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Abstract

The aim of this work is the investigation of hybrid static potentials at short quark-antiquark
separations and a possible decay into the ordinary static potential and a glueball. We define a
creation operator for the decay product state with quantum numbers identical to hybrid static
potentials. On this basis, we can exclude a decay of hybrid potentials Σ−u and Σ−g into the
lightest glueball 0++. Furthermore, separation distances are determined below which lattice
hybrid potential data will be contaminated by an energetically allowed glueball decay.
We compute the ordinary static potential Σ+

g and the lowest hybrid potential Πu in SU(2) pure
gauge theory at β = 2.50, 2.70, 2.85 and 3.00 and the mass of 0++-glueball with an optimized
operator at β = 2.50, 2.85 and 3.00. The study of static potentials and glueball at small lattice
spacings serves as a preparation for future lattice computations of hybrid static potentials at
short distances.
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1 Introduction

The strong interaction between quarks and gluons, which is one of the fundamental forces, is
described by Quantum Chromodynamics. Besides conventional hadrons, Quantum Chromody-
namics allows for the existence of glueballs, which are predominantly gluonic bound states, and
exotic mesons. Exotic mesons are composites of quarks and gluons which have a non-trivial struc-
ture different from an ordinary quark-antiquark pair. Due to their exotic structure, quantum
numbers can be different from those predicted by the constituent quark model.
In experiments, heavy quarkonium states with exotic properties have been observed which are
called XYZ mesons (cf. e.g. [1]). There exist different interpretations of such exotic states (cf.
e.g. [2–5]). One possibility is the tetraquark, which forms a four-quark system. Another system
able to create exotic quantum numbers is the hybrid meson. It consists of a quark and an anti-
quark with an excited gluon field, which contributes to the system’s quantum numbers.

Exotic mesons and glueballs are a current topic of investigation, both in theory and in exper-
iments. Facilities like PANDA at FAIR plan to search for exotic mesons and glueballs as they
confirm the validity of Quantum Chromodynamics as the theory of the strong interaction.
In theory, heavy hybrid mesons are studied in Lattice Quantum Chromodynamics. The compu-
tation of masses works within the Born-Oppenheimer approximation, also applied for diatomic
molecules [6]. Assuming heavy quark masses, i.e. the static limit, the gluonic energies can be
obtained. Lattice results of static potentials in the limit of infintely heavy quarks are computed
and parametrized [7]. The static potentials serve as an input in the Schrödinger equation solved
for the mass of hybrid mesons.
To gain a reliable parametrization, in particular at small separation distances, lattice data is
required. Computations on very fine lattices have to be performed to obtain hybrid potential
lattice results at short distances. They are, for example, also required to fix nonperturbative
parameters in the description of hybrid potentials in nonrelativistic effective field theories [8].
So far, analyses of hybrids rely on potential data starting at separations of r ≈ 0.1 fm (cf.
e.g. [7, 9, 10]).

The aim of this work is to investigate hybrid static potentials at very small separation distances.
We discuss possible decays of hybrid static potentials through the emission of glueballs at small
separations where the static energy difference to the ordinary potential is sufficiently high. The
lowest hybrid static potential and glueball are both computed on very fine lattices to get insight
in the short distance behavior of static potentials and the occuring difficulties and necessary
steps in the computations at small lattice spacings.
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CHAPTER 1. INTRODUCTION

1.1 Outline

This thesis is organized as follows.
In the first part, Chapter 2, we introduce basic concepts of Lattice Quantum Chromodynamics.
Definitions and symmetry aspects of static potentials and glueballs and their creation operators
are presented. Furthermore, methods of lattice scale setting are reviewed and compared to the
weak-coupling limit solution of the renormalization group equation.
In Chapter 3, the decay of excited static potentials is investigated. Operators for a decay product
trial state of ordinary static potential and glueball are presented. On this basis, we identify
hybrid static potentials that are excluded from a decay into the lightest glueball. Furthermore,
we determine quark-antiquark distances at which hybrid static potentials reach the minimal
energy for a possible decay.
Finally, lattice results are presented. In Chapter 4, static potentials are computed at differently
fine lattices and arising difficulties due to the small lattice spacings are discussed. Moreover, we
compare results for different scale settings. In Chapter 5, glueball mass computations at small
lattice spacings are investigated. The optimal smearing procedure is worked out and the glueball
mass is computed. In the end, results are summarized.
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Part I

Theory
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2 Lattice gauge theory

Quantum Chromodynamics (QCD) is the theory of the strong force. It describes the interaction
between quarks and gluons. Due to the energy dependence of its coupling, the large energy
regime can be studied with perturbation theory as the coupling is small. On the contrary, the
low energy regime is not accessible perturbatively due to the large coupling. With Lattice QCD,
quantities in the low energy regime like hadron masses can be computed numerically. By dis-
cretizing spacetime and use of numerical algorithms, Lattice QCD enables the computation of
path integrals which constitute one framework to formulate the theory of QCD.

Commonly, Lattice QCD is formulated on a four-dimensional hypercubic lattice with temporal
and spatial extensions, T × L3. Lattice sites are separated by a distance a, which is not known
at the beginning. It has to be determined through a scale setting procedure in order to obtain
physical results. In this thesis, four-dimensional SU(2) Yang-Mills theory is applied as it builds
a good starting point, since it is much simpler to simulate than full gauge theory including
fermions. However, pure gauge theory is already able to reveal relevant phenomena for gluonic
observables which are of interest in this thesis.

In the following, the basic concepts of lattice gauge theory are introduced based on [11,12].

2.1 Path integral formalism

The starting point for the framework of path integrals is the partition function

Z =

∫
DAµe

−S[A], (2.1)

where S[A] = 1
4

∫
d4xF aµνF

a
µν is the Euclidean gauge action with the field strength tensor Fµν .

