z, 0)γjb(z, 0)

〉

=
∑
x,y

γ5ABγjCDγ5A′B′γjC′D′

〈
b̄aAb

a
B b̄

b
Cb

b
Db̄

a′

A′b
a′

B′ b̄
b′

C′b
b′

D′︸ ︷︷ ︸
(∗)

〉 (5.6)

while we write the Dirac and colour indices explicitly. Furthermore, we improve readability
by including the space-time arguments in the colour indices via the identification:

(x, t)↔ a, (y, t)↔ b, (z, 0)↔ a′, b′ (5.7)

We continue with the expression (∗) which can be reformed in four different ways to heavy
quark propagators:

(∗)(1) = −baB b̄bCbbDb̄a
′

A′b
a′

B′ b̄
a
Ab̄

b′

C′b
b′

D′ = −b̄bCbbDbaB b̄a
′

A′b
a′

B′ b̄
a
Ab̄

b′

C′b
b′

D′

= +baB b̄a
′

A′b
a′

B′ b̄
a
Ab

b
Db̄

b′

C′b
b′

D′ b̄
b
C = Baa′

BA′B
a′a
B′AB

bb′

DC′B
b′b
D′C

(5.8)

(∗)(2) = −baB b̄bCbbDb̄a
′

A′b
a′

B′ b̄
a
Ab̄

b′

C′b
b′

D′ = +b̄bCbbDb̄a
′

A′b
a′

B′ b̄
a
Ab

a
B b̄

b′

C′b
b′

D′

= −Bba′

DA′B
a′a
B′AB

ab′

BC′B
b′b
D′C

(5.9)

(∗)(3) = −baB b̄bCbbDb̄a
′

A′b
a′

B′ b̄
b′

C′b
b′

D′ b̄
a
A = −b̄bCbbDbaB b̄a

′

A′b
a′

B′ b̄
b′

C′b
b′

D′ b̄
a
A

= −baB b̄a
′

A′b
a′

B′ b̄
b
Cb

b
Db̄

b′

C′b
b′

D′ b̄
a
A = −Baa′

BA′B
a′b
B′CB

bb′

DC′B
b′a
D′A

(5.10)

(∗)(4) = −baB b̄bCbbDb̄a
′

A′b
a′

B′ b̄
b′

C′b
b′

D′ b̄
a
A = +bbDb̄a

′

A′b
a′

B′ b̄
b
Cb

a
B b̄

b′

C′b
b′

D′ b̄
a
A

= Bba′

DA′B
a′b
B′CB

ab′

BC′B
b′a
D′A

(5.11)

Combining the four terms (5.8) to (5.11) and inserting them in (5.6) yields the final form
of the correlation function:

=
∑
x,y

γ5ABγjCDγ5A′B′γjC′D′
〈
Baa′

BA′B
a′a
B′AB

bb′

DC′B
b′b
D′C −Bba′

DA′B
a′a
B′AB

ab′

BC′B
b′b
D′C

−Baa′

BA′B
a′b
B′CB

bb′

DC′B
b′a
D′A +Bba′

DA′B
a′b
B′CB

ab′

BC′B
b′a
D′A

〉 (5.12)

=
∑
x,y
〈Tr [B(x, z)γ5B(z, x)γ5] Tr [B(y, z)γjB(z, y)γj]

− Tr [B(y, z)γ5B(z, x)γ5B(x, z)γjB(z, y)γj]

− Tr [B(x, z)γ5B(z, y)γjB(y, z)γjB(z, x)γ5]

+ Tr [B(y, z)γ5B(z, y)γj] Tr [B(x, z)γjB(z, x)γ5]〉

(5.13)
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=
∑
x,y

〈
Tr
[
B(x, z)B(x, z)†

]
Tr
[
B(y, z)γjγ5B(y, z)†γ5γj

]
− Tr

[
B(y, z)B(x, z)†B(x, z)γjγ5B(y, z)†γ5γj

]
− Tr

[
B(x, z)B(y, z)†γ5γjB(y, z)γjγ5B(x, z)†

]
+ Tr

[
B(y, z)B(y, z)†γ5γj

]
Tr
[
B(x, z)γjγ5B(x, z)†

]〉
(5.14)

Here Bab
AB ≡ baAb̄

b
B is the bottom quark propagator and in the last step, we apply the

γ5-hermiticity B(x, y) = γ5 [B(y, x)]† γ5. We will use B(y, x)† ≡ [B(y, x)]† to increase
readability. Note that this is not equivalent to B†(x, y) = [B(y, x)]†. We also remark the
use of four-dimensional arguments, e.g. x = (x, t).

We receive C11(t) by setting y = x and omitting the summation over y:

C11(t) =
∑

x

〈
Tr
[
B(x, z)B(x, z)†

]
Tr
[
B(x, z)γjγ5B(x, z)†γ5γj

]
− Tr

[
B(x, z)B(x, z)†B(x, z)γjγ5B(x, z)†γ5γj

]
− Tr

[
B(x, z)B(x, z)†γ5γjB(x, z)γjγ5B(x, z)†

]
+ Tr

[
B(x, z)B(x, z)†γ5γj

]
Tr
[
B(x, z)γjγ5B(x, z)†

]〉
(5.15)

Since the double sum in C21(t) increases the time for numerical calculation extremely,
one gets rid of this problem by factorizing the sums. If necessary, traces and sums are
interchanged. The expectation value is reached by averaging over several configurations,
so the angled brackets are omitted and we get the factorized formula for the correlation
function:

C21(t) =
(∑

x
Tr
[
B(x, z)B(x, z)†

])(∑
y

Tr
[
B(y, z)γjγ5B(y, z)†γ5γj

])

− Tr
[(∑

x
B(x, z)†B(x, z)

)
γjγ5

(∑
y
B(y, z)†γ5γjB(y, z)

)]

− Tr
[(∑

x
B(x, z)†B(x, z)

)(∑
y
B(y, z)†γ5γjB(y, z)

)
γjγ5

]

+
(∑

x
Tr
[
B(x, z)B(x, z)†γ5γj

])(∑
y

Tr
[
B(y, z)γjγ5B(y, z)†

])
(5.16)
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5.2 Numerical Results

For calculation, we are using the gauge link configurations of ensemble C54 presented
in Table 3.1. We compute the effective masses for the two presented correlation matrix
elements from Table 5.1 and compare the results to the ηBΥ threshold. For a bound b̄b̄bb
state, the effective mass has to be lower than the threshold energy which is obtained by
the sum of aEηB + aEΥ computed in Chapter 4. We display the effective masses aEeff(t)
in Fig. 5.1.
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Figure 5.1: Effective masses for the b̄b̄bb system. (left): Correlation matrix element C11.
(right): Correlation matrix element C21.

As already mentioned above we are interested in a possible bound state, so we have to
compare the results of Fig. 5.1 with the ηBΥ threshold. Fig. 5.2 illustrates the effective
masses for both correlation functions as well as the threshold energy. It is obvious that
the lowest energy level decreases only till it reaches the threshold but it does not sink
below. This gives evidence that no bound state can be formed: The energetically most
convenient state is realised by two independent mesons.
Furthermore, the numerical results are presented in Table 5.2. They support the visual
conclusion: Within errors, the mass difference between the b̄b̄bb energy and the threshold
is close to zero. If we take into account that systematic uncertainties due to the chosen fit
ranges can slightly affect the determined effective masses, we deduce thus that no bound
state is formed.

aEηB + aEΥ 0.5334(7)
aEC21 0.5364(9)

∆E [MeV] 5.3(2.8)

Table 5.2: Threshold energy and effective mass for C21 as well as energy difference to
threshold in MeV for the b̄b̄bb system.

We can extract additional information from Fig. 5.2: The effective mass for the correlation
function including a scattering state decreases faster and reaches the threshold prior to
the correlation function with the two mesonic operators. This effect can be investigated
in more detail by considering the general correlation function:
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Cij(t) =
〈
Ω|Oi(t)O†j(0)|Ω

〉
=
∑
n

〈
Ω|Oi(0)|n

〉
︸ ︷︷ ︸

Z
(n)
i

〈
n|O†j(0)|Ω

〉
︸ ︷︷ ︸

Z
∗(n)
j

e−Ent (5.17)

with the abbreviations Z(n)
i and Z

∗(n)
j . If we take all contributions into account, the

effective mass is given by:

aEeff(t) = ln
(

Cij(t)
Cij(t+ a)

)
= ln

 ∑
n Z

(n)
i Z

∗(n)
j e−Ent∑

n Z
(n)
i Z

∗(n)
j e−En(t+a)

 (5.18)

Approximating the correlation functions, we include only the ground state for the denom-
inator and ground state plus first excited state for the nominator:

aEeff(t) = ln
(

Cij(t)
Cij(t+ a)

)
' ln

Z(0)
i Z

∗(0)
j e−E0t + Z

(1)
i Z

∗(1)
j e−E1t

Z
(0)
i Z

∗(0)
j e−E0(t+a)


= ln

(
eaE0

)
+ ln

Z(0)
i Z

∗(0)
j e−E0t + Z

(1)
i Z

∗(1)
j e−E1t

Z
(0)
i Z

∗(0)
j e−E0t


=aE0 + ln

1 +
Z

(1)
i Z

∗(1)
j

Z
(0)
i Z

∗(0)
j

e−(E1−E0)t


'aE0 +

Z
(1)
i Z

∗(1)
j

Z
(0)
i Z

∗(0)
j

e−(E1−E0)t

(5.19)

E0 describes the ground state energy while the additional term is the first correction
due to higher state contributions. If the considered operator has a large overlap with
the ground state, i.e. the additional contributions Z(1)

i , Z
∗(1)
j are small compared to the

ground state, the plateau value of Eeff(t) will be reached faster.
Applying this to our case, the plateau is reached earlier when including the scattering
state, so the overlap with the ground state must be larger. In other words, the scattering
state describes the four-quark system better than a mesonic molecule. This confirms our
numerical result, consequently, there is no evidence for a bound b̄b̄bb tetraquark state.
The same results have been obtained by the detailed study of this system in [36].
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Figure 5.2: Effective masses for both components of b̄b̄bb as well as the threshold energy
aEηB + aEΥ.

5.3 Summary

In this chapter, we discussed the b̄b̄bb tetraquark system using NRQCD and searched for
the existence or non-existence of a bound state. We studied only the JPC = 1+− channel
which is constructed using the two bottomonium states ηB and Υ. Our calculations do
not reveal any evidence of a b̄b̄bb bound state in this channel and predict rather a ηB and
Υ pair as energetically favourable. This is in accordance with a further b̄b̄bb lattice QCD
study (cf. [36]).
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Chapter 6

Investigation of b̄b̄ud by Means of
NRQCD

In this chapter, we will investigate a tetraquark system containing two heavy antiquarks
b̄ and two light quarks u and d. Referring to it, we will be talking about the b̄b̄ud system.
We aim to determine if a bound state exists and - if so - compute its binding energy.
There are several reasons why we choose the b̄b̄ud system for our investigation: First and
foremost it is theoretically known that two heavy (anti-)quarks Q and two rather light
(anti-)quarks q favour forming a tetraquark. Additionally, a Q̄Q̄qq system containing two
heavy antiquarks is technically less complicated to study than, for example, a system
consisting of a heavy quark and heavy antiquark Q̄Qq̄q. The first one cannot decay in
heavy quarkonium Q̄Q and a light meson q̄q while the latter can do so. We also recognize
that no quark-antiquark annihilation is possible. Therefore we focus on the b̄b̄ud system
which has only one remaining decay channel:

b̄b̄ud→ B(∗) +B(∗) (6.1)

where B(∗) indicates either a B or B∗ meson.
So the system can only decompose into two B mesons. For the quantum numbers I(JP ) =
0(1+) studied in this work, two possible realisations exist: either two B∗ mesons or one
B∗ meson and one B meson.
In order to get evidence about a possible bound state we will compute the mass of the
b̄b̄ud system and compare it to the added masses of a B and a B∗ meson. For the existence
of a bound state, the required condition is:

mb̄b̄ud < mB∗ +mB (6.2)

We can choose various approaches to study the b̄b̄ud system applying different approxi-
mations.
On a first level, one can assume static bottom quarks, i.e. we are using an infinite
b-quark mass. The associated theory is known as the Born-Oppenheimer approxima-
tion. In this static limit, evidence was found for a bound state with a binding energy of
Eb̄b̄ud ' −90 MeV in the I(JP ) = 0(1+) channel (cf. [16, 17]). For more details about the
computation in the Born-Oppenheimer approximation, we also refer to [14, 15].
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Assigning the bottom quarks an infinite mass introduces inaccuracies which causes dis-
crepancies from probable experimental results. However, it is crucial to perform the
theoretical calculations as precisely as possible. Therefore, the next logical level means
considering dynamical bottom quarks with a finite mass. This is achievable, treating the
heavy quarks non-relativistically in the framework of NRQCD. Recent studies also predict
a stable tetraquark state when applying NRQCD methods (cf. [23, 24]).
In this work, we will study the b̄b̄ud system in the framework of non-relativistic QCD (cf.
Chapter 2), that means we are using finite b-quark masses. We will employ several differ-
ent creation operator structures which generate four-quark systems with the appropriated
quantum numbers. Afterwards we determine the b̄b̄ud energy spectrum in order to gain
insights about possible bound states in the I(JP ) = 0(1+) channel.
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6.1 Creation Operators for the b̄b̄ud System

The b̄b̄ud system can be realised in various ways. Even if the quark content is specified,
there are several quark structures which can generate this four-quark system and have
to be taken into account. Additionally, some of these structures can be represented in
different momentum projections. In the following section we will specify all operators
that can create a b̄b̄ud tetraquark molecule with quantum numbers I(JP ) = 0(1+).

6.1.1 Quark Structure

First, we focus on the different quark structures, independently of the possible momentum
projections. Consequently, the space-time indices are omitted in this notation. Moreover,
we do not write the Dirac indices explicitly at this level. There exist three different
structures in the I(JP ) = 0(1+) channel. The calculation of the quantum numbers in
detail can be found in Appendix C.2.

Mesonic Molecule BB∗

The first possible structure consists of a scalar B meson and a vector B∗ meson. The
creation operator is given by:

OBB∗ = b̄aΓ1d
a b̄bΓ2u

b − b̄aΓ1u
a b̄bΓ2d

b (6.3)

With the Gamma matrices Γ1 = γ5 and Γ2 = γj, this realises quantum numbers I(JP ) =
0(1+).

Mesonic Molecule B∗B∗

As a second structure, we introduce two B∗ mesons. The creation operator reads:

OB∗B∗ = b̄aΓ1d
a b̄bΓ2u

b − b̄aΓ1u
a b̄bΓ2d

b (6.4)

With εijk (Γ1 = γj, Γ2 = γk), the required quantum numbers are fulfilled.

Diquark-antidiquark Dd

The last structure considered in this work is a diquark-antidiquark structure with the
diquark ud and the antidiquark b̄b̄. This creation operator reads:

ODd = εabcb̄bΓ1
[
b̄c
]T
εade

([
dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)

(6.5)

where we choose Γ1 = γjC and Γ2 = Cγ5 to gain the expected quantum numbers. C
denotes the charge conjugation matrix. The T describes transposing in Dirac space.
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Whereas the operators for the mesonic structures are quite evident, we emphasise the
different structure for the diquark-antidiquark operator. Obviously, there are two differ-
ences: First, summing over the colour indices, epsilon tensors are included. Second, the
charge conjugation matrix C appears in the definition of the Gamma matrices. These mod-
ifications are necessary to preserve gauge invariance as well as invariance under Lorentz
transformations.

We consider first gauge transformations which are given by:

ψ(x)→ ψ′(x) = Ω(x)ψ(x)
ψ̄(x)→ ψ̄′(x) = ψ̄(x)Ω†(x)

(6.6)

where Ω(x) is a SU(3) matrix and ψ ∈ {u, d, b}. An essential relation for SU(3) matrices
is given by (cf. chapter 3.1 in [27]):

εaceΩabΩcdΩef = εbdf (6.7)

with small letters indicating colour indices.
We study now the behaviour of the diquark-antidiquark operator under gauge transfor-
mations. To increase readability, we use only the first term of (6.5):

εabc b̄bΓ1
[
b̄c
]T

εade
[
dd
]T

Γ2u
e −→ εabc b̄fΩ†fbΓ1

[
b̄gΩ†gc

]T
εade

[
Ωdhdh

]T
Γ2Ωeiui (6.8)

Using (6.7), we can express:

εade Ωdh Ωei = εhij Ω†ja; εabc Ω†fb Ω†gc = εkfg Ωak (6.9)

This yields:
εabc Ω†fb Ω†gc b̄fΓ1

[
b̄g
]T

εade Ωdh Ωei
[
dh
]T

Γ2u
i

= εkfg Ωak b̄fΓ1
[
b̄g
]T

εhij Ω†ja
[
dh
]T

Γ2u
i

= εkfg b̄fΓ1
[
b̄g
]T

εkhi
[
dh
]T

Γ2u
i

= εabc b̄bΓ1
[
b̄c
]T

εade
[
dd
]T

Γ2u
e

(6.10)

Finally, we receive the same operator as in (6.5), thus including the epsilon tensors in the
summation over the colour indices ensures our operator to be gauge invariant.
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To include Lorentz transformations, we first discuss charge conjugation. Applying it, we
define the transformation as:

ψ
C→ ψ′ = Cψ̄T (6.11)

and consequently:

ψ̄
C→ ψ̄′ = ψTγ∗0C†γ0 (6.12)

Since we expect ψ CC→ ψ′ = ψ, we get:

ψ
C→ Cψ̄T C→ C

(
ψTγ∗0C†γ0

)T
= CγT0 C∗γ

†
0ψ (6.13)

That means:
CγT0 C∗γ

†
0 = 1 or γ∗0C†γ0CT = 1 (6.14)

Additionally, we expect the Dirac Lagrangian ψ̄ (γµ∂µ +m)ψ to be invariant under charge
conjugation.

ψTγ∗0C†γ0 (γµ∂µ +m) Cψ̄T

=ψT
(
γ∗0C†γ0γµC∂µ + γ∗0C†γ0Cm

)
ψ̄T

(6.15)

It is consequently required that:

γ∗0C†γ0C = −1 and γ∗0C†γ0γµC = γTµ (6.16)

Comparing (6.14) and (6.16), we find C = −CT as well as:

C−1γµC = −γTµ (6.17)

Now we consider the Lorentz transformation for a spinor while the well-known transfor-
mation behaviour of a space time argument is xµ → xµ′ = Λµ

νx
ν .

ψ(x)→ ψ′(x′) = S(Λ)ψ(x) ; ψ̄(x)→ ψ̄′(x′) = ψ̄(x)S−1(Λ) (6.18)

For an infinitesimal Lorentz transformation Λν
µ = δνµ + ωνµ, one can easily prove that:

S(Λ) = 1− i

4σαβω
αβ with: σαβ = i

2 [γα, γβ] (6.19)

and consequently, the finite transformation is given by:

S(Λ) = exp
(
− i4σαβω

αβ
)

(6.20)

Obviously, S(Λ) is unitary, so S−1(Λ) = S†(Λ).
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Having established all prerequisites, we return to the diquark-antidiquark operator and
prove that the given structure is Lorentz invariant. Note that for the mesonic structures
Lorentz invariance is given by construction:

ψ̄(1)(x)Γiψ(2)(x)→ ψ̄′(1)(x)Γiψ′(2)(x) = ψ̄(1)(x)S−1(Λ)ΓiS(Λ)ψ(2)(x) = ψ̄(1)(x)Γiψ(2)(x)
(6.21)

with ψ(1), ψ(2) ∈ {u, d, b}.

Considering the diquark-antidiquark operator, we claim Lorentz invariance for the terms

ψ̄(1)(x)Γiψ̄T(2)(x); ψT(1)(x)Γiψ(2)(x) (6.22)

This will be reached including the charge conjugation matrix C. We state that Cψ̄T
transforms in the same way as ψ and ψTC in the same way as ψ̄. It can be proved easily
using (6.17) and (6.20):

ψTC → [Sψ]T C = ψT
[
exp

(
− i4σαβω

αβ
)]T
C

= ψT exp
(
− i4σαβ

i

2 [γα, γβ]T
)
C

= ψT exp
(
− i4σαβ

i

2
(
γTβ γ

T
α − γTαγTβ

))
C

= ψTC exp
(
− i4σαβ

i

2 (γβγα − γαγβ)
)

= ψTC exp
(
i

4σαβω
αβ
)

= ψTCS−1

(6.23)

Cψ̄T → C
[
ψ̄S−1

]T
= C

[
exp

(
i

4σαβω
αβ
)]T

ψ̄T

= C exp
(
i

4σαβ
i

2
(
γTβ γ

T
α − γTαγTβ

))
ψ̄T

= exp
(
− i4σαβω

αβ
)
Cψ̄T = SCψ̄T

(6.24)

In (6.24) we insert CC−1 in the second line and use CγTµ C−1 = −γµ. For (6.23), we also
insert CC−1 but apply additionally the relation between the gamma matrices and their
transposed version (see Appendix A.1). Afterwards, we use (6.17) in the third step.

To sum up, the transformation behaviour is given by:

ψT (x)C → ψT (x)CS−1(Λ) ; Cψ̄T (x)→ S(Λ)Cψ̄T (x) (6.25)

Consequently, we have to include the charge conjugation matrix C in the gamma matrices
to conserve Lorentz invariance for the diquark operator, i.e. we use Γ1 = γjC and Γ2 = Cγ5.
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6.1.2 Momentum Projection

Additionally, we consider two different momentum projections which appear for the quark
structures (cf. [21]). To be more precise, only for the structures including B mesons are
two projections available. First, we can project the total momentum of the system to zero.
Second, we also have to include the momentum projection for each B meson separately to
zero. Note that for the diquark-antidiquark system only the total momentum projection
to zero can be applied because a single diquark/antidiquark cannot exist due to quark
confinement.

First, we consider the creation operator for a B meson which is given by:

OB(p)(t) = 1√
Vs

∑
x∈Vs

b̄(x, t)Γ1u(x, t)e−ixp (6.26)

Due to the lattice discretisation the momenta are discrete and given by pj = 2π
aLj

nj with
Lj being the lattice extent in the j-th direction, i.e. the number of lattice points in this
direction and nj = 0, 1, . . . , Lj−1. In general, the lattice extent is the same for all spatial
directions. Therefore we use L = L1 = L2 = L3 instead of the Lj’s. Vs describes the
spatial volume defined by Vs = L3.

Projecting the operator to zero, i.e. p = 0, leads to :

OB(0)(t) = 1√
Vs

∑
x∈Vs

b̄(x, t)Γ1u(x, t) (6.27)

Note that the sum over the spatial extent is required to describe the bottom quark dy-
namically in contrast to a static limit where the bottom quark’s position is fixed and thus
requiring no sum.

Continuing the discussion for a four-quark system consisting of two B mesons, the creation
operator in the most general form concerning momentum projection is given by:

OB(p)B(q)(t) = 1√
Vs

∑
x∈Vs

b̄(x, t)Γ1u(x, t)e−ixp 1√
Vs

∑
y∈Vs

b̄(y, t)Γ2u(y, t)e−iyq (6.28)

We must now distinguish the two cases mentioned above: In the first instance, we take the
total momentum projection to zero into account, i.e. the added momenta of the system
are zero p + q = 0, with p and q being the particular momenta of the B mesons. The
operator (6.28) reduces to:

O[BB](0)(t) = 1√
Vs

∑
x∈Vs

b̄(x, t)Γ1u(x, t) 1√
Vs

∑
y∈Vs

b̄(y, t)Γ2u(y, t)e−i(x−y)p (6.29)

Since we describe a mesonic molecule, both B mesons have to be located at the same
spatial position x = y, so the final operator for projecting to total zero momentum is:

O[BB](0)(t) = 1√
Vs

∑
x∈Vs

b̄(x, t)Γ1u(x, t)b̄(x, t)Γ2u(x, t) (6.30)
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If we project each momentum separately to zero, i.e. p = q = 0 in (6.28), this operator
is given by:

OB(0)B(0)(t) = 1√
Vs

∑
x∈Vs

b̄(x, t)Γ1u(x, t) 1√
Vs

∑
y∈Vs

b̄(y, t)Γ2u(y, t) (6.31)

Note that in this case the sums over x and y are executed independently and these results
are multiplied. In contrast to the mesonic molecule in the first case, now we are talking
about a mesonic scattering state.

6.1.3 Listing of All Creation Operators for b̄b̄ud

Taking all different creation operator structures discussed in the previous sections into
account, we get five different creation operators that generate a b̄b̄ud four-quark system
in the I(JP ) = 0(1+) channel. These are:

• First, a system consisting of a B meson and a B∗ meson with the two different
momentum projections:

– B(0)B∗(0) : mesonic scattering state - the momenta are separately projected
to zero momentum.

– [BB∗](0) : mesonic molecule - the total momentum of the whole four-quark
system is projected to zero.

The associated operators are called OB(0)B∗(0) and O[BB∗](0).

• Additionally, a system including two B∗ mesons. There the same momentum pro-
jections as above are available:

– B∗(0)B∗(0) : mesonic scattering state - the momenta are separately projected
to zero momentum.

– [B∗B∗](0) : mesonic molecule - the total momentum of the whole four-quark
system is projected to zero.

As above the operators are labelled as OB∗(0)B∗(0) and O[B∗B∗](0).

• Finally, the diquark-antidiquark operator. Due to quark confinement there exists
only one reasonable momentum projection which realises a diquark molecule:

– [Dd](0): the total momentum of the whole four-quark system is projected to
zero.

This operator is called O[Dd](0).
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6.2 Correlation Matrix

For investigating the b̄b̄ud tetraquark molecule all operators mentioned in the previous
section have to be taken into account for numerical calculations. Therefore it is not
sufficient to describe the system only by a single correlation function but rather by a
complete correlation matrix while each element contains one specific correlation function.
These correlation functions are generally given by:

Cij(tsink − tsource) = 〈Ω|Oi(tsink)O†j(tsource)|Ω〉 ≡ 〈Oi(tsink)O
†
j(tsource)〉 (6.32)

with Oi,Oj ∈
{
OB(0)B∗(0),O[BB∗](0),OB∗(0)B∗(0),O[B∗B∗](0),O[Dd](0)

}
and the vacuum state

|Ω〉.
In a descriptive representation, one assumes the correlation function to create a particle
from the vacuum at the source position possessing the structure of the applied creation
operator O†j(tsource). Afterwards, the particle moves on the lattice to the sink position
where it is annihilated by the operator Oi(tsink).

6.2.1 Hermiticity of the Correlation Matrix

It can be easily proven that the correlation matrix is always hermitian regardless of the
operator basis. This is a very useful property for numerical calculation. In the following,
we start with the correlation function

Cij(tsink − tsource) =〈Ω|Oi(tsink)O†j(tsource)|Ω〉

=
∑
n

〈Ω|Oi(0)|n〉〈n|O†j(0)|Ω〉e−En(tsink−tsource) (6.33)

Calculating the complex conjugated correlation matrix elements C∗ij(tsink − tsource) =
C†ij(tsink − tsource) yields:

C†ij(tsink − tsource)

=
∑
n

[
〈Ω|Oi|n〉〈n|O†j |Ω〉e−En(tsink−tsource)

]†
=
∑
n

〈Ω|Oi|n〉†〈n|O†j |Ω〉†e−En(tsink−tsource)

=
∑
n

〈n|O†i |Ω〉〈Ω|Oj|n〉e−En(tsink−tsource)

=
∑
n

〈Ω|Oj|n〉〈n|O†i |Ω〉e−En(tsink−tsource)

=Cji(tsink − tsource)

(6.34)

Finally, we have shown that C†ij(t) = Cji(t) with t = tsink−tsource, consequently the matrix
is hermitian.
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6.2.2 Correlation Matrix Elements

For our numerical calculations, we are using point-to-all propagators for the light quarks.
That means, the propagators for a specific configuration are not computed from each
space-time position to every other but rather from only one chosen source location to all
others. Consequently, the source position of our propagator is fixed. For more details on
different techniques to compute quark propagators, cf. e.g. [41]. However, if we consider
zero momentum projection for each meson separately, we have to evaluate the operator at
two different spatial positions (cf. (6.31)). Since our source position is fixed though, we
are not able to compute correlation matrix elements with such source operators. In other
words, we cannot project separately the momentum to zero at the source. Therefore, there
appear several elements in the correlation matrix which are not computable. In fact, only
a 5 × 3 submatrix is accessible in our approach. We present the complete correlation
matrix in Table 6.1.

sink
source

O†[BB∗](0) O†[B∗B∗](0) O†[Dd](0) O†B(0)B∗(0) O†B∗(0)B∗(0)

O[BB∗](0) c. I c. I c. IV n.c. n.c.
O[B∗B∗](0) c. I c. I c. IV n.c. n.c.
O[Dd](0) c. III c. III c. II n.c. n.c.
OB(0)B∗(0) c. I c. I c. IV n.c. n.c.
OB∗(0)B∗(0) c. I c. I c. IV n.c. n.c.

Table 6.1: The correlation matrix for b̄b̄ud. Elements labelled with c. can be computed
directly by numerical calculation while elements labelled n.c. are not computable. The
Roman numerals indicate the type of the correlation function.

Besides the differentiation between computable and non-computable elements, we have
classified four types of correlation functions which differ in the chosen sink and source
operators. We start this examination by naming the five operators described in Sec. 6.1.3
including space-time arguments explicitly.

O[BB∗](0)(t) =
∑

x
b̄aΓ1d

a(x, t) b̄bΓ2u
b(x, t)− b̄aΓ1u

a(x, t) b̄bΓ2d
b(x, t) (6.35)

with Γ1 = γ5, Γ2 = γj.

O[B∗B∗](0)(t) =
∑

x
b̄aΓ1d

a(x, t) b̄bΓ2u
b(x, t)− b̄aΓ1u

a(x, t) b̄bΓ2d
b(x, t) (6.36)

with εijk (Γ1 = γj, Γ2 = γk).

OB(0)B∗(0)(t) =
∑
x,y

b̄aΓ1d
a(x, t) b̄bΓ2u

b(y, t)− b̄aΓ1u
a(x, t) b̄bΓ2d

b(y, t) (6.37)

with Γ1 = γ5, Γ2 = γj.

OB∗(0)B∗(0)(t) =
∑
x,y

b̄aΓ1d
a(x, t) b̄bΓ2u

b(y, t)− b̄aΓ1u
a(x, t) b̄bΓ2d

b(y, t) (6.38)

52



6.2. Correlation Matrix

with εijk (Γ1 = γj, Γ2 = γk).

O[Dd](0)(t) =
∑

x
εabcb̄bΓ1

[
b̄c
]T

(x, t)εade
([
dd
]T

Γ2u
e(x, t)−

[
ud
]T

Γ2d
e(x, t)

)
(6.39)

with Γ1 = γjC, Γ2 = Cγ5.

We have introduced colour indices explicitly while suppressing Dirac indices. The expo-
nential T in O[Dd](0) denotes “transposed in Dirac space“. For the sake of briefness, we
will omit the T in the calculations but keep in mind that is is necessary to maintain the
correct structure for Dirac space.
The operators (6.35) to (6.38) differ only by the Γ’s and the space-time arguments. We
can generalize these operators via:

OBB(t) =
∑
x,y

b̄aΓ1d
a(x, t) b̄bΓ2u

b(y, t)− b̄aΓ1u
a(x, t) b̄bΓ2d

b(y, t) (6.40)

while replacing the Γ’s at the end and setting x = y when considering total zero momen-
tum projection. Using the operators (6.39) and (6.40), we define the four general types
of correlation functions:

• Type I:
〈
OBB(t)O†BB(0)

〉
=

=
∑
x,y

〈[
b̄aΓ1d

a(x, t) b̄bΓ2u
b(y, t)− b̄aΓ1u

a(x, t) b̄bΓ2d
b(y, t)

]
×
[
d̄a
′Γ′1ba

′(z, 0) ūb′Γ′2bb
′(z, 0)− ūa′Γ′1ba

′(z, 0) d̄b′Γ′2bb
′(z, 0)

]〉 (6.41)

• Type II:
〈
O[Dd](0)(t)O†[Dd](0)(0)

〉
=

=
∑

x

〈[
εabcb̄bΓ1b̄

c(x, t)εade
(
ddΓ2u

e(x, t)− udΓ2d
e(x, t)

)]
×
[
εa
′d′e′

(
ūd
′Γ′2d̄e

′(z, 0)− d̄d′Γ′2ūe
′(z, 0)

)
εa
′b′c′bb

′Γ′1bc
′(z, 0)

]〉 (6.42)

• Type III:
〈
O[Dd](0)(t)O†BB(0)

〉
=

=
∑

x

〈[
εabcb̄bΓ1b̄

c(x, t)εade
(
ddΓ2u

e(x, t)− udΓ2d
e(x, t)

)]
×
[
d̄a
′Γ′1ba

′(z, 0) ūb′Γ′2bb
′(z, 0)− ūa′Γ′1ba

′(z, 0) d̄b′Γ′2bb
′(z, 0)

]〉 (6.43)

• Type IV:
〈
OBB(t)O†[Dd](0)(0)

〉
=

=
∑
x,y

〈[
b̄aΓ1d

a(x, t) b̄bΓ2u
b(y, t)− b̄aΓ1u

a(x, t) b̄bΓ2d
b(y, t)

]
×
[
εa
′d′e′

(
ūd
′Γ′2d̄e

′(z, 0)− d̄d′Γ′2ūe
′(z, 0)

)
εa
′b′c′bb

′Γ′1bc
′(z, 0)

]〉 (6.44)
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Note that Γ′i ≡ γ0Γ†iγ0 with i = 1, 2.
Evaluation has been performed for all four correlation function types separately. We have
proceeded in the same way as presented in Sec. 5.1. Inserting finally the appropriated
Γ-matrices and identifying y = x for total momentum projection to zero yields all 15
correlation matrix elements. In Appendix D.1 we illustrate exemplarily the computation
for type I correlation functions.

6.2.3 Symmetries

In this section, we will investigate the symmetries - namely hermiticity and time reversal
- of the correlation matrix explicitly. Afterwards, we depict how to use the symmetries to
improve the statistical quality of the raw data.

Hermiticity

The correlation matrix is defined as a hermitian matrix (proof see Sec. 6.2.1), so:

• The diagonal elements are real: Cii = C∗ii

• The off-diagonal elements are complex conjugated to each other: Cij = C∗ji

We will prove these two conditions explicitly for the given correlation matrix in the fol-
lowing paragraph.