The integration measure contains all possible fields at all points in the spacetime volume. Ac-
cordingly, the integration is performed over all possible gauge field configurations weighted with
the gauge action, which introduces the quantization of the field theory in the path integral
formalism.
To use this framework on the lattice, a discretization of fields has to be performed. Instead of
using the continuum gauge field Aµ, the path integral is expressed in terms of link variables
Uµ ∈ SU(N), which build the links between lattice sites. The lattice link is related to the
continuum gauge field via

Uµ(n) = exp(−iaAµ(n)), (2.2)

where a denotes the spacing between two neighboring lattice sites. This link variable connects
the lattice point n with the next lattice site in µ direction.
There exist various discretizations of the continuum action which are suitable for different appli-
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CHAPTER 2. LATTICE GAUGE THEORY

cations. The simplest discretization is the Wilson plaquette action:

S = β
∑
x∈Γ

∑
µ<ν

1

2N
Re Tr [1− Uµν(x)] . (2.3)

It is expressed through a sum over all lattice points x ∈ Γ and all orientiations of the plaquette
Uµν(x), which is defined as the smallest closed loop of lattice link variables

Uµν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂). (2.4)

The factor β in the action denotes the lattice coupling, which is related to the bare coupling via
β = 2N

g2 . This parameter sets the scale in a simulation of SU(N) Yang-Mills theory on the lattice.
In the naive continuum limit, i.e. a→ 0, the Wilson plaquette action yields the correct continuum
action with discretization error of O

(
a2
)
. As the continuous action, the discretization (2.3) is

gauge invariant.

Observables In the path integral formalism for pure gauge theory, a correlation function of an
operator O creating a state with the quantum numbers of interest from the vacuum |Ω〉 can be
written as follows

C(t) = 〈Ω|O†(t)O(0)|Ω〉 =

∫
DAµ O†(t)O(0) e−S[Aµ]. (2.5)

With the Euclidian time evolution operator and a set of energy eigenvalues, the correlation func-
tion can be expressed as a sum over the energy eigenstates of exponentials of energy differences

C(t) = 〈Ω|O†(t)O(0)|Ω〉 =
∑
n

| 〈n|O(0)|Ω〉|2 e−(En−EΩ)t (2.6)

t→∞
= | 〈0|O(0)|Ω〉|2 e−(E0−EΩ)t. (2.7)

In the large time limit, the higher excitations are suppressed so that the groundstate energy
difference to the vacuum dominates the correlation function. The prefactor denotes the overlap of
the state created by the operator with the groundstate. On this basis, non-perturbative quantities
like masses can be extracted from the exponential decay of correlation functions measured on
the lattice. In practice, the effective mass,

ameff(t) = ln

(
C(t)

C(t+ a)

)
, (2.8)

is examined as it approaches a plateau in the large time limit which constitutes the mass in
lattice units one is interested in.

Correlators are expressed in terms of gauge links on the lattice. Since the signal-to-noise ratio
decreases rapidly with t, it is important that the operator overlap to excited states is minimized.
In common tasks like the computation of static potentials, the overlap to the groundstate can
be increased by defining non-local operators. This is done by adding weigthed averages over
neigboring links to single links contributing to the operator. This procedure is known as link
smearing. A commonly applied technique is APE-smearing [13]. The link variable U (NAPE−1)

µ (x)

5



CHAPTER 2. LATTICE GAUGE THEORY

is replaced in the NAPE-th smearing step by

UNAPE
µ (x) = PSU(N)

(1− α)U (NAPE−1)
µ (x) +

α

6

∑
µ6=±ν

Ṽ (NAPE−1)
µν (x)

 , (2.9)

where Ṽ (NAPE−1)
µν (x) = U

(NAPE−1)
ν (x)U

(NAPE−1)
µ (x+ν̂)U

(NAPE−1)
−ν (x+ν̂+µ̂) is the staple surround-

ing the link. Common choices for the parameters are NAPE = 20 and α = 0.5 which proved to be
suitable for the computation of static potentials [7]. In this thesis, all spatial link variables used
in the computation of static potentials are APE-smeared. Besides single-link smearing like APE-
smearing, we find that double-link smearing is useful in the case of glueball mass computation,
which will be discussed later.

2.2 Statistical analysis

Lattice QCD evaluates path integrals for correlation functions on a large set of gauge field
configurations which are distributed according to the gauge action serving as a weight factor.
To provide such a distribution for a statistical analysis of observables, Monte Carlo algorithms
are applied. A Monte Carlo heatbath algorithm is used in this thesis for the generation of gauge
field configurations in SU(2).
Before configurations can be used for measurements, the updating algorithm has to pass ther-
malization phase until the generated set of configurations reaches the desired equilibrium distri-
bution. Furthermore, not only the first updates before thermalization should be discarded, but
intermediate configurations as well, since subsequently generated configurations are correlated.
Algorithms are based on Markov chains, where the updated gauge field depends on the previous
state.
The evaluation of a simple observable, the plaquette Uµν(x), on each configuration can serve as
a check for thermalization and autocorrelation time being distinct for each lattice setup.

An observable of interest θ is estimated from a set of measurements, which is obtained on a large
number of configurations. The statistical error of the observable is obtained via the jackknife
method.
From the full sample of measurements, one starts with building M bins containing K data
values. Through binning correllated data appropriately, autocorrelations can be removed. Next,
one constructs inverse bins,

X̃i =
1

M − 1

[
M∑
m=1

Xm −Xi

]
, (2.10)

by deleting one bin average. With the observables estimated from the inverse bins, θi, the error
estimate of the observable is given by

σθ =

√√√√M − 1

M

M∑
i=1

(
θi − θ̂

)2
, (2.11)

where θ̂ is the estimate obtained from the full sample.
In this thesis, all of the given errors denote statistical errors obtained from a jackknife analysis

6



CHAPTER 2. LATTICE GAUGE THEORY

starting at the level of correlation functions.

2.3 Static potentials

A quark and an antiquark separated by a distance r are surrounded by a gluon field. The gluonic
energy can be studied in the static limit, where one assumes the quarks to be infinitely heavy.
In the case of heavy quarks like charm or bottom, this constitutes a reasonable assumption.
Since hybrid mesons show the same symmetries as diatomic molecules, their description is partly
similar. The energy of the gluonic degrees of freedom in the static limit is given by the ordinary
static potential labelled with Σ+

g .

Furthermore, the gluon field between a static quark and an antiquark can be excited. This
additional excitation contributes to the quantum numbers of the system. A static potential with
an excited gluon field is called hybrid static potential.
The static potentials are functions of relative distance between the quark and antiquark. The
ordinary static potential is parametrized by the known Cornell potential

VΣ+
g

(r) = V0 −
α

r
+ σr, (2.12)

where V0 is an unphysical constant and the second term implies the expected attractive behavior
from perturbation theory. The linear rise of the potential is proportional to σ, which denotes
the string tension. This shape is explained by color confinement. Pulling the quarks apart leads
to a linear rise of energy between them, and thus no free quarks will be observable.
Parametrizations for the two lowest hybrid static potentials, Πu and Σ−u , have been derived in [7].
The static energy Πu is well described by

VΠu(r) =
A1

r
+A2 +A3r

2. (2.13)

The form of this parametrization is based on pNRQCD predictions for static potentials which
are valid at small separations [8]. The constant A2 denotes an unphysical shift. In contrast to
the groundstate, the hybrid static potential parametrization has a repulsive 1/r dependence at
short distances. This is the expected leading order term of the octet potential Vo(r) obtained in
perturbation theory in the short-distance limit. The next order correction is given by a quadratic
term in r, which is necessary to form bound states.