Before, we note an indispensable relation for the complex conjugated quark spinors:

[q(t)]† = q†(−t) (6.45)

This relation can be proven easily by applying the time evolution of the quark field in
Euclidean time with the hermitian Hamiltonian operator H:

q(t) = etHq(0)e−tH (6.46)

Thus, daggering the quark field yields:

[q(t)]† =
[
etHq(0)e−tH

]†
= e−tHq(0)†etH = q†(−t) (6.47)

Consequently, the same relation is valid for the daggered quark field:[
q†(t)

]†
= q(−t) (6.48)
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In the next step, we will prove hermiticity explicitly for the correlation matrix elements
C11(t) and C12(t). For this purpose, we apply complex conjugation to the type I cor-
relation function given in (6.41). Prior to this we can simplify computations using the
generalized form q̄Γiq′(x, t) for the operator’s components. With q, q′ ∈ {b, u, d} and
Γi ∈ {Γ1,Γ2,Γ′1,Γ′2} all appearing mesonic structures of correlation matrix elements can
be constructed. For the diquark-antidiquark operator, the generalization is analogous.
Applying complex conjugation to this expression using (6.45) and (6.48), we find:[

q̄Γiq′(x, t)
]†

=
[
q̄(x, t)Γiq′(x, t)

]†
=
[
q′(x, t)

]†
Γ†iγ0

[
q†(x, t)

]†
= q′†(x,−t)γ0Γ†iq(x,−t) = q̄′(x,−t)Γ†iq(x,−t) = q̄′Γ†iq(x,−t)

(6.49)

Now we use (6.49) to determine the complex conjugation for the type I correlation function
Cij(t). Note that in (6.41) we have fixed the source position to z and thus omitted the sums
over the source locations due to the use of point sources. However, now we consider the
most general form of the correlation function. Therefore we introduce an additional spatial
coordinate u and sum over all spatial positions. The complex conjugated correlation
function C∗ij(t) is given by:

C∗ij(t) = C†ij(t)
=

∑
x,y,z,u

[[
b̄Γ1d(x, t) b̄Γ2u(y, t)− b̄Γ1u(x, t) b̄Γ2d(y, t)

]
×
[
d̄Γ′1b(z, 0) ūΓ′2b(u, 0)− ūΓ′1b(z, 0) d̄Γ′2b(u, 0)

]]† (6.50)

=
∑

x,y,z,u

[
b̄Γ′†2 u(u, 0) b̄Γ′†1 d(z, 0)− b̄Γ′†2 d(u, 0) b̄Γ′†1 u(z, 0)

]
×
[
ūΓ†2b(y,−t) d̄Γ†1b(x,−t)− d̄Γ†2b(y,−t) ūΓ†1b(x,−t)

] (6.51)

Note that {Γi, γ0} = {Γ′i, γ0} = 0.
We can now shift the time argument by + t due to time translation symmetry and rename
the spatial arguments x↔ z and y↔ u to get:

=
∑

x,y,z,u

[
b̄Γ′†1 d(x, t) b̄Γ′†2 u(y, t)− b̄Γ′†1 u(x, t) b̄Γ′†2 d(y, t)

]
×
[
d̄Γ†1b(z, 0) ūΓ†2b(u, 0)− ūΓ†1b(z, 0) d̄Γ†2b(u, 0)

] (6.52)

While the generic form of the correlation function is identical to the undaggered version,
we have to consider the Γ’s for a final statement about the behaviour under complex
conjugation. For C11(t) (where y = x and u = z is valid) we can insert Γ1 = −Γ′1 = γ5
and Γ2 = −Γ′2 = γj and obtain:

C∗11(t) =
∑

x,y,z,u

[
b̄γ5d(x, t) b̄γju(y, t)− b̄γ5u(x, t) b̄γjd(y, t)

]
×
[
d̄γ5b(z, 0) ūγjb(u, 0)− ūγ5b(z, 0) d̄γjb(u, 0)

] (6.53)

This is identical to C11(t), so C∗11(t) = C11(t) is proven.
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For C12(t) we insert Γ1 = γ5, Γ2 = γi and εijk (Γ′1 = −γj,Γ′2 = −γk) and obtain:

C∗12(t) = εijk
∑

x,y,z,u

[
b̄γjd(x, t) b̄γku(y, t)− b̄γju(x, t) b̄γkd(y, t)

]
×
[
d̄γ5b(z, 0) ūγib(u, 0)− ūγ5b(z, 0) d̄γib(u, 0)

] (6.54)

This is identical to C21(t) with εijk (Γ1 = γj,Γ2 = γk), Γ′1 = −γ5, Γ′2 = −γi. So we find
C∗12(t) = C21(t).

We leave it to the readers to repeat this calculation for all other elements and to convince
themselves of the explicit hermiticity of the correlation matrix.

Time Reversal

In this paragraph, we investigate the behaviour of the correlation matrix elements with
respect to time reversal. We expect the correlation functions to be symmetric or anti-
symmetric, so T [Cjk(t)] = ±Cjk(−t). If we know the specific relation, we can use this
to improve our statistics: The correlation function will be computed for negative as well
as positive times. Using the T-symmetry properties, we can average these two values to
increase the quality of the data.
The time reversal operator T is expressed by gamma-matrices as:

Ψ(t) T−→ γ5γ0Ψ(−t)

Ψ(t) T−→Ψ(−t)γ0γ5
(6.55)

The correlation functions considered in this work can be constructed using only six dif-
ferent structures:

• q̄(t)γ5q
′(t)

• q̄(t)γjq′(t)

• q̄(t)γjCq̄′(t)T

• q(t)Tγ0 (γjC)† γ0q
′(t)

• q(t)TCγ5q
′(t)

• q̄(t)Cγ5q̄′(t)T

with q, q′ ∈ {b, u, d}. Note that we are omitting the spatial arguments in this paragraph
because we are only focusing on the temporal dependency.

We will investigate the behaviour of these six structures under T-symmetry and combine
them to extract the time reversal sign for each correlation matrix element. We chose this
approach in order to simplify the derivation of time reversal significantly.

Computing the time reversal for these structures, we find:

T [q̄(t)γ5q
′(t)] =q̄(−t)γ0γ5γ5γ5γ0q

′(−t) = +q̄(−t)γ0γ5γ0q
′(−t)

=− q̄(−t)γ5γ0γ0q
′(−t) = −q̄(−t)γ5q

′(−t)
(6.56)
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T [q̄(t)γjq′(t)] =q̄(−t)γ0γ5γjγ5γ0q
′(−t) = q̄(−t)γjγ0γ5γ5γ0q

′(−t)
= + q̄(−t)γjq′(−t)

(6.57)

T
[
q̄(t)γjCq̄′(t)T

]
=q̄(−t)γ0γ5γjCγ5γ0q̄′(−t)T = −q̄(−t)γjCγ0γ5γ5γ0q̄′(−t)T

=− q̄(−t)γjCq̄′(−t)T
(6.58)

T
[
q(t)Tγ0 (γjC)† γ0q

′(t)
]

=q(−t)Tγ0γ5γ0 (γjC)† γ0γ5γ0q
′(−t)

= q(−t)Tγ0γ5 (γjC)† γ5γ0q
′(−t) = −q(−t)Tγ0 (γjC)† γ5γ5γ0q

′(−t)
= −q(−t)Tγ0 (γjC)† γ0b(−t)

(6.59)

T
[
q(t)TCγ5q

′(t)
]

=q(−t)Tγ0γ5Cγ5γ5γ0q
′(−t) = q(−t)TCγ5γ0γ0q

′(−t)
= + q(−t)TCγ5q

′(−t)
(6.60)

T
[
q̄(t)Cγ5q̄′(t)T

]
= +q̄(−t)Cγ5q̄′(−t)T (6.61)

We obviously get the T-symmetry for a specific correlation matrix element by inserting
the appropriated combination of the structures computed in (6.56) to (6.61). For instance,
C11(t) is expressed by:

T [C11(t)] = T
{[
b̄γ5d(t) b̄γju(t)− b̄γ5u(t) b̄γjd(t)

]
×

[
d̄γ5b(0) ūγjb(0) −ūγ5b(0) d̄γjb(0)

]}
= +C11(−t)

(6.62)

Calculations for all other matrix elements can be found in Appendix D.2, the results are
summarized in Table 6.2.

Correlation
function C11(t) C12(t) C13(t) C21(t) C22(t) C23(t) C31(t) C32(t)

T sign + − + − + − + −

Correlation
function C33(t) C41(t) C42(t) C43(t) C51(t) C52(t) C53(t)

T sign + + − + − + −

Table 6.2: Transformation behaviour for the correlation matrix elements under time re-
versal T .
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Improving Numerical Data

With regard to numerical simulations, we can utilise the proven symmetries to increase
the quality of the data.

Time symmetry
Knowing the behaviour under T-symmetry for an arbitrary Cij(t) with T [Cij(t)] =
±Cij(−t), we can improve the statistics by averaging the value of the correlation function
for each time slice and configuration:

Cav
ij (t) = 1

2 [Cij(t)± Cij(−t)] (6.63)

hermiticity
Furthermore, the hermiticity of the correlation matrix provides additional symmetries,
which should be used to enhance the quality of the data.
We can set the imaginary part of all diagonal elements to zero, since we have verified that
Cii(t) ∈ R. All discrepancies from zero are caused by numerical fluctuations, so the raw
data are improved by neglecting these contributions:

Im [Cii(t)] = 0 (6.64)

For the off-diagonal elements, applying the relation Cij(t) = C∗ji(t) can be used to average
the associated matrix elements:

Re
[
Cij(t)

]
= 1

2

[
Re [Cij(t)] + Re [Cji(t)]

]
= Re

[
Cji(t)

]
(6.65)

Im
[
Cij(t)

]
= 1

2

[
Im [Cij(t)]− Im [Cji(t)]

]
= −Im

[
Cji(t)

]
(6.66)

This also ensures that the correlation matrix is hermitian which might have been violated
by numerical inaccuracies before.
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6.3 Analysis of the b̄b̄ud System

Investigating the b̄b̄ud four-quark system, we aim to find a bound state in the I(JP ) =
0(1+) channel with its associated binding energy Eb̄b̄ud. Thus we determine the energy
spectrum of this system. Comparing the lowest energy level with the added binding
energy of a B and a B∗ meson, we get evidence about a possibly stable tetraquark state.
In other words, if Eb̄b̄ud is below the BB∗ threshold, i.e. Eb̄b̄ud<EB + EB∗ , a bound state
is depicted.

Therefore, we will compute the correlation matrix described in Sec. 6.2.2 as well as the
correlation functions for the B and the B∗ meson. These correlation functions are given
by:

CB(t) =
∑

x

〈
b̄Γ1u(x, t)ūΓ′1b(y, 0)

〉
(6.67)

with Γ1 = γ5 and Γ′1 = −γ5.

CB∗(t) =
∑

x

〈
b̄Γ2u(x, t)ūΓ′2b(y, 0)

〉
(6.68)

with Γ2 = γj and Γ′2 = −γj.

In the next step, we are eager to extract the energy eigenvalues from the correlation
functions. In the following, we present two possible approaches to isolate the ground
state energy as well as contributions from higher excitations. Both are starting with the
analytical expression of the correlation function from (6.33):

Cij(t) =
∑
n

〈Ω|Oi(0)|n〉〈n|O†j(0)|Ω〉e−Ent (6.69)

with t = tsink − tsource.

First of all, we can use a correlated least-χ2-fit to extract the amplitudes and exponentials
from (6.69) while including terms up to a chosen order of n. This enables us to treat all
possible non-quadratic submatrices of Table 6.1 as well as the whole 5× 3 matrix. More
information about least-χ2-fits and the routine used can be found in [28, 43].

As a second analysis tool, we use the generalized eigenvalue problem (GEP) to calculate
the effective masses. In this thesis we will primarily apply this method.
To illustrate the proceeding, we will start with a single correlation function. Considering
only the first order from (6.69), the correlation functions looks like:

C(t) = 〈Ω|O(0)|0〉〈0|O†(0)|Ω〉e−E0t (6.70)

We can easily extract the so-called effective mass from (6.70) using the fraction of the
correlation function for two successive time slices via:

aEeff(t) = ln
(

C(t)
C(t+ a)

)
(6.71)
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For large times t, aEeff(t) becomes a constant in time, so the ground state energy is
determined by aE0 = aEeff(t)|t→∞.

Working instead with a N ×N correlation matrix, we have to solve the GEP

C(t)~vn(t) = λn(t)C(t0)~vn(t), with 1 ≤ n ≤ N (6.72)

where ~vn(t) are the eigenvectors of the matrix and λn(t) are the eigenvalues which decay
exponentially, i.e. λn(t) ∝ e−Ent. The N effective masses are calculated by:

aEn
eff(t) = ln

(
λn(t)

λn(t+ a)

)
(6.73)

For further information and a detailed explanation of the GEP, we refer to [39, 40]. We
will use the GEP to evaluate the upper left 3 × 3 matrix from Table 6.1, omitting the
scattering operators. Moreover, we will also investigate all three 2×2 submatrices as well
as the three diagonal elements Cii.

A recent study on the b̄b̄ud system in the static approximation including heavy spin effects
(cf. [20]) gave evidence about the composition of a b̄b̄ud bound state: The BB∗ as well as
the B∗B∗ contribute in the same way. Therefore, we expect a lower ground state energy
for the combined 2× 2 correlation matrix consisting of BB∗ and B∗B∗ compared to the
single correlation functions. Additionally, we include the diquark-antidiquark operator
which provides a third possible operator structure. We hope to discover a deeper binding
by considering also the diquark-antidiquark component and get new evidence about the
tetraquark composition. We also aim to consider the scattering operators and study their
influence on the effective energy.

Moreover, we perform calculations for two different heavy quark masses mQ. Naturally,
we start with the physical bottom quark mass mQ = mb and conclude with an unphysical
heavy bottom quark mass of mQ = 5mb. We are using ensemble C54 from Table 3.1 to
realise this investigation. Previous studies ([15, 24]) forecast an increasing binding energy
while increasing the bottom quark mass. For this reason, we have decided to investigate
an unphysical heavy bottom quark mass: We expect a much stronger binding, so it should
be easier to identify the ground state below threshold and consequently the tetraquark
state. For the static approximation, in [21] it has been shown that increasing the bottom
mass actually increases the binding energy.

Finally, we repeat the calculations for physical bottom mass mQ = mb using the all-
mode-averaging ensembles C005, C01, F004, F006, and C00078 from Table 3.1. These
configurations enable us to extrapolate our results to the physical pion mass so that we
receive a physically valuable result.
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6.4 Evaluation of Numerical Results

This section is structured as follows: We first discuss the influence of the different op-
erator structures for ensemble C005. In principle, this analysis will be done using the
GEP. Nevertheless, we will finally also include the operators OB(0)B∗(0) and OB∗(0)B∗(0)
which are only accessible using exponential fits and investigate their significance for mass
extractions.
In the second paragraph, we present our results for the unphysical heavy bottom quark
mass mQ = 5mb and compare it to mQ = mb.
We conclude with an extrapolation to the physical pion mass in order to extract the
ground state energy Eb̄b̄ud at the physical point using all available AMA ensembles listed
in Table 3.1.

6.4.1 Results for Operator Structures

In this section, we are focusing only on the ensemble C005 listed in 3.1. We present the
numerical results, especially the effective masses computed for these gauge configurations
and discuss possible qualitative statements about the operator structures used.

Note that the computed masses do not coincide directly with the physical particle mass
but are shifted due to the use of NRQCD. For this reason, we have to set the scale to
extract physical values. In Chapter 4, we have presented how to set the scale exemplarily
for the two bottomonium states ηB and Υ. We showed that the energy difference is
unaffected in NRQCD in contrast to the absolute value of the mass. Having computed
the mass in lattice units for a particle with known physical mass and determining the
energy difference to the investigated tetraquark system, one can consequently extract the
physical mass.
For our purpose, the appropriated particles are the B and B∗ mesons with the physical
masses mB,phys = 5279.62(15) MeV and mB∗,phys = 5324.65(25) MeV (cf. [1]).
These two B mesons are the decay products of a b̄b̄ud state and therefore determine the
energy threshold for the tetraquark. Since we are interested in revealing bound states, it
is sufficient to compute the relative mass difference to this energy threshold.
Hence, all results in physical units presented in this section are differences to the BB∗
threshold discussed above.

BB∗ Threshold Energy

Initially, we consider the effective mass for the B and B∗ meson. This enables us to deter-
mine the BB∗ threshold which is necessary to distinguish between a bound or scattering
tetraquark state. The energy is extracted by inserting (6.67) and (6.68) respectively into
(6.71) and fitting a plateau to the associated effective mass. The corresponding graphics
can be found in Figure 6.1.

Consequently, the BB∗ threshold can easily be determined by extracting the data from
the fits and adding aEB + aEB∗ (cf. Table 6.3).
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Figure 6.1: The effective mass aEeff(t) for the B and the B∗ meson in units of the lattice
spacing a as a function of the temporal lattice extent t/a for mQ = mb. Constant fit for
5 ≤ t ≤ 18. (left): B meson. (right): B∗ meson.

aEB 0.4659(9)
aEB∗ 0.4959(9)

aEB + aEB∗ 0.9618(18)

Table 6.3: Threshold energy aEB + aEB∗ in lattice units for mQ = mb.

Mesonic Operator Basis

Discussing the b̄b̄ud system, in the first instance, we are including only the mesonic op-
erator structures presented in Sec. 6.1.3 while we are adopting the same labelling as
introduced there. Thus, we consider only the 3 × 3 submatrix of the correlation matrix
depicted in Table 6.1. Since this matrix is quadratic, we are able to evaluate it using the
GEP and to extract the effective masses.

We start with the three diagonal elements Cii(t) of the correlation matrix. Each is treated
independently of the others, while the associated effective masses are labelled by aEeff,i(t)
with i ∈ {BB∗, B∗B∗, Dd}. The effective mass plots are illustrated in Fig. 6.2. Besides,
the horizontal black line identifies the BB∗ threshold energy given in Table 6.3.

Considering the extracted ground state energy aEeff,BB∗(t) in Fig. 6.2 (top left), the
effective mass seems to be at the same level or slightly below threshold. However, the
statistical uncertainties do not allow any well-established statements. Next, regarding
aEeff,B∗B∗(t) in Fig. 6.2 (top right), its asymptotic value is located clearly above threshold.
Consequently, both operators do not seem to generate a bound state at all. This coincides
with our expectations, since a bound b̄b̄ud system is assumed to be a composition of both
structures with approximately the same weight.
Examining the third single correlation function built of the diquark-antidiquark operator
seems to be a promising approach to discover a bound four-quark system. Looking at
the associated graphic in Fig. 6.2 (bottom), aEeff,Dd(t) appears to sink below threshold.
So, there is a first indication for a bound state in the b̄b̄ud system. We have to confirm
this result including several correlation matrix elements simultaneously in our analysis.
Nevertheless, at this juncture the diquark-antidiquark operator seems to be important to
create a bound state.
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Figure 6.2: The effective masses aEeff(t) for the diagonal elements Cii(t) of the correlation
matrix 6.1. (top left): Effective mass for O[BB∗](0).(top right): Effective mass for
O[B∗B∗](0).(bottom): Effective mass for O[Dd](0).

We continue our investigation including two operators at the same time, i.e. we evaluate
the GEP for the three 2 × 2 submatrices while we lable the associated effective masses
aE

(n)
eff,i(t) with i ∈ {BB∗ − B∗B∗, BB∗ − Dd,B∗B∗ − Dd}. The effective mass plots are

illustrated in Fig. 6.3.

First, we take a close look at Fig. 6.3 (top left) which illustrates the operator set O[BB∗](0),
O[B∗B∗](0). As expected, we recognize that the ground state energy is lowered compared
to Fig. 6.2 (top left) and Fig. 6.2 (top right) and seems to be clearly below threshold.
Therefore, a combination of a mesonic BB∗ system with a mesonic B∗B∗ system is a
promising structure for a bound tetraquark state. To continue, we consider the diquark-
antidiquark structure O[Dd](0) combined with either O[BB∗](0) (cf. Fig. 6.3 (top right))
or O[B∗B∗](0) (cf. Fig. 6.3 (bottom)). For both cases, we recognize that the ground
state is located clearly below the BB∗ threshold. Comparing these two plots to Fig. 6.2
(bottom), the lowest energy level does not seem to change significantly. This supports
the importance of the diquark-antidiquark operator O[Dd](0) for the formation of a bound
state.
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Figure 6.3: The effective masses aEeff(t) for the 2×2 submatrices of the correlation matrix
6.1. (top left): Effective masses for O[BB∗](0) and O[B∗B∗](0). (top right): Effective
masses for O[BB∗](0) and O[Dd](0). (bottom): Effective masses for O[B∗B∗](0) and O[Dd](0).

We conclude the GEP analysis taking all three operators O[BB∗](0), O[B∗B∗](0) and O[Dd](0)
into account simultaneously, so we examine the whole 3 × 3 matrix. The associated
effective mass plot can be found in Fig. 6.4. We can clearly identify the ground state
below threshold as well as two excited states above threshold. However, we remark that
a plateau fit for the second excited state does not yield reliable results due to the rapidly
growing error bars.

In conclusion, in our GEP analysis we find clear evidence for a bound b̄b̄ud tetraquark
state in the I(JP ) = 0(1+) channel.
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Figure 6.4: The effective mass aEeff(t) for the 3 × 3 correlation matrix 6.1 including
O[BB∗](0), O[B∗B∗](0) and O[Dd](0).

In the next step we perform a detailed statistical and systematic error analysis applying
the methods discussed in Chapter 3 with Tmin = 6 and Tmax = 18. The associated total
error is:

σtotal =
√
σ2
stat + σ2

syst (6.74)

We present the resulting energy levels relative to the BB∗ threshold in Table 6.4 while
we are using the abbreviations

O1 ≡ O[BB∗](0), O2 ≡ O[B∗B∗](0), O3 ≡ O[Dd](0) (6.75)

to increase the readability of the table.

operator basis ∆E0 [MeV] ∆E1 [MeV]
(O1)× (O1) −8.9 +22.3

−21.5

(O2)× (O2) 26.7 +27.5
−22.2

(O3)× (O3) −65.5 +26.8
−46.3

(O1,O2)× (O1,O2) −61.3 +21.8
−29.0 184.6 +116.5

−38.4

(O1,O3)× (O1,O3) −64.3 +22.9
−43.3 186.1 +68.9

−25.9

(O2,O3)× (O2,O3) −65.7 +26.9
−46.7 189.6 +104.9

−40.3

(O1,O2,O3)× (O1,O2,O3) −62.8 +21.5
−36.3 183.4 +111.7

−38.7

Table 6.4: Energy differences relative to EB + EB∗ in MeV for the listed operator bases.
Results are computed using the GEP and extracting the effective masses via plateau fits
in the region Tmin = 6 and Tmax = 18. The presented uncertainties are the total errors
(6.74).
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We recognize that the lowest energy level yields a binding energy of Eb̄b̄ud ≡ ∆E0 '
−60 MeV and is within the error bars located below threshold. This energy level is
already reached including only the diquark-antidiquark operator O[Dd](0). Moreover, it
is detected for all three 2 × 2 submatrices as well as for the complete 3 × 3 matrix. A
possible interpretation might be that the diquark-antidiquark structure has good overlap
with the ground state. Thus, if O[Dd](0) is included in the operator basis, we assume that
the ground state is matched. Additionally, the combination of O[BB∗](0) and O[B∗B∗](0) also
yields the lowest energy state, so we also suppose good overlap using these two operators.
However, each operator separately does not possess adequate overlap with the ground
state.

So finally, taking the detailed error analysis into account, there is clear evidence for a
bound state in the b̄b̄ud tetraquark system.

Scattering + Mesonic Operator Basis

Referring to the correlation matrix in Table 6.1, we did not consider the matrix elements
including scattering operators at the sink, since we cannot evaluate the 5×3 matrix using
the GEP. Nevertheless we would like to investigate the impact of the scattering operators
OB(0)B∗(0) and OB∗(0)B∗(0) on the extracted masses. For this purpose, we proceed as
described in Sec. 6.3: The computed data are directly fitted to the analytic expression
of the correlation functions. This is realised using the QMBF tool provided by Stefan
Meinel (cf. [43]).

We apply a correlated fit of our data to (6.69) using the first two energy states, i.e. n = 1.
Our fit results can be found in Table 6.5 while the energies are again given relative to the
BB∗ threshold. Note that only statistical errors are included at this juncture. We are
adapting the same conventions as presented in 6.75, extended to:

O4 ≡ OB(0)B∗(0), O5 ≡ OB∗(0)B∗(0) (6.76)

In addition to the results for the complete 5 × 3 matrix, we have also performed fits for
the 3× 3 matrix in order to improve comparability with the results of the GEP.

operator basis Fit range χ2/d.o.f. ∆E0 [MeV] ∆E1 [MeV]
(O1,O2,O3)× (O1,O2,O3) 11 . . . 24 1.75 −48.9(19.6) 36.2(33.4)
(O1,O2,O3)× (O1,O2,O3) 14 . . . 24 1.44 −97.1(53.4) 125.3(133.9)

(O1,O2,O3,O4,O5)× (O1,O2,O3) 11 . . . 24 1.25 −101.0(16.2) −8.6(26.6)

Table 6.5: Energy differences relative to EB + EB∗ in MeV for the listed operator bases.
Results are computed using exponential fitting. The presented uncertainties are the sta-
tistical errors.

If we first consider the 5 × 3 matrix, we notice that both energy values are considerably
lower than the results generated by the GEP. At first glance, this is irritating since we are
adding scattering operators which should not provide a stronger binding of a bound state.
However, from a more general perspective the 5× 3 operator basis seems to have a better
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overlap with the four-quark system. In other words, including the scattering operators is
more suitable to describe the whole tetraquark system. This can be explained as follows:
The two additional scattering operators have a very good overlap with the first excited
state. This is comprehensible, since this state is slightly above threshold, and consequently
it is assumed to be a scattering state. Hence, this state is almost completely generated
using the scattering operators, and its contributions to the lowest determined energy level
are removed.
In contrast, if we do not include these scattering operators, the extracted ground state
will have an admixture of this first excited state for small time values so the determined
energy will be increased. Consequently, considering larger t regions, we should also get a
significantly lower energy using the GEP. However, due to the large errors (cf. Fig. 6.2
to 6.4) it is not possible to perform fits in this region.

Certainly, we plan to support this assumption, so we consider the exponential fits for the
3× 3 matrix using two different fit ranges (cf. Table 6.5). Performing the fit for the lower
value tmin = 11, we extract a ground state energy of about −50 MeV which is within
the errors comparable to the −60 MeV computed with the GEP. Applying tmin = 14 as
lower fit boundary, we observe a drastic decline to approximately −100 MeV. This value,
however, coincides well with the ground state energy extracted from the 5× 3 matrix.
We assume that for tmin = 14 we get less contamination from the first excited state
because the exponential is decreasing faster and so we get a purer ground state energy.

We can conclude that the results obtained from the GEP do not contradict those from
exponential fitting. Nevertheless, the scattering operators increase the overlap with the
four-quark system so that the effective mass plateaus are reached for smaller time values.
Since we cannot include the scattering operators in the GEP, the results generated by ex-
ponential fitting seems to be more substantiated. Therefore, we state a bound tetraquark
state with Eb̄b̄ud ' −101.0(16.2). Moreover, we found the first excited state which is
located at the level of threshold. Thus, this state might be a scattering state which sup-
ports our assumption that the scattering operators OB(0)B∗(0) and OB∗(0)B∗(0) possess good
overlap with the first excitation.

Summary

In this subsection, we have investigated the b̄b̄ud tetraquark system in the I(JP ) = 0(1+)
channel for a specific ensemble in the framework of NRQCD while paying special attention
to the different operator structures. Considering only mesonic creation operators, we have
predicted a bound state with a binding energy of Eb̄b̄ud ' −60 MeV. We have illustrated
the great importance of the diquark-antidiquark operator O[Dd](0) for creating a bound
state, and we have shown that an equal weighted combination of O[BB∗](0) and O[B∗B∗](0)
is also a good candidate for a bound four-quark system. Furthermore, we have depicted
the great significance of the scattering operators OB(0)B∗(0) and OB∗(0)B∗(0). They seem
to have an excellent overlap with the first excited state so that the ground state can be
determined with less admixtures. Including all operators we have found a bound state
with Eb̄b̄ud ' −100 MeV whereas the first excited state is located at threshold level.
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6.4.2 Computation for Unphysical Bottom Quark Mass
mQ = 5mb

This section focuses on the unphysical heavy bottom quark mass mQ = 5mb. Even if this
case cannot be found in real world physics, it is of huge conceptional interest.
Our calculations are performed using ensemble C54 presented in Table 3.1. We expect a
significantly deeper bound state compared to mQ = mb. We start again with determining
the B and B∗ meson masses. The effective mass plots can be found in Fig. 6.5 whereas
the extracted masses as well as the computed threshold energy aEB + aEB∗ are listed in
Table 6.6.
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Figure 6.5: The effective mass aEeff(t) for the B and the B∗ meson in units of the lattice
spacing a as a function of the temporal lattice extent t/a for mQ = mb. Linear fit for
5 ≤ t ≤ 12. (left): B meson for mQ = 5mb. (right): B∗ meson for mQ = 5mb.

aEB 0.5672(30)
aEB∗ 0.5737(31)

aEB + aEB∗ 1.1409(61)

Table 6.6: Threshold energy aEB + aEB∗ in lattice units for mQ = 5mb.

We have repeated the GEP analysis for all available quadratic matrices and have extracted
the associated effective masses. The results are presented in Table 6.7. Referring to the
ground state energy, we identify an energy of Eb̄b̄ud,5mb ' −200 MeV which is a drastically
lower value compared to mQ = mb where we found Eb̄b̄ud ' −60 MeV. We can detect
the same behaviour for the first excited state which decreases from E

(1)
b̄b̄ud
' 180 MeV

to E(1)
b̄b̄ud,5mb

' 90 MeV. It is notable that we do not create a second bound state while
increasing the bottom quark mass. Nevertheless we detect a much deeper binding so
consequently we can definitely speak about a bound state in this case.

Finally, in Fig. 6.6 (right) we present the effective mass plot for the complete 3×3 matrix.
Note that we depict only the two lowest energy levels to keep the plot clearly arranged.
One has to emphasise that the ensemble C54 provides substantially less measurements
than C005, so consequently the statistical fluctuations are larger. To ensure good com-
parability, we repeated the calculation for the physical bottom mass mQ = mb using
ensemble C54. The effective mass plot extracted from the 3 × 3 matrix is illustrated in
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Fig. 6.6 (left).
Comparing these two figures, we can graphically reveal the dropping energy levels. Espe-
cially the ground level is depicted to be clearly lower while the first excited state has also
slightly decreased. It is also notable that the uncertainties for mQ = 5mb grow faster and
therefore no substantiated statements are possible for large t.
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Figure 6.6: The effective mass aEeff(t) for the 3× 3 correlation matrix 6.1 with O[BB∗](0),
O[B∗B∗](0) and O[Dd](0). (left:) for mQ = mb. (right:) for mQ = 5mb.

operator basis ∆E0 [MeV] ∆E1 [MeV]
(O1)× (O1) −108.7 +71.0

−92.7

(O2)× (O2) −99.4 +71.9
−100.8

(O3)× (O3) −199.4 +117.8
−48.0

(O1,O2)× (O1,O2) −200.6 +75.1
−70.2 90.0 +98.4

−249.0

(O1,O3)× (O1,O3) −199.0 +109.8
−47.7 75.4 +263.0

−307.9

(O2,O3)× (O2,O3) −198.9 +111.9
−47.7 89.4 +261.5

−324.8

(O1,O2,O3)× (O1,O2,O3) −205.1 +77.6
−68.7 90.0 +98.4

−249.2

Table 6.7: Energy differences relative to EB + EB∗ in MeV for the listed operator bases
with mQ = 5mb. Results are computed using the GEP and extracting the effective masses
via plateau fits in the region Tmin = 3 and Tmax = 12. The presented uncertainties are
the total errors (6.74).
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6.4.3 Chiral Extrapolation

In the last section, we aim to extract the real physical result. Due to numerical efficiency,
lattice calculations are generally performed for unphysically heavy pion masses. Four out
of five available ensembles have pion masses between 303 MeV and 431 MeV while there is
only one ensemble with the quite small pion mass of 139 MeV but a rather small number
of available measurements and consequently low statistics (cf. Table 3.1). Therefore our
results have to be extrapolated to the physical point via a chiral extrapolation.
The correlation matrix has been computed for the three lattices with coarse lattice spacing
C01, C005, C00078 as well as for F004 and F006 which possess a finer lattice spacing.
The effective masses are extracted from the 3× 3 correlation matrices including only the
mesonic operators applying the GEP. We assume that discretisation errors are negligible
compared to the statistical uncertainties. Thus, we treat the fine and the coarse lattice in
the same way and ignore possible effects caused by the differing lattice spacings. Moreover,
we do not include any finite volume effects at this stage.

Performing the extrapolation, we fit the extracted ground state energy differences ∆E0
as a function of the the pion mass mπ for all five ensembles to:

∆E0(mπ) = ∆E0,phys + λ
(
m2
π −m2

π,phys

)
(6.77)

Here, the physical pion mass is mπ,phys = 135 MeV. ∆E0,phys and λ are the fit parameters
while ∆E0,phys denotes the binding energy at the physical point where mπ = mπ,phys.
The fit has χ2/d.o.f. = 0.58 and yields:

∆E0,phys = (−99.25± 39.08) MeV, λ = (0.00036± 0.00031) MeV−1 (6.78)

The ground state energy for all five ensembles as well as the extrapolated binding energy
are summarized in Table 6.8. The graphical representation of the extrapolation is shown
in Fig. 6.7. We have performed a detailed statistical and systematic error analysis while
applying the methods discussed in Sec. 3. The given uncertainties are representing the
total error.

Ensemble Fit range ∆E0 [MeV]
C005 6 . . . 18 −62.8 +21.5

−36.3

C01 6 . . . 20 −44.0 +21.7
−64.8

F004 6 . . . 22 −54.0 +32.7
−35.2

F006 7 . . . 24 −59.8 +36.9
−33.6

C00078 4 . . . 14 −171.2 +139.2
−80.7

Extrapolation −99.3 +39.1
−39.1

Table 6.8: Binding energies for the presented ensembles relative to the threshold energy
EB + EB∗ and extrapolation to the physical pion mass.

As a result, we found a bound b̄b̄ud tetraquark state with a binding energy of Eb̄b̄ud =
−99 +39

−39 MeV which is located within the errors clearly below the BB∗-threshold. This
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-300

-200

-100

 0

 100

 0  0.05  0.1  0.15  0.2  0.25

Δ
E 

[M
eV

]

mπ
2 [GeV2]

coarse
fine

Figure 6.7: Chiral extrapolation for the ground state energy ∆E0.

result coincides with previous studies of the b̄b̄ud system in the Born-Oppenheimer ap-
proximation which reveal a bound state with Eb̄b̄ud ' −90 MeV (cf. [16, 17]). Our results
are supported by further publications: In recent papers considering also b̄b̄ud tetraquarks
in NRQCD (cf. [23, 24]), evidence for a bound four-quark system has been found as
well. However, in [23] a bound state with Eb̄b̄ud ' −190 MeV is predicted. Thus, a more
detailed and elaborate comparison of the extracted results and applied analysis methods
is necessary to make a more precise statement about the quantitative value of the binding
energy.

We would like to emphasise that we intentionally did not perform the chiral extrapolation
for the first excited state. Referring to Sec. 6.4.1, we found clear evidence that the lowest
effective mass contains admixture of the first excitation for small t separations when
considering only mesonic operators. Consequently, we suppose that the extracted effective
mass for the first excited state includes further higher excitations and therefore cannot
be identified with the pure physical energy level of the first excited state. Accordingly,
an extrapolation is not assumed to yield reliable results and thus we renounce it.