In the upcoming sections, a short introduction is given to the relevant symmetry group and group
theoretical basics for the description of trial states on the lattice [14,15]. Afterwards, we outline
how creation operators for the ordinary static potential as well as hybrid static potentials are
defined, according to [7].

2.3.1 Symmetry group

Static potentials are classified according to the system’s behavior under symmetry transforma-
tions belonging to the infinite dihedral point group D∞h.
The quantum numbers specify the properties of the state under those symmetry transforma-
tions: Λ = Σ,Π,∆, ... denotes non-negative integer values of angular momentum with respect to

7



CHAPTER 2. LATTICE GAUGE THEORY

D∞h D4h

A1g = Σ+
g A1g

A2g = Σ−g A2g

A1u = Σ+
u A1u

A2u = Σ−u A2u

E1g = Πg Eg
E1u = Πu Eu
E2g = ∆g B1g +B2g

E2u = ∆u B1u +B2u

E3g = Φg Eg
E3u = Φu Eu

...
...

Table 2.1: Correlation table between irreducible representations of the infinite group D∞h and
the finite subgroup D4h.

rotation around the quark separation axis. η = g, u describes the even (g) or odd (u) behavior
under combined parity transformation and charge conjugation, P ◦ C. Finally, ε = +,− is the
eigenvalue of reflection along an axis perpendicular to the quark separation axis, Px. However,
hybrid static potentials with Λ ≥ 1 are degenerate with respect to ε.
The combination Λεη designates states in an irreducible representation of the infinite point group
D∞h.
The dihedral group has four one-dimensional representations, conventionally labelled with A1g,
A2g, A1u, A2u which correspond to quantum numbers Σ+

g , Σ−g , Σ+
u , Σ−u , respectively. The two-

dimensional representations are denoted by E. As an example, the groundstate static potential
transforms according to the trivial representation A1g, hence, it is labelled with quantum num-
bers Λεη = Σ+

g .

When spacetime is discretized, the continuous symmetry group D∞h is broken into its finite
subgroup D4h. It has a finite number of irreducible representations due to the restriction to the
rotation angle ϕ = 2πn/4, n = 0, 1, 2, 3 on a spacetime lattice considering only nearest neighbors.
Out of ten irreducible representations, there are eight one-dimensional representations labelled
by A and B and two two-dimensional ones denoted by E.
Because irreducible representations of a group are reducible in a subgroup, states constructed in
the discrete representation could belong to more than one representation of the continuous group.
The correlation between irreducible representations of the continuous group and the subduced
representations of its finite subgroup is presented in Table 2.1. Continuing the list to higher
angular momentum, the irreducible representations of the finite group appear multiple times.
However, in general, it can be expected that a potential in a representation of the finite group
computed on the lattice belongs to the lowest angular momentum in the continuum as higher
energies are suppressed in the correlator at large times. Thus, in the following, we denote states,
which are in a representation of D4h, with quantum numbers Λεη, which label states in the lowest
induced representation.

In the definition of creation operators for states transforming in a specific representation, one
makes use of the Wigner-Eckart theorem.

8



CHAPTER 2. LATTICE GAUGE THEORY

This theorem concerns matrix elements of irreducible tensor operators.
A set of dq operators transforming under a symmetry operation P (T ) as a basis of an irreducible
representation Γq of the group G, i.e. fulfilling

P (T )QqjP
†(T ) =

dq∑
k=1

Γqkj(T )Qqk, (2.14)

are called irreducible tensor operators. dq denotes the dimension of the representation Γq.
An irreducible tensor operator can also be defined as the multiplication of a basis function ψqj
for the irreducible representation Γq

Qqjf = ψqjf. (2.15)

In case of the infinite dihedral groupD∞h, the basis function for the representation Λ is exp(iΛϕ).
As one useful application, the Wigner-Eckart theorem provides a selection rule for quantum
numbers [16]. It states that the matrix element of the irreducible tensor operator with respect
to basis vectors of different representations 〈m′|Qq|m〉 is only non-vanishing if m′ = m + q.
This means that the irreducible tensor operator, which acts on the state |m〉, adds the quantum
number q.
In summary, an irreducible tensor operator of an irreducible representation will create a state
from the vacuum which transforms exactly according to this representation.

2.3.2 Operators

Ordinary static potential

The simplest operator creating a state with quantum numbers Σ+
g is

OΣ+
g

(~x) = q̄(~x− r/2êz)U(~x− r/2êz, ~x+ r/2êz)q(~x+ r/2êz), (2.16)

where q and q̄ create a quark and an antiquark in a distance r/2 along the z-direction from the
position ~x, respectively. They are connected by a straight path of parallel transporters along the
separation axis.
The generated state transforms according to the trivial representation of the dihedral group, Σ+

g :
It is obvious that this state is invariant under rotations around the separation axis by an angle
ϕ that implies Λ = Σ. Parity transformation and charge conjugation yield η = g, designating an
even behavior. Reflection along an axis perpendicular to the separation axis has obviously no
effect, consequently, ε = +.

Computing the temporal correlation function on the lattice amounts in the computation of
ordinary Wilson loops

W (r, t) = Tr
[
Uz(−r/2, r/2; 0)Ut(r/2; 0, t)U †z (−r/2, r/2; t)U †t (−r/2; 0, t)

]
. (2.17)

They are closed loops of parallel transporters in spatial direction Uz(−r/2, r/2; 0) connecting
lattice points (−r/2; 0) and (r/2; 0) along the quark separation axis and in temporal direction,
Ut(r/2; 0, t) connecting lattice sites (r/2; 0) and (r/2; t).