In this work, we focus solely on the GEP and thus consider only the 3 × 3 submatrix.
However, as shown in Sec. 6.4.1, we achieve a better separation of the lowest and first
excited state when including the scattering operators, i.e. considering the whole 5 × 3
matrix. In this case, the binding energy has been decreased clearly so one assumes that
the same behaviour will be detected for all other ensembles.
Nevertheless, the 5×3 matrix is only accessible when applying exponential fitting. There-
fore, analysing the complete 5 × 3 correlation matrix including all scattering operators
will be the subject of further investigations.
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Chapter 7

Conclusion

In this thesis, I investigated the heavy-light b̄b̄ud four-quark system in the framework
of lattice non-relativistic QCD (NRQCD). This system allows interesting insights in the
formation of heavy-light tetraquarks, and the detailed study of this system therefore
provides an important step towards a theoretical understanding of occurring tetraquark
states in nature and will support future experimental research.

Before considering tetraquarks, we successfully computed the masses of the bottomo-
nium states ηB(1S) and Υ(1S) using lattice NRQCD and illustrated the scale setting in
NRQCD.

Continuing with four-quark states, we started with a preliminary study of the heavy
tetraquark b̄b̄bb in the JPC = 1+− channel by means of NRQCD. Searching for bound
states, we did not receive any evidence for a bound tetraquark state which is in agreement
with recent lattice NRQCD studies ([36]).

The main part of the thesis focuses nevertheless on the b̄b̄ud system in NRQCD which
has been discussed in Chapter 6. We included five different creation operators in the
correlation matrix for the I(JP ) = 0(1+) channel. We distinguish between three mesonic
structures and two scattering structures. In the first step of our analysis, we included only
the three mesonic operators and evaluated the 3 × 3 correlation matrix using the GEP.
Calculations were executed for several different pion masses, and we finally performed an
extrapolation to the physical pion mass. We have found strong indication for a bound
state with a binding energy Eb̄b̄ud = −99 +39

−39 MeV at physical pion mass. Previous studies
of the b̄b̄ud system in the Born-Oppenheimer approximation have predicted a bound state
with Eb̄b̄ud = −90+43

−36 ([16, 17]). Consequently we successfully confirm these results in a
qualitative as well as quantitative way.

Moreover, we performed calculations for an unphysical heavy bottom quark mass which is
five times the physical bottom quark mass mQ = 5mb. In terms of quality we discovered a
decrease of the bound state and supported previous studies stating the heavy quark mass
dependence of the bound state energy ([15, 24]).

Additionally, we included the scattering operators in our analysis to study their influence
on creating a tetraquark system. However, we did not perform a chiral extrapolation in
this case but consider only one specific ensemble. Our studies reveal that the scattering
operators decrease the bound state significantly and improve the extracted signal for the
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Chapter 7. Conclusion

lowest state. For the ensemble used, the extracted ground state energy has been lowered
from Eb̄b̄ud ' −60 MeV to Eb̄b̄ud ' −100 MeV. We assume that the scattering state has
an excellent overlap with the first excited state and therefore removes excited admixtures
from the ground state so that we are able to extract the lowest energy level more precisely.
It will be part of further investigations to extrapolate these results to the physical pion
mass.

Finally, this project can be continued in the following directions.
The next logical step with regard to the presented results will be a detailed analysis
of scattering states (cf. [46]). All currently observed tetraquark systems seem to be
resonances, so a deeper theoretical understanding of tetraquark resonances is essential.
Recent studies based on the Born-Oppenheimer approximation have already predicted a
resonance in the b̄b̄ud system for I(JP ) = 0(1−) (cf. [22]). Thus, the b̄b̄ud four-quark
system is a promising candidate to apply lattice QCD studies for scattering processes and
to search for resonances. However, investigating such states, which are unstable under the
strong interactions, is much more challenging than focusing on stable states: The same
dynamics that provides binding of quarks and gluons into resonances is also responsible
for their decay.
A powerful tool to study scattering processes on the lattice has been established by Lüscher
some decades ago and is today known as the “Lüscher method“ (cf. [47, 48, 49]). Due
to the periodic final volume used in lattice calculations, we receive a discrete spectrum
of QCD eigenstates. This spectrum can be related to scattering amplitudes applying
Lüscher’s method and we can perform an analytical continuation into the complex energy
plane. There, resonances appear as pole singularities and can easily be detected.

Pursuing this ambitious project, the first part has been successfully achieved in this
thesis by extracting the energy spectrum for the chosen operator basis. Implementing the
Lüscher method to extend this investigation to scattering amplitudes and resonances will
be the subject of ongoing research efforts.
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Appendix A

Conventions and Formulas

Three-dimensional vectors are expressed by bold symbols x = (x1, x2, x3), while four-
dimensional vectors are defined by x ≡ (x, t). In this thesis we use natural units, i.e.
~ = c = 1. Unless otherwise stated, we work in Euclidean space and therefore use the
Euclidean formulation of the gamma matrices in the non-relativistic representation.

A.1 Gamma Matrices

The gamma matrices in the Euclidean representation fulfil the following relations:

• γ0 =
 1 0

0 −1

 ≡ γ4, γj =
 0 −iσj
iσj 0


with the Pauli matrices σi:

σ1 =
 0 1

1 0

, σ2 =
 0 −i
i 0

, σ3 =
 1 0

0 −1


• {γµ, γν} = 2 gµν

• γ†0 = γ0, γ†i = γi

• (γ0)2 = 1, (γi)2 = 1

• γ5 = γ1γ2γ3γ0

• {γµ, γ5} = 0

• (γ5)2 = 1, γ†5 = γ5

• γ0γ
†
i γ0 = −γi

• γT0 = γ0, γT1 = −γ1, γT2 = γ2, γT3 = −γ3, γT5 = γ5,
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Appendix A. Conventions and Formulas

A.2 Quantum Number Operators

In this section we list the transformation behaviour of a spinor Ψ when applying the
different quantum number operators.

Parity Operator:

P (Ψ) = γ0Ψ (A.1)

Charge Conjugation Operator:

Ψ C−→ C−1ΨT

Ψ C−→ −ΨTC
(A.2)

with the charge conjugation matrix C = γ2γ0.

Angular Momentum Operator:

Rj(α) (Ψ) = exp
(
αεjkl

γkγl
4

)
Ψ =

[
1 + αεjkl

γkγl
4

]
Ψ +O(α2)

= exp (iαJj) Ψ =
[
1 + iαJj

]
Ψ +O(α2)

(A.3)

with Jj the angular momentum for the j-th component.

Isospin Operator:

Ij(α) (Ψ) = exp
(
iα

2 σj
)

Ψ =
[
1 + iα

2 σj
]

Ψ +O(α2)

= exp (iαIj) Ψ =
[
1 + iαIj

]
Ψ +O(α2)

(A.4)

with Ij the isospin for the j-th component.
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Appendix B

FWT Transformation - Detailed
Calculations

In this section we collect the complete and detailed calculations necessary to perform the
FWT transformation including terms of O

(
1/m2

Q

)
. All higher orders O

(
1/m3

Q

)
will be

neglected. To preserve readability we introduce the notation:

L(n)m = Ψ(n)Õ(n)mΨ(n) (B.1)

where the index (n) numerates the performed redefinition and m denotes the highest
included order in 1/mQ. In some calculations we omit the spinors and consider only
Õ(n)m instead of the complete Lagrangian L(n)m.

B.1 Cancelling Anti-Commuting Terms of
Leading Order

First, we redefine the spinors as presented in (2.23):

Ψ = exp
(
− 1

2mQ

iγjDj

)
Ψ(1)

Ψ = Ψ(1) exp
(
− 1

2mQ

iγjDj

) (B.2)

Applying these spinors to the Lagrangian L and including all terms up to 1/m2
Q eliminates

the leading order anti-commuting terms and yields the new Lagrangian L(1)2. The index
(1) labels the performed redefinition, and the index 2 indicates the highest order included.
As discussed above, we compute the redefined Dirac operator Õ(1)2 and omit the spinors
Ψ(1) and Ψ(1).

Õ(1)2 = exp
(
− 1

2mQ

iγjDj

)(
iγ0D0 − iγjDj −mQ

)
exp

(
− 1

2mQ

iγjDj

)
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=
(

1− i

2mQ

γjDj −
1
2

1
4m2

Q

(
γjDj

)2
+ 1

6
i

8m3
Q

(
γjDj

)3
+ . . .

)(
iγ0D0 − iγjDj −mQ

)
×
(

1− i

2mQ

γjDj −
1
2

1
4m2

Q

(
γjDj

)2
+ 1

6
i

8m3
Q

(
γjDj

)3
+ . . .

)

=
[(
iγ0D0 − iγjDj −mQ

)
− i

2mQ

γjDj

(
iγ0D0 − iγjDj −mQ

)
− 1

2
1

4m2
Q

(
γjDj

)2 (
iγ0D0 − iγjDj −mQ

)
+ 1

6
i

8m3
Q

(
γjDj

)3 (
iγ0D0 − iγjDj −mQ

)]

×
(

1− i

2mQ

γjDj −
1
2

1
4m2

Q

(
γjDj

)2
+ 1

6
i

8m3
Q

(
γjDj

)3
+ . . .

)

=
[(
iγ0D0 − iγjDj −mQ

)
− i

2mQ

γjDj

(
iγ0D0 − iγjDj −mQ

)
− 1

2
1

4m2
Q

(
γjDj

)2 (
iγ0D0 − iγjDj −mQ

)
+ 1

6
i

8m3
Q

(
γjDj

)3 (
iγ0D0 − iγjDj −mQ

)]

−
[(
iγ0D0 − iγjDj −mQ

)
− i

2mQ

γjDj

(
iγ0D0 − iγjDj −mQ

)
− 1

2
1

4m2
Q

(
γjDj

)2 (
iγ0D0 − iγjDj −mQ

)
+ 1

6
i

8m3
Q

(
γjDj

)3 (
iγ0D0 − iγjDj −mQ

)]

× 1
2mQ

iγjDj

−
[(
iγ0D0 − iγjDj −mQ

)
− i

2mQ

γjDj

(
iγ0D0 − iγjDj −mQ

)
− 1

2
1

4m2
Q

(
γjDj

)2 (
iγ0D0 − iγjDj −mQ

)
+ 1

6
i

8m3
Q

(
γjDj

)3 (
iγ0D0 − iγjDj −mQ

)]

× 1
2

1
4m2

Q

(
γjDj

)2

+
[(
iγ0D0 − iγjDj −mQ

)
− i

2mQ

γjDj

(
iγ0D0 − iγjDj −mQ

)
− 1

2
1

4m2
Q

(
γjDj

)2 (
iγ0D0 − iγjDj −mQ

)
+ 1

6
i

8m3
Q

(
γjDj

)3 (
iγ0D0 − iγjDj −mQ

)]

× 1
6

i

8m3
Q

(
γjDj

)3
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=−mQ + iγ0D0

+ 1
mQ

{
+1

2γ
jDjγ

0D0 + 1
2γ

0D0γ
jDj −

1
2
(
γjDj

)2
}

+ 1
m2
Q

{
−1

8
(
γjDj

)2 (
iγ0D0 − iγjDj

)
− i

48
(
γjDj

)3

− 1
4γ

jDj

(
iγ0D0 − iγjDj

)
γjDj −

i

16
(
γjDj

)3
− 1

8
(
iγ0D0 − iγjDj

) (
γjDj

)2

− i

16
(
γjDj

)3
− i

48
(
γjDj

)3
}

+O
(

1
m3
Q

)
=−mQ + iγ0D0

+ 1
mQ

{
+1

2γ
jDjγ

0D0 + 1
2γ

0D0γ
jDj −

1
2
(
γjDj

)2
}

+ 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk

− i6
(
γjDj

)3
+ i

2
(
γjDj

)3
}

+O
(

1
m3
Q

)
=−mQ + iγ0D0

+ 1
mQ

{
+1

2γ
jDjγ

0D0 + 1
2γ

0D0γ
jDj −

1
2
(
γjDj

)2
}

+ 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk + i

3
(
γjDj

)3
}

+O
(

1
m3
Q

)

As expected the leading order anti-commuting term has been cancelled.
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B.2 Cancelling Anti-Commuting Terms of
Order O (1/mQ)

After grouping the 1/mQ contribution in commuting and anti-commuting terms, we apply
the second redefined spinors (2.31) to L(1)2 in order to cancel the anti-commuting terms
of order 1/mQ. The second redefinition is given by:

Ψ(1) = exp
(

1
2m2

Q

OA
(1)1

)
Ψ(2)

Ψ(1) = Ψ(2) exp
(

1
2m2

Q

OA
(1)1

) (B.3)

The associated Dirac operator is computed as follows:

Õ(2)2 = exp
(

1
2m2

Q

ig

2 γ
jγ0Fj0

)(
−mQ + iγ0D0

)
exp

(
1

2m2
Q

ig

2 γ
jγ0Fj0

)

+ exp
(

1
2m2

Q

ig

2 γ
jγ0Fj0

)
1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk + ig

2 γ
jγ0Fj0

}

× exp
(

1
2m2

Q

ig

2 γ
jγ0Fj0

)

+ exp
(

1
2m2

Q

ig

2 γ
jγ0Fj0

)

× 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk + i

3
(
γjDj

)3
}

× exp
(

1
2m2

Q

ig

2 γ
jγ0Fj0

)

=
(

1 + 1
2m2

Q

ig

2 γ
jγ0Fj0 + . . .

)(
−mQ + iγ0D0

)(
1 + 1

2m2
Q

ig

2 γ
jγ0Fj0 + . . .

)

+
(

1 + 1
2m2

Q

ig

2 γ
jγ0Fj0 + . . .

)
1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk + ig

2 γ
jγ0Fj0

}

×
(

1 + 1
2m2

Q

ig

2 γ
jγ0Fj0 + . . .

)

+
(

1 + 1
2m2

Q

ig

2 γ
jγ0Fj0 + . . .

)

× 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk + i

3
(
γjDj

)3
}

×
(

1 + 1
2m2

Q

ig

2 γ
jγ0Fj0 + . . .

)
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=
(
−mQ + iγ0D0

)
− 1
mQ

ig

2 γ
jγ0Fj0

+ 1
2m2

Q

ig

2 γ
jγ0Fj0iγ

0D0 + iγ0D0
1

2m2
Q

ig

2 γ
jγ0Fj0

+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk + ig

2 γ
jγ0Fj0

}
+ 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk + i

3
(
γjDj

)3
}

=
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
+ 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk + i

3
(
γjDj

)3

−g4γ
jγ0Fj0γ

0D0 −
g

4γ
0D0γ

jγ0Fj0

}
+O

(
1
m3
Q

)

=
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
+ 1
m2
Q

{
− i8

(
γjDj

)2
γ0D0 −

i

8γ
0D0

(
γjDj

)2
− i

4γ
jDjγ

0D0γ
kDk

+ i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj0]

}
+O

(
1
m3
Q

)

=
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
− i

8m2
Q

{(
γjDj

)2
γ0D0 + γ0D0

(
γjDj

)2
+ 2γjDjγ

0D0γ
kDk

}

+ 1
m2
Q

{
i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj0]

}
+O

(
1
m3
Q

)

=
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
− i

8m2
Q

{
γjDj

(
γkDkγ

0D0 + γ0D0γ
kDk

)
+
(
γkDkγ

0D0 + γ0D0γ
kDk

)
γjDj

}
+ 1
m2
Q

{
i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj0]

}
+O

(
1
m3
Q

)

with: γkDkγ
0D0 + γ0D0γ

kDk = igγkγ0Fk0
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=
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
+ g

8m2
Q

{
γjDjγ

kγ0Fk0 + γkγ0Fk0γ
jDj

}
+ 1
m2
Q

{
i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj0]

}
+O

(
1
m3
Q

)

=
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
+ g

8m2
Q

γ0
{
γjγkDjFk0 − γkγjFk0Dj

}
+ 1
m2
Q

{
i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj0]

}
+O

(
1
m3
Q

)

In order to rewrite this expression in commuting and anti-commuting terms, we consider:

γjγkDjFk0 − γkγjFk0Dj

= 1
2
(
γjγkDjFk0 + γjγkDjFk0 − γkγjFk0Dj − γkγjFk0Dj

)
= 1

2
(
γjγkDjFk0 +

(
2ηjk − γkγj

)
DjFk0 − γkγjFk0Dj −

(
2ηjk − γjγk

)
Fk0Dj

)
= 1

2
(
γjγkDjFk0 − γkγjDjFk0 − γkγjFk0Dj + γjγkFk0Dj

)
+ ηjkDjFk0 − ηjkFk0Dj

= 1
2
((
γjγk − γkγj

)
DjFk0 +

(
γjγk − γkγj

)
Fk0Dj

)
+ ηjkDjFk0 − ηjkFk0Dj

= 1
2
[
γj, γk

]
{Dj, Fk0}+ ηjkDjFk0 − ηjkFk0Dj

with:

ηjk (DjFk0 − Fk0Dj) Ψ = ηjk [(DjFk0) Ψ + Fk0 (DjΨ)− Fk0 (DjΨ)]
=ηjk (DjFk0) Ψ ≡ ηjk

(
D∗jFk0

)
Ψ = −D∗jFj0Ψ

where D∗j means that the derivative acts only on the electromagnetic field on the right
but not on the spinor.
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Finally, we get:

Õ(2)2 =
(
−mQ + iγ0D0

)
+ 1
mQ

{
−1

2DjD
j − ig

8
[
γj, γk

]
Fjk

}
+ 1
m2
Q

{
− g

8mγ0
(
D∗jFj0 −

1
2
[
γj, γk

]
{Dj, Fk0}

)

+ i

3γ
jγkγlDjDkDl + g

4γ
j [D0, Fj0]

}
+O

(
1
m3
Q

) (B.4)

(B.5)

B.3 Cancelling Quark Mass Term

To eliminate the quark mass term we apply the transformation (2.37). In the following,
we illustrate the proof. Note that it is sufficient to consider only the leading terms and
neglect all contributions of O (1/mQ), since they do not contain further time derivatives
and thus commute with the exponentials.