9



CHAPTER 2. LATTICE GAUGE THEORY

Hybrid static potentials

If the gluon field between the quark and antiquark is excited, it influences the symmetry of the
state. This results in different quantum numbers. The contribution of gluonic excitations can
be included in a creation operator by introducing an additional structure along the separation
axis. The operator reads

OS(~x) = q̄(~x− r/2êz)U(~x− r/2êz, ~r1)S(~r1, ~r2)U(~r2, x̂+ r/2êz)q(~x+ r/2êz), (2.18)

where S(~r1, ~r2) is a non-trivial path inserted between r1 and r2 on the separation axis. This
insertion represents the gluonic excitation. The exact form of insertion S should be chosen such
that it exhibits the correct symmetry under the action of inversion of the axis perpendicular to
the separation axis and the combination of parity and charge conjugation. Its shape should also
be able to reproduce the desired angular momentum and have high overlap with the state of
interest.
To ensure that the state created from the vacuum has well defined quantum numbers, one makes
use of the Wigner-Eckart theorem.
An irreducible tensor operator, which creates a hybrid trial state with well defined angular
momentum Λ from the vacuum, is given by

OΛ =

∫ 2π

0
dϕ exp(iΛϕ)R(ϕ)OS . (2.19)

This operator is indeed an irreducible tensor operator which can be confirmed through the
following rotation operation:

R(α)OΛR
†(α) =

∫ 2π

0
dϕ exp(iΛϕ)R(ϕ+ α)OS (2.20)

=

∫ 2π

0
dϕ′ exp

(
iΛϕ′ − α

)
R(ϕ′)OS (2.21)

= exp(−iΛα)OΛ. (2.22)

Here, exp(−iΛα) is the element of irreducible representation Λ. According to the Wigner-Eckart-
theorem, this operator adds the quantum number Λ to the vacuum.
So far, the operator has no well defined behavior under the discrete symmetry operations of Px
and P ◦C. This can be fixed by projecting the trial state created by operator OΛ onto eigenstates
of these symmetry operations with projectors

PP◦C =
1

2
(1 + η (P ◦ C)) and PPx =

1

2
(1 + εPx) . (2.23)

The operator

OΛεη = PP◦C PPx
∫ 2π

0
dϕ exp(iΛϕ)R(ϕ)OS , (2.24)

with an appropriate insertion S creates a trial state with quantum numbers Λεη from the vacuum.
On the lattice, the rotation angle is restricted to kπ/2, k = 0, 1, 2, 3. The operator becomes a
discrete sum of properly weighted rotations and reflections of the original operator. The lattice

10



CHAPTER 2. LATTICE GAUGE THEORY

Ux

U3
y

U−x

U3
−y

U
r/a
z

Figure 2.1: Illustration of insertion USIII,1U = UxU
3
yU

r/a
z U3

−yU−x.

operator is given by

OΛεη =
1

4

(
1 + η (P ◦ C) + εPx + ηε (P ◦ C)Px

) 3∑
k=0

exp

(
iπΛk

2

)
R

(
πk

2

)
OS . (2.25)

In contrast to the ordinary static potential, hybrid Wilson loops computed on the lattice are
closed loops with non-trivial shapes in the spatial direction instead of straight paths of lattice
links

WΛεη = Tr
[
aΛεη(−r/2,+r/2; 0)Ut(r/2; 0, t)a†Λεη(−r/2, r/2; t)U †t (−r/2; 0, t)

]
, (2.26)

with

aΛεη(−r/2,+r/2; 0) =
1

4

(
1 + η (P ◦ C) + εPx + ηε (P ◦ C)Px

)
3∑

k=0

exp

(
iπΛk

2

)
R

(
πk

2

)(
U(−r/2, r1)S(r1, r2)U(r2, r/2)

)
. (2.27)

The optimal form and length of insertions for hybrid static potentials, which maximize their
groundstate overlap, were found in [7]. To generate a state with quantum numbers Πu, which
constitutes the lowest hybrid static potential, we choose USIII,1U = UxU

3
yU

r/a
z U3

−yU−x, illus-
trated in Figure 2.1, in our computation at small lattice spacings.
The extension along the axis of separation, denoted by z, corresponds to the relative separation
r/a of the quark and antiquark. Thus, U r/az represents the product of r/a successive gauge links
Uz in z-direction.

2.4 Glueballs

QCD allows for the formation of bound states from gluonic fields. The so called glueballs are
searched in experiments to investigate QCD as the theory of the strong interaction. Lattice QCD
provides the possibility to compute the mass spectrum of glueballs.
In the following, a brief introduction to the symmetry group and creation operators of glueballs is
given, before methods are presented to improve the signal of correlators measured on the lattice.

11
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Continuum spin J Oh
0 A1

1 T1

2 E + T2

3 A2 + T1 + T2

4 A1 + E + T1 + T2
...

...

Table 2.2: Correlation table between spin representations of the infinite rotation group J and
the representations in the finite subgroup Oh.

2.4.1 Symmetry group

In continuum, the symmetry group of glueballs is the three-dimensional rotation group SO(3)

combined with parity and charge conjugation. The transformation properties define the quantum
numbers JPC , labelling the irreducible representations of the symmetry group.
The discretized spacetime on the lattice breaks the continuous rotational symmetry. The sym-
metry group of zero-momentum glueballs on the lattice is the full cubic group Oh containing
discrete rotations and reflections.
The discrete group has four one-dimensional irreducible representations named A±1 , A

±
2 , two

two-dimensional, E± and four three-dimensional irreducible representations T±1 , T
±
2 .

Since the full cubic group Oh is a subgroup of the continuous rotation group, representations J
of the continuum can be decomposed into irreducible representations of the finite group. States
transforming according to representations of the subgroup contribute to more than one spin rep-
resentation J in the continuum if it appears in the subduced representation of J . The subduced
representations of SO(3) in Oh are presented in Table 2.2. Due to the expected suppression
of higher angular momentum in the correlator at large times, states in a representation of the
finite subgroup will be identified with the lowest corresponding spin state and will be labelled
accordingly.

2.4.2 Operator

The temporal correlator C(t) includes the operator OJPC creating a glueball transforming ac-
cording to the representation J combined with the discrete symmetries of parity and charge
conjugation.
In this thesis, we are interested in the glueball with quantum numbers 0++. Since these quantum
numbers corrrespond to those of the vacuum, the vacuum contribution has to be subtracted from
the operator, i.e.

O0++(t) = O0++(t)− 〈Ω| O0++(t) |Ω〉 . (2.28)

For large t, the lowest glueball state dominates the correlation function, so that the energy EG
of the glueball in the representation JPC = 0++ can be extracted from the large time limit of
C(t).
The lowest-dimensional gauge-invariant gluon operators in the continuum look like Tr (FµνF ρσ),
where Fµν is the gauge field strength. From this, one can construct scalar, pseudoscalar and
tensor operators with positive charge conjugation [17]. With the chromoelectric and chromo-
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magnetic field given by Ei = Fi0 and Bi = −1
2εijkFjk, a scalar operator can be written as

OB0++(x) = Tr ~B2(x) or OE0++(x) = Tr ~E2(x). (2.29)

A lattice operator creating a state from the vacuum with quantum numbers of a glueball can be
built from closed loops of link variables. These operators are gauge-invariant objects. Different
definitions of lattice operators can be applied to ensure a good overlap with the state of interest
[17]. In SU(2), the simplest operator, which corresponds to the continuum operator OB0++ and
creates the lowest glueball state 0++, is

O(t) = Re Tr
∑
n∈L3

Uxy(n, t) + Uzx(n, t) + Uyz(n, t). (2.30)

It is constructed from the sum over all orientations of spatial plaquettes. By summing over all
spatial lattice points, the glueball is projected to zero momentum.

2.4.3 Smearing

A problem one encounters when calculating masses via elementary loops on the lattice is that the
overlap with the glueball state of interest becomes smaller when the lattice spacing is reduced.
Decreasing the lattice spacing, the operator reduces in size while the physical wave function
keeps its extension. Therefore, one needs operators with large overlap at small lattice spacings.
In addition, the signal-to-noise-ratio gets worse at large times where we want to extract the
energy of the lowest state. Thus, one needs operators for which the contributions from higher
lying states are suppressed already for small temporal separations. A solution is the usage of
non-local operators, which can be constructed in various ways.

Single-link smearing

The smearing applied to link variables exploited in the calculation of glueball operators uses
single links and adds their staples with a weight factor λs, similar to APE-smearing [13]. This
is performed iteratively, replacing UNs−1

µ in the Ns-th step by

UNsµ (n) =UNs−1
µ (n)

+λs
∑
±ν

µ 6=ν 6=0

UNs−1
ν (n)UNs−1

µ (n+ ν̂)UNs−1
µ (n+ ν̂ + µ̂)UNs−1

ν
†
(n+ µ̂). (2.31)

By choosing an appropriate weight factor λs and level of smearing steps Ns, the operator extends
with a fine resolution over important scales.

Blocking

Another possibility to improve the signal-to-noise ratio and groundstate overlap for glueball
operators is the blocking procedure. Variations of this method are also called fuzzing or double-
link smearing [18]. It was introduced in [19].
Lattice gauge links are replaced by so-called fuzzy superlinks which extend over length lB = 2Nb ,
depending on the level of blocking, Nb. Those superlinks contain the direct path between two
lattice sites separated by 2Nb and a sum over elongated staples (see Fig. 2.2). In the Nb-th step
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UNb
µ (n) =

UNb−1
µ (n+ 2Nb−1µ̂)

UNb−1
µ (n)

+λb
∑
±ν

µ 6= ν 6= 0

UNb−1
µ (n+ 2Nb−1ν̂)

UNb−1
µ (n+ 2Nb−1ν̂ + 2Nb−1µ̂)

UNb−1
ν (n)

UNb−1
µ

†
(n+ 2Nb µ̂)

Figure 2.2: Illustration of blocking.

of blocking, the matrices are replaced by

UNbµ (n) =UNb−1
µ (n)UNb−1

µ (n+ 2Nb−1µ̂)

+λb
∑
±ν

µ6=ν 6=0

UNb−1
ν (n)UNb−1

µ (n+ 2Nb−1ν̂)UNb−1
µ (n+ 2Nb−1ν̂ + 2Nb−1µ̂)UNb−1

ν
†
(n+ 2Nb µ̂).

(2.32)

Finally, the new superlink is projected into SU(N). There exist various versions of this blocking
procedure, e.g. with additional diagonal staples [20].
Elementary loops calculated with blocked links now consist of a large number of original lattice
links.
To hit the size of the glueball’s wave function, the parameters Nb and λb have to be chosen
suitably to be able to increase the operator overlap with the state of interest.

Blocking is faster than smearing, since the operator increases in each step by a factor of two, but
the resolution is finer for smearing.
Both algorithms can be applied in a variety of combinations. When smearing link matrices that
were blocked before, the algorithm in Equation (2.31) has to be adjusted in a straightforward
way to be applicable to links of length lB. In this work, we choose to first apply the single-link
smearing to the original gauge links before the blocking procedure is performed.
In Section 5.1, we investigate which level of smearing and blocking is most suitable to minimize
the effective mass of the lightest glueball which indicates less contributions from excited states.
In this way, the groundstate mass can be identified at small temporal separations were the
signal-to-noise ratio is still acceptable.

2.5 Lattice scale setting

Observables computed on the lattice are expressed in units of the lattice spacing and, thus, they
are dimensionless. The correlation function is computed in terms of lattice points in temporal
direction t/a = nt between the operators placed on the lattice. The value which we extract from
the exponential decay,

C(nt) ∝ e−ntam, (2.33)

is the dimensionless product of lattice spacing and mass, am. Any lattice observable can only
be associated to a physical meaningful quantity if the lattice spacing a is known.
The lattice spacing can be determined by identifying a lattice quantity H with its physical
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continuum equivalent Hcont. The choice of H, which defines the renormalization scheme, affects
the lattice results. Consequently, the quantity should be precisely known experimentally and
accurately computable on the lattice.
In the following, different renormalization schemes are introduced.

Scale setting using the string tension This renormalization scheme was one of the first meth-
ods used to set the scale [21]. By measuring the exponential decay of Wilson loops for large
extensions, the dimensionless quantity a2σ, where σ denotes the string tension, is extracted from
the slope of the ordinary static potential at large distances. Then, this value is identified with
the string tension σcont in the continuum. This renormalization scheme has some drawbacks as it
requires the computation of large loops which is only possible up to limited numerical accuracy
on fine lattices. Furthermore, it is not directly measurable in experiment.

Sommer scale The Sommer scale is derived in terms of the force between static quark and
antiquark. Quantities are given in units of the length scale r0 which is defined through

r2F (r)|r=rc = c (2.34)

with c = 1.65 and r1.65 = r0 being the common choice for rc [22]. The length scale r0 has a
value of about 0.5 fm in QCD [23]. Finally, the lattice spacing can be found by extracting the
parameters of the parametrization of the ordinary static potential Σ+

g , aV (r) = aV0−α/r+a2σr

in the region of r0 and to calculate a from

a = r0

√
a2σ

1.65 + α
. (2.35)

The Sommer scale is a commonly used scale to determine the lattice spacing in Lattice QCD.
If one is interested in small distance aspects of pure gauge theory, the scale r0 is inconvenient
due to the increasing lattice size that is necessary for the static potential to reach the distance
of r0.
Therefore, a smaller reference length scale was introduced in [24]. Small separations were com-
puted on fine lattices, whereas larger distances were evaluated on coarse lattices. In the overlap
region, the reference length scale rc = 0.26 fm with c = 0.65 is defined so that the scale can be
set by relating r0 to the new scale rc. Using the equation defining rc, one finds a/rc and a/r0 in
the small and large distance region. The ratio is determined to rc/r0 = 0.5133(24) in SU(3) [24].