Ψ̃exp
(
imQx

0γ0
) [
−mQ + iγ0D0 +O

(
1
mQ

)]
exp

(
−imQx

0γ0
)

Ψ̃

=Ψ̃exp
(
imQx

0γ0
) [
−mQ + iγ0D0

]
exp

(
−imQx

0γ0
)

Ψ̃ +O
(

1
mQ

)

=Ψ̃exp
(
imQx

0γ0
)

exp
(
−imQx

0γ0
) [
−mQ + iγ0

(
−imQγ

0
)

+ iγ0D0
]

Ψ̃ +O
(

1
mQ

)

=Ψ̃
[
−mQ +mQ + iγ0D0

]
Ψ̃ +O

(
1
mQ

)

=Ψ̃iγ0D0Ψ̃ +O
(

1
mQ

)
(B.6)

As we can see, the quark mass contribution has vanished while all other terms remain
unaffected.
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Calculation of Quantum Numbers

C.1 Angular Momentum for Υ(1S)

In the following, the computation of the angular momentum for the Υ(1S) is illustrated.
In this case, all three spatial directions have to be considered and therefore evaluation
will be performed for j = 1, 2, 3.

R3(α)|ΦΥ,j〉 =R3(α)(b̄γjb) |Ω〉

=
[(

1 + α

4 [γ1, γ2]
)
b
]†
γ0γj

(
1 + α

4 [γ1, γ2]
)
b |Ω〉+O(α2)

=b†
(

1− α

4 [γ1, γ2]
)
γ0γj

(
1 + α

4 [γ1, γ2]
)
b |Ω〉+O(α2)

(C.1)

for j = 1:

=b†γ0γ1b|Ω〉+ αb†γ0γ2b|Ω〉+O(α2)
=|ΦΥ,1〉+ α|ΦΥ,2〉+O(α2)

(C.2)

for j = 2:

=b†γ0γ2b|Ω〉 − αb†γ0γ1b|Ω〉+O(α2)
=|ΦΥ,2〉 − α|ΦΥ,1〉+O(α2)

(C.3)

for j = 3:

=b†γ0γ3b|Ω〉+O(α2)
=|ΦΥ,3〉+O(α2)

(C.4)

Regarding the associated three-dimensional spinor, the transformation behaviour results
in:
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R3(α)|ΦΥ〉 =


1 α 0
−α 1 0
0 0 1

 |ΦΥ〉 = |ΦΥ〉+ iα


0 −i 0
i 0 0
0 0 0

 |ΦΥ〉 (C.5)

We can identify the matrix with J3 via R3(α)|ΦΥ〉 = (1+ iαJ3)|ΦΥ〉. J1,2 can be obtained
by cyclic permutation. The rotation matrices are given by:

J1 =


0 0 0
0 0 −i
0 i 0

 , J2 =


0 0 i

0 0 0
−i 0 0

 , J3 =


0 −i 0
i 0 0
0 0 0

 (C.6)

Finally, we get J2 = J2
1 + J2

2 + J2
3 = 2 · 1 != J(J + 1) · 1 so that the angular momentum

is J = 1.
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C.2 Quantum Numbers for b̄b̄ud

In this section we will compute explicitly the quantum numbers I(JP ) for the three
creation operator structures used in this work. Note that it is not necessary to distinguish
between different momentum projections, and therefore, in the following, we omit the
space-time arguments and consider only the general expressions. The three operators are
given by:

OBB∗ = b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d (C.7)

with Γ1 = γ5, Γ2 = γj.

OB∗B∗ = b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d (C.8)

with εijk (Γ1 = γj, Γ2 = γk).

ODd = εabcb̄bΓ1
[
b̄c
]T
εade

([
dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)

(C.9)

with Γ1 = γjC, Γ2 = Cγ5.

A spinor describing one of these particles is constructed via |Ψj〉 = Oj|Ω〉 with j ∈
{BB∗, B∗B∗, Dd} and the vacuum state |Ω〉. In this section we are working in Minkowski
space.

C.2.1 Parity

First, we compute the parity P for all three operators. We use the parity operator given
in (A.1).

For OBB∗ and OB∗B∗:

For evaluating case one and two together we keep the Γ matrices general:

P|Φ〉 =P
(
b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d

)
|Ω〉

=b̄γ0Γ1γ0d b̄γ0Γ2γ0u− b̄γ0Γ1γ0u b̄γ0Γ2γ0d|Ω〉
=b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d|Ω〉
= + |Φ〉

(C.10)

We apply {γ0, γ5} = 0 and {γ0, γj} = 0 which is valid for OBB∗ as well as OB∗B∗ .
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For ODd:

P|Φ〉

=P
[
εabcb̄bΓ1

[
b̄c
]T
εade

([
dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)]
|Ω〉

=εabcb̄bγ0Γ1γ0
[
b̄c
]T
εade

([
dd
]T
γ0Γ2γ0u

e −
[
ud
]T
γ0Γ2γ0d

e
)
|Ω〉

=εabcb̄bΓ1
[
b̄c
]T
εade

([
dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)
|Ω〉

= + |Φ〉

(C.11)

We use the commutators [γ0, γjC] = 0 and [γ0, Cγ5] = 0.

Hence, the parity is positive for all three operators (P = +).

C.2.2 Angular momentum

We proceed computing the angular momentum for all operators applying (A.3). We
consider the z-component and set j = 3. The rotation operator for small angular α can
be expressed by:

R3(α) (Ψ) = exp
(
α

4 [γ1, γ2]
)

Ψ =
(

1 + α

4 [γ1, γ2]
)

Ψ +O(α2) (C.12)

For OBB∗ and OB∗B∗:

Again, we consider OBB∗ and OB∗B∗ in a common approach and insert the Γ matrices at
the end of the calculation. The general expression is found to be:

R3(α)
(
b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d

)
|Ω〉

=
{ [(

1 + α

4 [γ1, γ2]
)
b
]†
γ0Γ1

(
1 + α

4 [γ1, γ2]
)
d

×
[(

1 + α

4 [γ1, γ2]
)
b
]†
γ0Γ2

(
1 + α

4 [γ1, γ2]
)
u

−
[(

1 + α

4 [γ1, γ2]
)
b
]†
γ0Γ1

(
1 + α

4 [γ1, γ2]
)
u

×
[(

1 + α

4 [γ1, γ2]
)
b
]†
γ0Γ2

(
1 + α

4 [γ1, γ2]
)
d

}
|Ω〉
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=
{

b†
(

1 + α

4 (γ1γ2 − γ2γ1)†
)
γ0Γ1

(
1 + α

4 (γ1γ2 − γ2γ1)
)
d

× b†
(

1 + α

4 (γ1γ2 − γ2γ1)†
)
γ0Γ2

(
1 + α

4 (γ1γ2 − γ2γ1)
)
u

− b†
(

1 + α

4 (γ1γ2 − γ2γ1)†
)
γ0Γ1

(
1 + α

4 (γ1γ2 − γ2γ1)
)
u

× b†
(

1 + α

4 (γ1γ2 − γ2γ1)†
)
γ0Γ2

(
1 + α

4 (γ1γ2 − γ2γ1)
)
d
}
|Ω〉

=
{

b̄
(

Γ1 + α

4

[
(γ2γ1 − γ1γ2) Γ1 + Γ1 (γ1γ2 − γ2γ1)

])
d

× b̄
(

Γ2 + α

4

[
(γ2γ1 − γ1γ2) Γ2 + Γ2 (γ1γ2 − γ2γ1)

])
u

− b̄
(

Γ1 + α

4

[
(γ2γ1 − γ1γ2) Γ1 + Γ1 (γ1γ2 − γ2γ1)

])
u

× b̄
(

Γ2 + α

4

[
(γ2γ1 − γ1γ2) Γ2 + Γ2 (γ1γ2 − γ2γ1)

])
d
}
|Ω〉

=
{ (

b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d
)

− α

2
(
b̄ [γ1γ2,Γ1] db̄Γ2u+ b̄Γ1db̄ [γ1γ2,Γ2]u

−b̄ [γ1γ2,Γ1]ub̄Γ2d− b̄Γ1ub̄ [γ1γ2,Γ2] d
)}
|Ω〉

(C.13)

Now we insert the Γ matrices explicitly and therefore distinguish between OBB∗ and
OB∗B∗ .

For OBB∗:

For OBB∗ , we insert Γ1 = γ5 and Γ2 = γj. We evaluate (C.13) for all spatial directions
j = 1, 2, 3 and use the commutation relation [γ1γ2, γ5] = 0:

j = 1:
[γ1γ2, γ1] = 2γ2 (C.14)

thus:

R3(α)|Ψ1〉 =
{(
b̄γ5d b̄γ1u− b̄γ5u b̄γ1d

)
− α

(
b̄γ5db̄γ2u− b̄γ5ub̄γ2d )

}
|Ω〉 = |Ψ1〉 − α|Ψ2〉

(C.15)

j = 2:
[γ1γ2, γ2] = −2γ1 (C.16)

thus:

R3(α)|Ψ2〉 =
{(
b̄γ5d b̄γ2u− b̄γ5u b̄γ2d

)
+ α

(
b̄γ5db̄γ1u− b̄γ5ub̄γ1d )

}
|Ω〉 = |Ψ2〉+ α|Ψ1〉

(C.17)
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j = 3:
[γ1γ2, γ3] = 0 (C.18)

thus:

R3(α)|Ψ1〉 =
{(
b̄γ5d b̄γ1u− b̄γ5u b̄γ1d

)}
|Ω〉 = |Ψ3〉 (C.19)

Hence, the spinor transforms like:

R3(α)|Ψ〉 =


1 −α 0
α 1 0
0 0 1

 |Ψ〉 = |Ψ〉+ iα


0 i 0
−i 0 0
0 0 0

 |Ψ〉 (C.20)

Using (A.3) to rewrite R3(α) = exp(iαJ3) = 1 + iαJ3 +O(α2) we get:

J3 =


0 i 0
−i 0 0
0 0 0

 (C.21)

Repeating the calculation for R1(α) and R2(α) or deviating the results from circular
permutation of the gamma matrices’ indices, we find:

J1 =


0 0 0
0 0 i

0 −i 0

 , J2 =


0 0 −i
0 0 0
i 0 0

 (C.22)

The total angular momentum is given by:

J2 = J2
1 + J2

2 + J2
3 = 2 · 1 != (J + 1)J · 1 (C.23)

so that the total angular momentum is J = 1.

For OB∗B∗:

We repeat the same calculation for OB∗B∗ with εijk (Γ1 = γj,Γ2 = γk) and distinguish
again the three components i = 1, 2, 3.

i = 1:
[γ1γ2, γ2] = −2γ1

[γ1γ2, γ3] = 0
(C.24)

R3(α)|Ψ1〉 =
{(
b̄γ2d b̄γ3u− b̄γ2u b̄γ3d

)
−
(
b̄γ3d b̄γ2u− b̄γ3u b̄γ2d

)
− α

(
−
(
b̄γ1db̄γ3u− b̄γ1ub̄γ3d

)
+
(
b̄γ3db̄γ1u− b̄γ3ub̄γ1d

) )}
|Ω〉

=|Ψ1〉 − α|Ψ2〉

(C.25)
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i = 2:

[γ1γ2, γ1] = 2γ2

[γ1γ2, γ3] = 0
(C.26)

R3(α)|Ψ2〉 =
{(
b̄γ3d b̄γ1u− b̄γ3u b̄γ1d

)
−
(
b̄γ1d b̄γ3u− b̄γ1u b̄γ3d

)
+ α

(
−
(
b̄γ3db̄γ2u− b̄γ3ub̄γ2d

)
+
(
b̄γ2db̄γ3u− b̄γ2ub̄γ3d

) )}
|Ω〉

=|Ψ2〉+ α|Ψ1〉

(C.27)

i = 3:

[γ1γ2, γ1] = +2γ2

[γ1γ2, γ2] = −2γ1
(C.28)

R3(α)|Ψ1〉 =
{(
b̄γ1d b̄γ2u− b̄γ1u b̄γ2d

)
−
(
b̄γ2d b̄γ1u− b̄γ2u b̄γ1d

)
− α

[(
−b̄γ1db̄γ1u+ b̄γ2db̄γ2u− b̄γ1ub̄γ1d+ b̄γ2ub̄γ2d

)
−
(
b̄γ2db̄γ2u− b̄γ1db̄γ1u+ b̄γ2ub̄γ2d− b̄γ1ub̄γ1d

)
]
}
|Ω〉

=|Ψ3〉

(C.29)

Therefore, we obtain the same transformation behaviour for |Ψ〉 compared to OBB∗ , i.e.
J = 1 is also valid for OB∗B∗ .
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For ODd:

Finally, we consider the diquark-antidiquark operator.

R3(α)
(
εabcb̄bΓ1

(
b̄c
)T
εade

((
dd
)T

Γ2u
e −

(
ud
)T

Γ2d
e
))
|Ω〉

=εabcεade
{
bb†
(

1 + α

4 (γ1γ2 − γ2γ1)†
)
γ0Γ1

[
bc†
(

1 + α

4 (γ1γ2 − γ2γ1)†
)
γ0

]T
([(

1 + α

4 (γ1γ2 − γ2γ1)
)
dd
]T

Γ2

(
1 + α

4 (γ1γ2 − γ2γ1)
)
ue

−
[(

1 + α

4 (γ1γ2 − γ2γ1)
)
ud
]T

Γ2

(
1 + α

4 (γ1γ2 − γ2γ1)
)
de
) }
|Ω〉

=εabcεade
{
b̄b
(

1− α

4 (γ1γ2 − γ2γ1)
)

Γ1

(
1− α

4 (γ1γ2 − γ2γ1)
) [
b̄c
]T

([
dd
]T (

1 + α

4 (γ1γ2 − γ2γ1)
)

Γ2

(
1 + α

4 (γ1γ2 − γ2γ1)
)
ue

−
[
ud
]T (

1 + α

4 (γ1γ2 − γ2γ1)
)

Γ2

(
1 + α

4 (γ1γ2 − γ2γ1)
)
de
) }
|Ω〉

=εabcεade
{
b̄b
[
Γ1 −

α

4 (γ1γ2 − γ2γ1) Γ1 − Γ1
α

4 (γ1γ2 − γ2γ1)
] [
b̄c
]T

([
dd
]T [

Γ2 + α

4 (γ1γ2 − γ2γ1) Γ2 + Γ2
α

4 (γ1γ2 − γ2γ1)
]
ue

−
[
ud
]T [

Γ2 + α

4 (γ1γ2 − γ2γ1) Γ2 + Γ2
α

4 (γ1γ2 − γ2γ1)
]
de
) }
|Ω〉

=εabcεade
{
b̄b
(

Γ1 −
α

2 {γ1γ2,Γ1}
) [
b̄c
]T

([
dd
]T (

Γ2 + α

2 {γ1γ2,Γ2}
)
ue −

[
ud
]T (

Γ2 + α

2 {γ1γ2,Γ2}
)
de
) }
|Ω〉

=εabcεade
{
b̄bΓ1

[
b̄c
]T ([

dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)

− α

2

[
−b̄bΓ1

[
b̄c
]T ([

dd
]T
{γ1γ2,Γ2}ue −

[
ud
]T
{γ1γ2,Γ2} de

)
+b̄b {γ1γ2,Γ1}

[
b̄c
]T ([

dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)] }

|Ω〉

(C.30)

Evaluating this expression with Γ1 = γjC, Γ2 = Cγ5, and C = iγ2γ0, and considering again
all three spatial directions j = 1, 2, 3, we find:

{γ1γ2, Cγ5} = 0
{γ1γ2, γ1C} = +2γ2C
{γ1γ2, γ2C} = −2γ1C
{γ1γ2, γ3C} = 0

(C.31)

j = 1:
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R3(α)|Ψ1〉

=εabcεade
{
b̄bCγ1

[
b̄c
]T ([

dd
]T
Cγ5u

e −
[
ud
]T
Cγ5d

e
)

− α
[
b̄bCγ2

[
b̄c
]T ([

dd
]T
Cγ5u

e −
[
ud
]T
Cγ5d

e
)] }

|Ω〉 = |Ψ1〉 − α|Ψ2〉

(C.32)

j = 2:

R3(α)|Ψ2〉

=εabcεade
{
b̄bCγ2

[
b̄c
]T ([

dd
]T
Cγ5u

e −
[
ud
]T
Cγ5d

e
)

+ α
[
b̄bCγ1

[
b̄c
]T ([

dd
]T
Cγ5u

e −
[
ud
]T
Cγ5d

e
)] }

|Ω〉 = |Ψ2〉+ α|Ψ1〉

(C.33)

j = 3:

R3(α)|Ψ3〉

=εabcεade
{
b̄bCγ2

[
b̄c
]T ([

dd
]T
Cγ5u

e −
[
ud
]T
Cγ5d

e
)}
|Ω〉 = |Ψ3〉

(C.34)

Hence, we find the same transformation behaviour for the spinor |Ψ〉 as illustrated for
the previous operators. Therefore, with the analogous computation, we conclude that the
angular momentum is J = 1.

Consequently, we have proven that all operators generate angular momentum J = 1.