Scale setting via gradient flow The flow represents a smoothing in the gauge fields, which
change according to a flow equation in flow time t. Measuring the quantity

F (t) = t2 〈E(t)〉 , (2.36)

with
E(t) =

1

4
F aµν(t)F aµν(t), (2.37)
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by computing Wilson loops with smoothed link variables, one can use F (t) similar to the static
force between two quarks to set the scale. The scale defining equations are

F (t)|t=t0(c) = c, (2.38)

t
d

dt
F (t)|t=w2

0(c) = c. (2.39)

For details see e.g. [25]. The advantage of this method is that no large distance computations
are required. The scale setting can be performed on fine but small lattices [26].

Scale setting equation With data obtained in one of the existing scale setting procedures, one
can perform a fit to derive a parametrization of the lattice spacing a (β) for the determination
of intermediate lattice spacings. For example, a polynomial fit was performed in [24] for SU(3)

in a large interval of lattice couplings derived from two reference scales r0 and rc=0.65. In [26] an
interpolating polynomial of ln

(
t0/a

2
)
for SU(2) was derived from a scale setting procedure via

the gradient flow reference scale t0 in a lattice coupling range of 2.42 ≤ β ≤ 2.85.

In order to specify a on fine lattices, we take a look at the renormalization equation in the weak-
coupling limit. Note that a subscript on the lattice coupling βlat is introduced in the following
paragraph to avoid confusion with the β-function.
All bare parameters appearing in the theory have to be related to renormalized ones. The
bare coupling g, which is related to the lattice coupling βlat via βlat = 2N/g2, is the only bare
parameter occuring in pure SU(N) gauge theory, it is related to the lattice spacing via the
renormalization group equation

a
∂g

∂a
= β(g). (2.40)

The weak-coupling expansion of the β(g)-function is given by [11]

β(g) = −β0g
3 − β1g

5 +O(g7), (2.41)

with
β0 =

1

(4π)2

(
11N

3

)
, (2.42)

and

β1 =
1

(4π)4

(
34N2

3

)
. (2.43)

The lattice spacing a in terms of the lattice coupling βlat = 2N
g2 can be determined up to an

integration constant by integrating the renormalization group equation (2.40) [21]. The leading
order solution is

a (βlat) =
1

Λ
exp

(
−3π2

11
βlat

)
, (2.44)

where Λ is used as reference to set the scale. Including the next-to-leading order term with the
two-loop coefficient β1 yields

a (βlat) =
1

Λ

(
βlat
4β0

)β1/2β0

exp

(
−3π2

11
βlat

)
. (2.45)
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β 2.50 2.70 2.85 3.00

a [fm] 0.0774 0.0408 0.0257 0.0165

Table 2.3: Lattice spacing estimates computed from the parametrization a(β) derived from a
scale setting via the gradient flow [26].

The third order result is given by

a (βlat) =
1

Λ

(
βlat
4β0

)β1/2β0

exp

(
−3π2

11
βlat

)
exp

(
− 4c

βlat

)
, (2.46)

with c being the third order loop expansion coefficient.
These equation can also serve as a parametrization of a (βlat) in the weak-coupling (large βlat)
regime. Λ has to be found through a fit to data for a (βlat). In the following, we omit the
subscript on the lattice coupling βlat again.

The parametrization derived from the gradient flow [26] provides a connection between a and
β for large lattice couplings up to β = 2.85 and, correspondingly, small lattice spacings up to
a ≈ 0.0257 fm. However, we want to compute even smaller distances, which correspond to larger
lattice couplings. Exceeding the given range of validity and relying on the applicability of this
parametrization also for larger couplings up to β = 3.00, a lattice spacing of a(β = 3.00) ≈
0.0165 fm is reached. Lattice spacings computed via the gradient flow scale setting equation at
lattice couplings simulated in this thesis are given in Table 2.3, identifying

√
8t0 ≈ 0.30 fm [26].

Using this parametrization possibly introduces systematic errors since a polynomial in β will
not show the same behavior for very large β as the renormalization group equation in the weak-
coupling limit (for large β) implies. To estimate those errors, different reasonable approaches are
plotted in the region of larger lattice coupling in Figure 2.3.
The leading order solutions of the renormalization group equations (2.44) - (2.46) are fitted to the
data points for a(β) obtained from a scale setting via the Sommer scale in [27], where the same
simulation algorithm was used as in this thesis. The renormalization group equation up to three
loop order is fitted to all four available data points of a(β) with the integration constant and the
three loop coefficient as fit parameters. In contrast to the three loop order, the renormalization
group equation solution at one and two loop order are not able to describe the data in the whole
range or would need a second fit parameter. Thus, they are fitted to the data at β = 2.60 and
2.70.
The parametrization from scale setting via gradient flow and the third order renormalization
group equation roughly coincide with the data in [27], when identifying r0 = 0.5 fm. However,
both functions differ already at β = 2.85, where the polynomial fit should still be valid. While
the renormalization group equation at three loop order lies below the gradient flow function, the
estimate of the one or two loop order solution of the renormalization group equation lies higher.
As a consequence, all estimates at large β are considered with caution. In Chapter 4, we compare
the gradient flow scale setting estimates given in Table 2.3 to lattice spacings we determine via
Equation (2.35) with our lattice data.
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Figure 2.3: Different parametrizations of a(β) with data points from the scale setting in [27] on a
logarithmic scale. Renormalization group equation (RGE) solutions at one, two and
three loop order are shown with dashed lines. The interpolating function from scale
setting via gradient flow [26] is shown as a solid line.
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3 Decay of excited static potentials into
glueballs

In the following chapter, we investigate possible decays of hybrid static potentials. The gluonic
field of a hybrid static potential is excited in contrast to the ordinary potential. At small quark-
antiquark separations, the energy difference between hybrid and ordinary static potential is
expected to increase. At some point the energy contained in the gluon field is sufficiently high to
form a glueball such that the hybrid potential could dissolve into a glueball and the groundstate
potential Σ+

g . Then, an overlap of the hybrid static potential operator to the state consisting of
Σ+
g and a glueball is energetically allowed. This will result in incorrect lattice results for hybrid

static potentials.
In the following, we construct trial states for a combined state of the ordinary static potential
and a glueball. In the course of this, we define a glueball state with appropriate properties
under symmetry transformations of the dihedral group, the symmetry group of static potentials.
Moreover, quantum numbers realized by the combination of static potential and glueball with
angular momentum are discussed. We illustrate why some hybrid sectors are protected from a
decay into the lightest glueball.
Furthermore, the quark-antiquark separations are determined at which hybrid static potentials
reach the threshold energy to mix with a state of glueball and groundstate potential. This leads
to a statement for the distance up to which lattice results for hybrid static potentials, which are
obtained from an exponential fit to a single correlation function, are trustworthy.

3.1 Direct product representations

First of all, the combined quantum numbers of the glueball and groundstate static potential are
discussed.
Generally speaking, the quantum numbers of decay products must add up to the quantum
numbers of the decaying state, the hybrid static potential. If a hybrid static potential which has
an angular momentum with respect to the separation axis, Λ, decays into the ordinary static
potential Σ+

g with zero angular momentum and a glueball, the glueball has to carry this orbital
angular momentum, Lz = Λ. Moreover, the groundstate static potential Σ+

g can only be joined
by a glueball state with quantum numbers identical to the hybrid static potential. Thus, the
glueball state is in a representation of the symmetry group of static potentials, the dihedral group.
The construction of this trial state from a glueball with quantum numbers JPC is presented in
the following section.
The direct product table of irreducible representations in the dihedral group, given in Table
3.1, indicates which combination of decay products in representations of D∞h resemble hybrid
quantum numbers.
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Rq ×Rp Σ+ Σ− Π ∆

Σ+ Σ+ Σ− Π ∆

Σ− Σ+ Π ∆

Π Σ+ + Σ− + ∆ Π + Φ

∆ Σ+ + Σ− + Γ

Table 3.1: Direct product table of irreducible representations for the infinite dihedral group up to
Λ = 2. The table is symmetric. Quantum number η = g, u is omitted here. Obviously,
g × u = u, u× u = g and g × g = g.

We consider the product of a static potential in the representation Rq with a glueball state
transforming as the irreducible representation Rp. In general, the representation generated by a
product of two irreducible representations is reducible. However, the product of an irreducible
representation Rp with the trivial representation Σ+

g yields the irreducible representation Rp

itself. Thus, the product state of a glueball and the ordinary static potential Σ+
g transforms

according to the representation of the glueball state Rp = Lz
ε
η.

When considering a hybrid static potential as a decay product, one has to take a look at the
multiplication table 3.1. High lying hybrid potentials could also decay into Πu and a glueball
state transforming as the appropriate representation if their energy is sufficiently high. But,
when decay products are a combination of two non-trivial irreducible representations, the result
belongs to a reducible representation and would contribute to more than one channel.

In the following, operators for the decay products are constructed. On this basis, hybrid static
potentials can be identified which are excluded from a decay into the lightest glueball.

3.2 Operator of decay states

To start with, we note that the simple operator OΣ+
g
creating the ordinary static potential trial

state, as presented in Equation (2.16), is invariant under rotations, parity and charge conjugation
transformations as well as reflection Px. It is obviously in the trivial representation Σ+

g of D∞h.

Next, we consider the simplest creation operator for the lowest mass glueball

Oglueball(x) = Tr ~B2(x). (3.1)

It creates a glueball with quantum numbers JPC = 0++ from the vacuum. This operator is
rotationally invariant. But, we can construct the operator

OLzη =

∫
d3r eiLzϕf(z, r) Oglueball(r, ϕ, z), (3.2)

where d3r denotes the three-dimensional volume element in cylindrical coordinates and f(r, z)

serves as a distribution function placing the glueball along z and r. In contrast to the simple
rotationally invariant glueball operator, it has angular momentum Lz with respect to the z-axis.
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This is demonstrated by rotating the operator by an angle α

R(α)OLzηR
†(α) =

∫
d3r eiLzϕf(z, r)Oglueball(r, ϕ+ α, z)

= e−iαLz
∫

d3r eiLzϕf(z, r)Oglueball(r, ϕ, z). (3.3)

The operator creates a trial state which is an eigenstate of the angular momentum operator with
eigenvalue Lz. Furthermore, each value of orbital angular momentum along z can be imple-
mented by setting the weight factor eiLzϕ.

It can be shown that the state given by Equation (3.2) has definite quantum number η, when an
appropiate function f(r, z) with the following property under parity transformation is chosen:

f(r, z)
P−−→ f(r,−z) = (−1)ff(r, z). (3.4)

Then, the parity transformation and charge conjugation of the operator yield

P ◦ C
[
OLzη

]
= P ◦ C

[∫
d3r eiLzϕf(r, z) Oglueball(r, ϕ, z)

]
= C

[∫
d3r eiLzϕf(r, z) OPglueball(r, ϕ+ π,−z)

]
= C

[∫
d3r eiLz(ϕ−π)f(r,−z) Oglueball(r, ϕ, z)

]
= e−iLzπ(−1)f

∫
d3r eiLzϕf(r, z) OCglueball(r, ϕ, z)

= e−iLzπ(−1)f
∫

d3r eiLzϕf(r, z) (−1)2Oglueball(r, ϕ, z)

= (−1)Lz+f OLzη . (3.5)

Here, it was used that the chromomagnetic field ~B appearing in the 0++-glueball operator has
positive parity and the minus sign occuring due to charge conjugation cancels due to the square.
The eigenvalue of the operator with respect to P ◦ C is η = (−1)Lz+f .

The properties of the glueball state under inversion of the x-axis, Px, can be seen by applying
the transformation to Equation (3.2) given that an inversion of the x-axis yields ϕ Px−−→ π − ϕ:

Px
[
OLzη

]
= Px

[∫
d3r eiLzϕf(r, z) Oglueball(r, ϕ, z)

]
=

∫
d3r eiLzϕf(r, z) Oglueball(r, π − ϕ, z)

=
∫

d3r (−1)Lze−iLzϕf(r, z) Oglueball(r, ϕ, z). (3.6)

It can be seen from above that this state is no Px eigenstate for arbitrary angular momentum
Lz because the weight factor changes, eiLzϕ Px−−→ (−1)Lze−iLzϕ. Only the operator with Lz = 0

is already an eigenstate with eigenvalue ε = +.
A trial state with definite quantum number ε can be constructed by projecting the state given
in (3.2) onto an eigenstate of the operator Px. The projection operator is

PPx =
1

2
(1 + εPx) . (3.7)

Hence, a glueball trial state with definite angular momentum along the z-axis, Lz, behavior
under combined parity and charge conjugation, η, and inversion of an axis perpendicular to the
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z-axis, ε, is created by

OLzεη =
1

2
(1 + εPx)

∫
d3r eiLzϕf(r, z) Oglueball(r, ϕ, z). (3.8)

To conclude, an irreducible tensor operator OLzεη was constructed that transforms according to
the irreducible representation Λεη = Lz

ε
η of the infinite dihedral group D∞h for all symmetry

transfomations of the group. According to the Wigner-Eckart theorem, the tensor operator cre-
ates a trial state with quantum numbers Lzεη when acting on the vacuum.