C.2.3 Isospin

Finally, we consider the isospin for the three creating operators using the isospin operator
(A.4) and the vector notation for the u and d spinors in the SU(2) isospin space:

u =
 1

0

 d =
 0

1

 (C.35)

We compute the I3 component and apply the expansion:

I3(α) = exp
(
iα

2 σ3

)
= 1 + iα

2 σ3 +O(α2) (C.36)

The operator I3 acts only on the SU(2) spinors u and d. The b quarks are unaffected.

We start again with the Isospin for OBB∗ and OB∗B∗ and conclude with ODd.
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For OBB∗ and OB∗B∗:

For the two mesonic operators, we find:

I3(α)
{
b̄Γ1d b̄Γ2u− b̄Γ1u b̄Γ2d

}
|Ω〉

=I3(α)

b̄Γ1

 0
1

 b̄Γ2

 1
0

− b̄Γ1

 1
0

 b̄Γ2

 0
1

 |Ω〉
=

b̄Γ1

[
1 + iα

2 σ3

] 0
1

 b̄Γ2

[
1 + iα

2 σ3

] 1
0


−b̄Γ1

[
1 + iα

2 σ3

] 1
0

 b̄Γ2

[
1 + iα

2 σ3

] 0
1

 |Ω〉
=


b̄Γ1

 0
1

+ b̄Γ1
iα

2

 0
−1

 b̄Γ2

 1
0

+ b̄Γ2
iα

2

 1
0


−

b̄Γ1

 1
0

+ b̄Γ1
iα

2

 1
0

 b̄Γ2

 0
1

+ b̄Γ2
iα

2

 0
−1

 |Ω〉
=

b̄Γ1

 0
1

 b̄Γ2

 1
0

− b̄Γ1

 1
0

 b̄Γ2

 0
1


+ i

α

2

b̄Γ1

 0
1

 b̄Γ2

 1
0

− b̄Γ1

 0
1

 b̄Γ2

 1
0


+b̄Γ1

 1
0

 b̄Γ2

 0
1

− b̄Γ1

 1
0

 b̄Γ2

 0
1

 |Ω〉
=
{
b̄Γ1db̄Γ2u− b̄Γ1ub̄Γ2d

}
|Ω〉

(C.37)

Using I3(α) = exp(iαI3) = 1+ iαI3 +O(α2) we conclude that I3 = 0. Repeating the anal-
ogous calculation for the other two components yields I1 = 0 and I2 = 0. Consequently,
the total isospin is zero (I = 0).
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C.2. Quantum Numbers for b̄b̄ud

For ODd:

We conclude with the isospin for the diquark-antidiquark operator:

I3(α)
{
εabcb̄bΓ1

[
b̄c
]T
εade

([
dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
)}
|Ω〉

=I3(α)

εabcb̄bΓ1
[
b̄c
]T
εade



 0

1

d

T

Γ2

 1
0

e

−


 1

0

d

T

Γ2

 0
1

e

 |Ω〉

=

εabcb̄bΓ1
[
b̄c
]T
εade


[1 + iα

2 σ3

] 0
1

d

T

Γ2

[
1 + iα

2 σ3

] 1
0

e

−

[1 + iα

2 σ3

] 1
0

d

T

Γ2

[
1 + iα

2 σ3

] 0
1

e

 |Ω〉

=

εabcb̄bΓ1
[
b̄c
]T
εade



 0

1

d + iα

2

 0
−1

d

T

Γ2

 1
0

e + iα

2

 1
0

e

−


 1

0

d + iα

2

 1
0

d

T

Γ2

 0
1

e + iα

2

 0
−1

e

 |Ω〉

=

εabcb̄bΓ1
[
b̄c
]T
εade



 0

1

d

T

Γ2

 1
0

e −

 1

0

d

T

Γ2

 0
1

e


+ iα

2

−

 0

1

d

T

Γ2

 1
0

e +


 0

1

d

T

Γ2

 1
0

e

−


 1

0

d

T

Γ2

 0
1

e +


 1

0

d

T

Γ2

 0
1

e

 |Ω〉

=

εabcb̄bΓ1
[
b̄c
]T
εade

([
dd
]T

Γ2u
e −

[
ud
]T

Γ2d
e
) |Ω〉

(C.38)

Finally, we find that I3 = 0. Calculating the other components of the isospin, we get
I1 = 0 and I2 = 0. So, the total isospin is I = 0.

In conclusion, we have proven that all three creation operators possess the quantum
numbers I(JP ) = 0(1+).
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Appendix D

Correlation Matrix Elements

D.1 Type I Correlation Function

For the first class of correlation functions we consider the operator:

OBB(t) =
∑
x,y

b̄Γ(1)
1 d(x, t) b̄Γ(1)

2 u(y, t)− b̄Γ(1)
1 u(x, t) b̄Γ(1)

2 d(y, t) (D.1)

and the associated daggered operator:

O†BB(t) =
∑
z,u

d̄Γ′(2)
1 b(z, t) ūΓ′(2)

2 b(u, t)− ūΓ′(2)
1 b(z, t) d̄Γ′(2)

2 b(u, t) (D.2)

with Γ′(2)
1 = γ0Γ(2)†

1 γ0 and Γ′(2)
2 = γ0Γ(2)†

2 γ0. We have introduced the upper indices (1), (2)
to distinguish between the gamma matrices of the daggered and non-daggered operator.
Thus, we are also able to compute off-diagonal matrix elements.

We will now calculate the correlation function C(t) for the two operators OBB(t) and
O†BB(0) in Eq. (D.1) and (D.2) using the different Γ matrices presented in (6.35) to
(6.38). Note that we use fixed source point locations, so the sums over z,u are omitted
and u = z. The correlation function is given by:

C(t) =
〈
OBB(t)O†BB(0)

〉
(D.3)

=
∑
x,y

〈[
b̄Γ(1)

1 d(x, t) b̄Γ(1)
2 u(y, t)− b̄Γ(1)

1 u(x, t) b̄Γ(1)
2 d(y, t)

]
×
[
d̄Γ′(2)

1 b(z, 0) ūΓ′(2)
2 b(z, 0)− ūΓ′(2)

1 b(z, 0) d̄Γ′(2)
2 b(z, 0)

]〉 (D.4)

For simplicity, we omit the upper indices of the Γ’s but keep in mind that:

Γi ≡ Γ(1)
i Γ′i ≡ Γ′(2)

i = γ0Γ†(2)
i γ0 (D.5)

Furthermore, we include the space-time arguments of the spinors in the colour and Dirac
indices. The replacement condition is:
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Appendix D. Correlation Matrix Elements

(x, t)↔ a (y, t)↔ b (z, 0)↔ a′, b′ (D.6)

These conventions improve the readability of the formula while they permit a distinct
reassignment at the end of the calculation.
Applying the described proceeding, the correlation function is written as:

C(t) =
∑
x,y

〈[
b̄aAΓ1ABd

a
B b̄

b
CΓ2CDu

b
D − b̄aAΓ1ABu

a
B b̄

b
CΓ2CDd

b
D

]
×
[
d̄a
′

A′Γ′1A′B′ba
′

B′ ū
b′

C′Γ′2C′D′bb
′

D′ − ūa
′

A′Γ′1A′B′ba
′

B′ d̄
b′

C′Γ′2C′D′bb
′

D′

]〉 (D.7)

=
∑
x,y

Γ1ABΓ2CDΓ′1A′B′Γ′2C′D′

×
〈
b̄aAd

a
B b̄

b
Cu

b
D d̄

a′

A′b
a′

B′ ū
b′

C′b
b′

D′ − b̄aAdaB b̄bCubD ūa
′

A′b
a′

B′ d̄
b′

C′b
b′

D′

− b̄aAuaB b̄bCdbD d̄a
′

A′b
a′

B′ ū
b′

C′b
b′

D′ + b̄aAu
a
B b̄

b
Cd

b
D ū

a′

A′b
a′

B′ d̄
b′

C′b
b′

D′

〉 (D.8)

=
∑
x,y

Γ1ABΓ2CDΓ′1A′B′Γ′2C′D′

×
〈
daBd̄

a′

A′ u
b
Dū

b′

C′

(
ba
′

B′ b̄
a
A b

b′

D′ b̄
b
C − ba

′

B′ b̄
b
C b

b′

D′ b̄
a
A

)
+ daBd̄

b′

C′ u
b
Dū

a′

A′

(
ba
′

B′ b̄
a
A b

b′

D′ b̄
b
C − ba

′

B′ b̄
b
C b

b′

D′ b̄
a
A

)
+ dbDd̄

a′

A′ u
a
Bū

b′

C′

(
ba
′

B′ b̄
a
A b

b′

D′ b̄
b
C − ba

′

B′ b̄
b
C b

b′

D′ b̄
a
A

)
+ dbDd̄

b′

C′ u
a
Bū

a′

A′

(
ba
′

B′ b̄
a
A b

b′

D′ b̄
b
C −ba

′

B′ b̄
b
C b

b′

D′ b̄
a
A

)〉
(D.9)

Now rewriting the quark propagators as uaAūbB ≡ Uab
AB and using the isospin symmetry

D = U yields:

=
∑
x,y

Γ1ABΓ2CDΓ′1A′B′Γ′2C′D′

×
〈
Uaa′

BA′ U
bb′

DC′

(
Ba′a
B′AB

b′b
D′C −Ba′b

B′C B
b′a
D′A

)
+ Uab′

BC′ U
ba′

DA′

(
Ba′a
B′AB

b′b
D′C −Ba′b

B′C B
b′a
D′A

)
+ U ba′

DA′ U
ab′

BC′

(
Ba′a
B′AB

b′b
D′C −Ba′b

B′C B
b′a
D′A

)
+ U bb′

DC′ U
aa′

BA′

(
Ba′a
B′AB

b′b
D′C −Ba′b

B′C B
b′a
D′A

)〉
(D.10)

=
∑
x,y

2 · Γ1ABΓ2CDΓ′1A′B′Γ′2C′D′

×
〈
Uaa′

BA′ U
bb′

DC′ B
a′a
B′AB

b′b
D′C − Uaa′

BA′ U
bb′

DC′B
a′b
B′C B

b′a
D′A

+ Uab′

BC′ U
ba′

DA′ B
a′a
B′AB

b′b
D′C − Uab′

BC′ U
ba′

DA′B
a′b
B′C B

b′a
D′A

〉 (D.11)
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D.1. Type I Correlation Function

Multiplying the Γ matrices to each addend, we can express the correlation function by
traces. Furthermore, in the next step the space-time arguments are re-established due to
the conventions given in Eq. (D.6). To improve readability, we use four-vector notation for
the space-time arguments. We apply the γ5-hermiticity for the heavy quark propagators.

= 2 ·
∑
x,y
〈Tr [U(x, z)Γ′1B(z, x)Γ1] Tr [U(y, z)Γ′2B(z, y)Γ2]

−Tr [U(x, z)Γ′1B(z, y)Γ2U(y, z)Γ′2B(z, x)Γ1]

+Tr [U(x, z)Γ′2B(z, y)Γ2U(y, z)Γ′1B(z, x)Γ1]

−Tr [U(x, z)Γ′2B(z, x)Γ1] Tr [U(y, z)Γ′1B(z, y)Γ2] 〉

(D.12)

= 2 ·
∑
x,y

〈
Tr
[
U(x, z)Γ′1γ5B(x, z)†γ5Γ1

]
Tr
[
U(y, z)Γ′2γ5B(y, z)†γ5Γ2

]
−Tr

[
U(x, z)Γ′1γ5B(y, z)†γ5Γ2U(y, z)Γ′2γ5B(x, z)†γ5Γ1

]
+Tr

[
U(x, z)Γ′2γ5B(y, z)†γ5Γ2U(y, z)Γ′1γ5B(x, z)†γ5Γ1

]
−Tr

[
U(x, z)Γ′2γ5B(x, z)†γ5Γ1

]
Tr
[
U(y, z)Γ′1γ5B(y, z)†γ5Γ2

]〉
(D.13)

We can use the correlation function in Eq. (D.13) now to compute the different corre-
lation functions by inserting the appropriate Γ matrices for the cases of interest. For
completeness, the Γ’s for the different operators are again listed below:

•
〈
O[BB∗](0)(t)O†[BB∗](0)(0)

〉
:

Γ1 = γ5 Γ2 = γj

Γ′1 = γ0γ
†
5γ0 = −γ5 Γ′2 = γ0γ

†
jγ0 = −γj

(D.14)

•
〈
O[BB∗](0)(t)O†[B∗B∗](0)(0)

〉
:

Γ1 = γ5 Γ2 = γi

εijk
(

Γ′1 = γ0γ
†
jγ0 = −γj Γ′2 = γ0γ

†
kγ0 = −γk

) (D.15)

•
〈
O[B∗B∗](0)(t)O†[BB∗](0)(0)

〉
:

εijk
(

Γ1 = γj Γ2 = γk
)

Γ′1 = γ0γ
†
5γ0 = −γ5 Γ′2 = γ0γ

†
i γ0 = −γi

(D.16)

•
〈
O[B∗B∗](0)(t)O†[B∗B∗](0)(0)

〉
:

εilm
(

Γ1 = γl Γ2 = γm
)

εijk
(

Γ′1 = γ0γ
†
jγ0 = −γj Γ′2 = γ0γ

†
kγ0 = −γk

) (D.17)
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Appendix D. Correlation Matrix Elements

Inserting this in Eq. (D.13) yields the specific correlation function. Derivations and the
final complete expressions are listed below:

Matrix element C11: 〈
O[BB∗](0)(t)O†[BB∗](0)(0)

〉
= 2 ·

∑
x

〈
Tr
[
U(x, z)B(x, z)†

]
Tr
[
U(x, z)γjγ5B(x, z)†γ5γj

]
−Tr

[
U(x, z)B(x, z)†γ5γjU(x, z)γjγ5B(x, z)†

]
+Tr

[
U(x, z)γjγ5B(x, z)†γ5γjU(x, z)B(x, z)†

]
−Tr

[
U(x, z)γjγ5B(x, z)†

]
Tr
[
U(x, z)B(x, z)†γ5γj

]〉
(D.18)

Matrix element C12:〈
O[BB∗](0)(t)O†[B∗B∗](0)(0)

〉
= 2 ·

∑
x

〈
εijkTr

[
U(x, z)γ0γ

†
jγ0γ5B(x, z)†

]
Tr
[
U(x, z)γ0γ

†
kγ0γ5B(x, z)†γ5γi

]
−εijkTr

[
U(x, z)γ0γ

†
jγ0γ5B(x, z)†γ5γiU(x, z)γ0γ

†
kγ0γ5B(x, z)†

]
+εijkTr

[
U(x, z)γ0γ

†
kγ0γ5B(x, z)†γ5γiU(x, z)γ0γ

†
jγ0γ5B(x, z)†

]
−εijkTr

[
U(x, z)γ0γ

†
kγ0γ5B(x, z)†

]
Tr
[
U(x, z)γ0γ

†
jγ0γ5B(x, z)†γ5γi

]〉
(D.19)

= 4 ·
∑

x

〈
Tr
[
U(x, z)γ2γ5B(x, z)†

]
Tr
[
U(x, z)γ3γ5B(x, z)†γ5γ1

]
+Tr

[
U(x, z)γ1γ5B(x, z)†

]
Tr
[
U(x, z)γ2γ5B(x, z)†γ5γ3

]
+Tr

[
U(x, z)γ3γ5B(x, z)†

]
Tr
[
U(x, z)γ1γ5B(x, z)†γ5γ2

]
−Tr

[
U(x, z)γ2γ5B(x, z)†γ5γ1U(x, z)γ3γ5B(x, z)†

]
−Tr

[
U(x, z)γ3γ5B(x, z)†γ5γ2U(x, z)γ1γ5B(x, z)†

]
−Tr

[
U(x, z)γ1γ5B(x, z)†γ5γ3U(x, z)γ2γ5B(x, z)†

]
+Tr

[
U(x, z)γ3γ5B(x, z)†γ5γ1U(x, z)γ2γ5B(x, z)†

]
+Tr

[
U(x, z)γ2γ5B(x, z)†γ5γ3U(x, z)γ1γ5B(x, z)†

]
+Tr

[
U(x, z)γ1γ5B(x, z)†γ5γ2U(x, z)γ3γ5B(x, z)†

]
−Tr

[
U(x, z)γ3γ5B(x, z)†

]
Tr
[
U(x, z)γ2γ5B(x, z)†γ5γ1

]
−Tr

[
U(x, z)γ2γ5B(x, z)†

]
Tr
[
U(x, z)γ1γ5B(x, z)†γ5γ3

]
−Tr

[
U(x, z)γ1γ5B(x, z)†

]
Tr
[
U(x, z)γ3γ5B(x, z)†γ5γ2

]〉

(D.20)
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D.1. Type I Correlation Function

Matrix element C21:〈
O[B∗B∗](0)(t)O†[BB∗](0)(0)

〉
= 2 ·

∑
x
εijk

〈
Tr
[
U(x, z)B(x, z)†γ5γj

]
Tr
[
U(x, z)γiγ5B(x, z)†γ5γk

]
−Tr

[
U(x, z)B(x, z)†γ5γkU(x, z)γiγ5B(x, z)†γ5γj

]
+Tr

[
U(x, z)γiγ5B(x, z)†γ5γkU(x, z)B(x, z)†γ5γj

]
−Tr

[
U(x, z)γiγ5B(x, z)†γ5γj

]
Tr
[
U(x, z)B(x, z)†γ5γk

]〉
(D.21)

= 4 ·
∑

x

〈
Tr
[
U(x, z)B(x, z)†γ5γ2

]
Tr
[
U(x, z)γ1γ5B(x, z)†γ5γ3

]
Tr
[
U(x, z)B(x, z)†γ5γ3

]
Tr
[
U(x, z)γ2γ5B(x, z)†γ5γ1

]
Tr
[
U(x, z)B(x, z)†γ5γ1

]
Tr
[
U(x, z)γ3γ5B(x, z)†γ5γ2

]
−Tr

[
U(x, z)B(x, z)†γ5γ3U(x, z)γ1γ5B(x, z)†γ5γ2

]
−Tr

[
U(x, z)B(x, z)†γ5γ1U(x, z)γ2γ5B(x, z)†γ5γ3

]
−Tr

[
U(x, z)B(x, z)†γ5γ2U(x, z)γ3γ5B(x, z)†γ5γ1

]
+Tr

[
U(x, z)γ1γ5B(x, z)†γ5γ3U(x, z)B(x, z)†γ5γ2

]
+Tr

[
U(x, z)γ2γ5B(x, z)†γ5γ1U(x, z)B(x, z)†γ5γ3

]
+Tr

[
U(x, z)γ3γ5B(x, z)†γ5γ2U(x, z)B(x, z)†γ5γ1

]
−Tr

[
U(x, z)γ1γ5B(x, z)†γ5γ2

]
Tr
[
U(x, z)B(x, z)†γ5γ3

]
−Tr

[
U(x, z)γ2γ5B(x, z)†γ5γ3

]
Tr
[
U(x, z)B(x, z)†γ5γ1

]
−Tr

[
U(x, z)γ3γ5B(x, z)†γ5γ1

]
Tr
[
U(x, z)B(x, z)†γ5γ2

]〉

(D.22)

Matrix element C22:

〈
O[B∗B∗](0)(t)O†[B∗B∗](0)(0)

〉
= 2 ·

∑
x

〈
Tr
[
U(x, z)Γ′1γ5B(x, z)†γ5Γ1

]
Tr
[
U(x, z)Γ′2γ5B(x, z)†γ5Γ2

]
−Tr

[
U(x, z)Γ′1γ5B(x, z)†γ5Γ2U(x, z)Γ′2γ5B(x, z)†γ5Γ1

]
+Tr

[
U(x, z)Γ′2γ5B(x, z)†γ5Γ2U(x, z)Γ′1γ5B(x, z)†γ5Γ1

]
−Tr

[
U(x, z)Γ′2γ5B(x, z)†γ5Γ1

]
Tr
[
U(x, z)Γ′1γ5B(x, z)†γ5Γ2

]〉
(D.23)
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= 2 ·
∑

x
εijkεilm〈
Tr
[
U(x, z)γjγ5B(x, z)†γ5γl

]
Tr
[
U(x, z)γkγ5B(x, z)†γ5γm

]
−Tr

[
U(x, z)γjγ5B(x, z)†γ5γmU(x, z)γkγ5B(x, z)†γ5γl

]
+Tr

[
U(x, z)γkγ5B(x, z)†γ5γmU(x, z)γjγ5B(x, z)†γ5γl

]
−Tr

[
U(x, z)γkγ5B(x, z)†γ5γl

]
Tr
[
U(x, z)γjγ5B(x, z)†γ5γm

]〉
(D.24)

= 4 ·
∑

x

∑
j,k;j 6=k〈
Tr
[
U(x, z)γjγ5B(x, z)†γ5γj

]
Tr
[
U(x, z)γkγ5B(x, z)†γ5γk

]
−Tr

[
U(x, z)γjγ5B(x, z)†γ5γkU(x, z)γkγ5B(x, z)†γ5γj

]
+Tr

[
U(x, z)γjγ5B(x, z)†γ5γjU(x, z)γkγ5B(x, z)†γ5γk

]
−Tr

[
U(x, z)γjγ5B(x, z)†γ5γk

]
Tr
[
U(x, z)γkγ5B(x, z)†γ5γj

]〉
(D.25)

Matrix element C41: 〈
OB(0)B∗(0)(t)O†[BB∗](0)(0)

〉
= 2 ·

∑
x,y

〈
Tr
[
U(x, z)B(x, z)†

]
Tr
[
U(y, z)γjγ5B(y, z)†γ5γj

]
−Tr

[
U(x, z)B(y, z)†γ5γjU(y, z)γjγ5B(x, z)†

]
+Tr

[
U(x, z)γjγ5B(y, z)†γ5γjU(y, z)B(x, z)†

]
−Tr

[
U(x, z)γjγ5B(x, z)†

]
Tr
[
U(y, z)B(y, z)†γ5γj

]〉
(D.26)
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Matrix element C42:〈
OB(0)B∗(0)(t)O†[B∗B∗](0)(0)

〉
= 2 ·

∑
x,y

〈
εijkTr

[
U(x, z)γ0γ

†
jγ0γ5B(x, z)†

]
Tr
[
U(y, z)γ0γ

†
kγ0γ5B(y, z)†γ5γi

]
−εijkTr

[
U(x, z)γ0γ

†
jγ0γ5B(y, z)†γ5γiU(y, z)γ0γ

†
kγ0γ5B(x, z)†

]
+εijkTr

[
U(x, z)γ0γ

†
kγ0γ5B(y, z)†γ5γiU(y, z)γ0γ

†
jγ0γ5B(x, z)†

]
−εijkTr

[
U(x, z)γ0γ

†
kγ0γ5B(x, z)†

]
Tr
[
U(y, z)γ0γ

†
jγ0γ5B(y, z)†γ5γi

]〉
(D.27)

= 4 ·
∑
x,y

〈
Tr
[
U(x, z)γ2γ5B(x, z)†

]
Tr
[
U(y, z)γ3γ5B(y, z)†γ5γ1

]
+Tr

[
U(x, z)γ1γ5B(x, z)†

]
Tr
[
U(y, z)γ2γ5B(y, z)†γ5γ3

]
+Tr

[
U(x, z)γ3γ5B(x, z)†

]
Tr
[
U(y, z)γ1γ5B(y, z)†γ5γ2

]
−Tr

[
U(x, z)γ2γ5B(y, z)†γ5γ1U(y, z)γ3γ5B(x, z)†

]
−Tr

[
U(x, z)γ3γ5B(y, z)†γ5γ2U(y, z)γ1γ5B(x, z)†

]
−Tr

[
U(x, z)γ1γ5B(y, z)†γ5γ3U(y, z)γ2γ5B(x, z)†

]
+Tr

[
U(x, z)γ3γ5B(y, z)†γ5γ1U(y, z)γ2γ5B(x, z)†

]
+Tr

[
U(x, z)γ2γ5B(y, z)†γ5γ3U(y, z)γ1γ5B(x, z)†

]
+Tr

[
U(x, z)γ1γ5B(y, z)†γ5γ2U(y, z)γ3γ5B(x, z)†

]
−Tr

[
U(x, z)γ3γ5B(x, z)†

]
Tr
[
U(y, z)γ2γ5B(y, z)†γ5γ1

]
−Tr

[
U(x, z)γ2γ5B(x, z)†

]
Tr
[
U(y, z)γ1γ5B(y, z)†γ5γ3

]
−Tr

[
U(x, z)γ1γ5B(x, z)†

]
Tr
[
U(y, z)γ3γ5B(y, z)†γ5γ2

]〉

(D.28)
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Matrix element C51: 〈
OB∗(0)B∗(0)(t)O†[BB∗](0)(0)

〉
= 4 ·

∑
x,y

〈
Tr
[
U(x, z)B(x, z)†γ5γ2

]
Tr
[
U(y, z)γ1γ5B(y, z)†γ5γ3

]
Tr
[
U(x, z)B(x, z)†γ5γ3

]
Tr
[
U(y, z)γ2γ5B(y, z)†γ5γ1

]
Tr
[
U(x, z)B(x, z)†γ5γ1

]
Tr
[
U(y, z)γ3γ5B(y, z)†γ5γ2

]
−Tr

[
U(x, z)B(y, z)†γ5γ3U(y, z)γ1γ5B(x, z)†γ5γ2

]
−Tr

[
U(x, z)B(y, z)†γ5γ1U(y, z)γ2γ5B(x, z)†γ5γ3

]
−Tr

[
U(x, z)B(y, z)†γ5γ2U(y, z)γ3γ5B(x, z)†γ5γ1

]
+Tr

[
U(x, z)γ1γ5B(y, z)†γ5γ3U(y, z)B(x, z)†γ5γ2

]
+Tr

[
U(x, z)γ2γ5B(y, z)†γ5γ1U(y, z)B(x, z)†γ5γ3

]
+Tr

[
U(x, z)γ3γ5B(y, z)†γ5γ2U(y, z)B(x, z)†γ5γ1

]
−Tr

[
U(x, z)γ1γ5B(x, z)†γ5γ2

]
Tr
[
U(y, z)B(y, z)†γ5γ3

]
−Tr

[
U(x, z)γ2γ5B(x, z)†γ5γ3

]
Tr
[
U(y, z)B(y, z)†γ5γ1

]
−Tr

[
U(x, z)γ3γ5B(x, z)†γ5γ1

]
Tr
[
U(y, z)B(y, z)†γ5γ2

]〉

(D.29)

Matrix element C52:〈
OB∗(0)B∗(0)(t)O†[B∗B∗](0)(0)

〉
= 2 ·

∑
x,y

〈
Tr
[
U(x, z)Γ′1γ5B(x, z)†γ5Γ1

]
Tr
[
U(y, z)Γ′2γ5B(y, z)†γ5Γ2

]
−Tr

[
U(x, z)Γ′1γ5B(y, z)†γ5Γ2U(y, z)Γ′2γ5B(x, z)†γ5Γ1

]
+Tr

[
U(x, z)Γ′2γ5B(y, z)†γ5Γ2U(y, z)Γ′1γ5B(x, z)†γ5Γ1

]
−Tr

[
U(x, z)Γ′2γ5B(x, z)†γ5Γ1

]
Tr
[
U(y, z)Γ′1γ5B(y, z)†γ5Γ2

]〉
(D.30)

= 2 ·
∑
x,y

εijkεilm〈
Tr
[
U(x, z)γjγ5B(x, z)†γ5γl

]
Tr
[
U(y, z)γkγ5B(y, z)†γ5γm

]
−Tr

[
U(x, z)γjγ5B(y, z)†γ5γmU(y, z)γkγ5B(x, z)†γ5γl

]
+Tr

[
U(x, z)γkγ5B(y, z)†γ5γmU(y, z)γjγ5B(x, z)†γ5γl

]
−Tr

[
U(x, z)γkγ5B(x, z)†γ5γl

]
Tr
[
U(y, z)γjγ5B(y, z)†γ5γm

]〉
(D.31)
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= 4 ·
∑
x,y

∑
j,k;j 6=k〈
Tr
[
U(x, z)γjγ5B(x, z)†γ5γj

]
Tr
[
U(y, z)γkγ5B(y, z)†γ5γk

]
−Tr

[
U(x, z)γjγ5B(y, z)†γ5γkU(y, z)γkγ5B(x, z)†γ5γj

]
+Tr

[
U(x, z)γjγ5B(y, z)†γ5γjU(y, z)γkγ5B(x, z)†γ5γk

]
−Tr

[
U(x, z)γjγ5B(x, z)†γ5γk

]
Tr
[
U(y, z)γkγ5B(y, z)†γ5γj

]〉
(D.32)

Since the double sum is extremely expensive for numerical calculation, we factorise these
terms to improve run time. The angled brackets can be omitted because the calculation
is executed for several configurations and finally averaged. For example, C41 will be
implemented as follows:

Matrix element C41:〈
OB(0)B∗(0)(t)O†[BB∗](0)(0)

〉
C41(t) =2 ·

(∑
x

Tr
[
U(x, z)B(x, z)†

])(∑
y

Tr
[
U(y, z)γjγ5B(y, z)†γ5γj

])

−2 · Tr
[(∑

x
B(x, z)†U(x, z)

)(∑
y
B(y, z)†γ5γjU(y, z)

)
γjγ5

]

+2 · Tr
[(∑

x
B(x, z)†U(x, z)

)
γjγ5

(∑
y
B(y, z)†γ5γjU(y, z)

)]

−2 ·
(∑

x
Tr
[
U(x, z)γjγ5B(x, z)†

])(∑
y

Tr
[
U(y, z)B(y, z)†γ5γj

])

(D.33)
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D.2 Time Reversal

In the following, we present the explicit computation of time reversal T for all 15 corre-
lation matrix elements.

T [C11(t)] = T
{[
b̄γ5d(x, t) b̄γju(x, t)− b̄γ5u(x, t) b̄γjd(x, t)

]
×
[
d̄γ5b(z, 0) ūγjb(z, 0) −ūγ5b(z, 0) d̄γjb(z, 0)

]}
= C11(−t)

(D.34)

T [C12(t)] = T
{[
b̄γ5d(x, t) b̄γiu(x, t)− b̄γ5u(x, t) b̄γid(x, t)

]
×
[
d̄γjb(z, 0) ūγkb(z, 0) −ūγjb(z, 0) d̄γkb(z, 0)

]}
= −C12(−t)

(D.35)

T [C13(t)] = T
{[
b̄γ5d(x, t) b̄γju(x, t)− b̄γ5u(x, t) b̄γjd(x, t)

]
×
[
εa
′d′e′

(
ūd
′Cγ5d̄

e′(z, 0)− d̄d′Cγ5ū
e′(z, 0)

)
εa
′b′c′bb

′
γ0 (γjC)† γ0b

c′(z, 0)
]}

= C13(−t)

(D.36)

T [C21(t)] = T
{[
b̄γjd(x, t) b̄γku(x, t)− b̄γju(x, t) b̄γkd(x, t)

]
×
[
d̄γ5b(z, 0) ūγib(z, 0) −ūγ5b(z, 0) d̄γib(z, 0)

]}
= −C21(−t)

(D.37)

T [C22(t)] = T
{[
b̄γld(x, t) b̄γmu(x, t)− b̄γlu(x, t) b̄γmd(x, t)

]
×
[
d̄γjb(z, 0) ūγkb(z, 0) −ūγjb(z, 0) d̄γkb(z, 0)

]}
= C22(−t)

(D.38)

T [C23(t)] = T
{[
b̄γid(x, t) b̄γju(x, t)− b̄γiu(x, t) b̄γjd(x, t)

]
×
[
εa
′d′e′

(
ūd
′Cγ5d̄

e′(z, 0)− d̄d′Cγ5ū
e′(z, 0)

)
εa
′b′c′bb

′
γ0 (γkC)† γ0b

c′(z, 0)
]}

= −C23(−t)

(D.39)

T [C31(t)] = T
{[
εabcb̄bγjCb̄c(x, t)εade

(
ddCγ5u

e(x, t)− udCγ5d
e(x, t)

)]
×
[
d̄γ5b(z, 0) ūγjb(z, 0)− ūγ5b(z, 0) d̄γjb(z, 0)

]}
= C31(−t)

(D.40)

T [C32(t)] = T
{[
εabcb̄bγjCb̄c(x, t)εade

(
ddCγ5u

e(x, t)− udCγ5d
e(x, t)

)]
×
[
d̄γkb(z, 0) ūγlb(z, 0)− ūγkb(z, 0) d̄γlb(z, 0)

]}
= −C32(−t)

(D.41)
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T [C33(t)] = T
{[
εabcb̄bγjCb̄c(x, t)εade

(
ddCγ5u

e(x, t)− udCγ5d
e(x, t)

)]
×
[
εa
′d′e′

(
ūd
′Cγ5d̄

e′(z, 0)− d̄d′Cγ5ū
e′(z, 0)

)
εa
′b′c′bb

′
γ0 (γjC)† γ0b

c′(z, 0)
]}

= C33(−t)

(D.42)

T [C41(t)] = T
{[
b̄γ5d(x, t) b̄γju(y, t)− b̄γ5u(x, t) b̄γjd(y, t)

]
×
[
d̄γ5b(z, 0) ūγjb(z, 0) −ūγ5b(z, 0) d̄γjb(z, 0)

]}
= C41(−t)

(D.43)

T [C42(t)] = T
{[
b̄γ5d(x, t) b̄γiu(y, t)− b̄γ5u(x, t) b̄γid(y, t)

]
×
[
d̄γjb(z, 0) ūγkb(z, 0) −ūγjb(z, 0) d̄γkb(z, 0)

]}
= −C42(−t)

(D.44)

T [C43(t)] = T
{[
b̄γ5d(x, t) b̄γju(y, t)− b̄γ5u(x, t) b̄γjd(y, t)

]
×
[
εa
′d′e′

(
ūd
′Cγ5d̄

e′(z, 0)− d̄d′Cγ5ū
e′(z, 0)

)
εa
′b′c′bb

′
γ0 (γjC)† γ0b

c′(z, 0)
]}

= C43(−t)

(D.45)

T [C51(t)] = T
{[
b̄γjd(x, t) b̄γku(y, t)− b̄γju(x, t) b̄γkd(y, t)

]
×
[
d̄γ5b(z, 0) ūγib(z, 0) −ūγ5b(z, 0) d̄γib(z, 0)

]}
= −C51(−t)

(D.46)

T [C52(t)] = T
{[
b̄γld(x, t) b̄γmu(y, t)− b̄γlu(x, t) b̄γmd(y, t)

]
×
[
d̄γjb(z, 0) ūγkb(z, 0) −ūγjb(z, 0) d̄γkb(z, 0)

]}
= C52(−t)

(D.47)

T [C53(t)] = T
{[
b̄γid(x, t) b̄γju(y, t)− b̄γiu(x, t) b̄γjd(y, t)

]
×
[
εa
′d′e′

(
ūd
′Cγ5d̄

e′(z, 0)− d̄d′Cγ5ū
e′(z, 0)

)
εa
′b′c′bb

′
γ0 (γkC)† γ0b

c′(z, 0)
]}

= −C53(−t)

(D.48)
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