Now, glueball and groundstate static potential operators can be combined to construct a state
which has quantum numbers identical to a hybrid static potential. Such a creation operator is
given by

OΣ+
g +glueball = OΣ+

g
× OLzεη

= q̄(~x− r′/2êz)U(~x− r′/2êz, ~x+ r′/2êz)q(~x+ r′/2êz)×∫
d3r

1

2
(1 + εPx) eiLzϕf(z, r) Oglueball(r, ϕ, z).

(3.9)

3.2.1 Possible quantum numbers

Quantum numbers Lzεη, which one can generate through the construction of an operator of the
form (3.8), are determined by the choice of glueball operator Oglueball with its transformation
properties. The distribution function f(r, z), its behavior under parity, f , and angular momen-
tum Lz can be chosen appropriately to create the desired quantum numbers.
In Table 3.2, we list the possible choices and the resulting quantum numbers Lzεη in the rightmost
column.

It is important to note that with a 0++-glueball only operators with non-zero angular momentum
Lz can be constructed to have arbitrary quantum number ε. The reason is explained in the
following.
Under inversion of the x-axis, the weight factor changes, eiLzϕ Px−−→ (−1)Lze−iLzϕ. The glueball
operator O0++(x) = Tr ~B2(x) itself does not change under action of Px. For that reason, the
parity transformed operator with Lz = 0 equals the original state because the weight factor is
always eiϕLz = 1. Hence, states with Lz = 0 have definite ε = + but the quantum number ε = −
is not accessible through the combination of the ordinary static potential and a 0++-glueball
with zero angular momentum Lz = 0.
Instead of the 0++-glueball, hybrid potentials with Λ = 0 and ε = − could decay into the
ordinary static potential and a glueball with higher mass and different quantum numbers, if the
necessary energy would be reached. For example, a glueball having non-zero spin like the second
lightest 2++ could be combined with the ordinary static potential to yield any of the hybrid
quantum numbers. Another option is a glueball with negative parity P = −, like the third
lightest 0−+-glueball. With this choice, the final operator can only have definite ε = − if the
angular momentum with respect to the separation axis is zero, Lz = 0.
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Lz (−1)f η = (−1)Lz+f ε Lz
ε
η

0 −1 −1 +1 Σ+
u

0 +1 +1 +1 Σ+
g

1 −1 +1 +1 Π+
g

1 −1 +1 −1 Π−g

1 +1 −1 +1 Π+
u

1 +1 −1 −1 Π−u

2 −1 −1 +1 ∆+
u

2 −1 −1 −1 ∆−u

2 +1 +1 +1 ∆+
g

2 +1 +1 −1 ∆−g

Table 3.2: Possible quantum numbers Lzεη of states created by the operator given in Equation
(3.9) with a 0++-glueball.

Although, other hybrid quantum numbers can be realized with glueballs having spin, the nec-
essary energy for a decay of a hybrid into such a glueball increases and decays are prohibited
energetically up to very small separations. The necessary threshold for a decay of a hybrid
potential into the ordinary static potential accompanied by a 0++- or 2++-glueball is discussed
later.

3.3 Momentum projection

A glueball rotating with angular momentum Lz with respect to the z-axis has momentum which
increases its energy. But we are interested in the lowest energy of the state containing the or-
dinary potential and the glueball. Consequently, we look for an operator which, on the one
hand, has definite angular momentum creating quantum numbers Lzεη similar to a hybrid static
potential but on the other hand, has zero or at least low momentum ~p.

To project an operator O(~x) to definite momentum, a Fourier transform is performed

Õ(~p) =
1

V

∫
V

d3x O(~x) e−i~p~x. (3.10)

The plane wave e−i~p~x is a solution of the Schrödinger equation for a free particle (see Appendix
A.1). It can be expanded in terms of cylindrical waves, which is shown in detail in Appendix
A.2.
Inserting the cylindrical wave expansion of plane waves (A.17) yields

Õ(~p) =
1

V

∫
V

d3x O(~x) e−ipzz
∞∑

m=−∞
(−i)mJm(pr)e−im(ϕ−ϕp). (3.11)

Jm(pr) are Bessel functions and the momentum vector is separated into the transverse momentum
~p⊥ = (p, ϕp) and the momentum along z, pz.
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CHAPTER 3. DECAY OF EXCITED STATIC POTENTIALS INTO GLUEBALLS

In most cases, creation operators are projected to zero momentum. Choosing p = 0, the Bessel
function has a zero argument and vanishes for all values of m > 0 (cf. Equation (A.13)). Hence,
the only contribution in the zero-momentum operator comes from an operator with vanishing
angular momentum. For non-zero momentum, an infinite number of terms with different angular
momentum m along the z-axis contribute to the plane wave expansion and consequently to the
momentum projected operator in Equation (3.11).
However, we consider glueball states with definite angular momentum. Making use of the inverse
Fourier transform of the glueball operator and the cylindrical wave expansion, we can write the
operator OLz(r, z) with definite angular momentum as

OLz(r, z) =

∫
dϕeiLzϕ Oglueball(r, ϕ, z) (3.12)

=

∫
dϕeiLzϕ

(
1

2π

∫
d3p Oglueball(p, ϕp, pz)e

i~p~r

)
(3.13)

=

∫
dϕeiLzϕ

∞∑
m=−∞

1

2π

∫
d3p Oglueball(p, ϕp, pz) i

mJm(pr)eim(ϕ−ϕp)eipzz. (3.14)

With
∫

dϕeiϕ(m+Lz) = 2πδm(−Lz) and J−m(pr) = (−1)mJm(pr), this yields

OLz(r, z) = i−Lz
∫

d3p Oglueball(p, ϕp, pz)J−Lz(pr) e
iLzϕpeipzz (3.15)

= iLz
∫

d3p Oglueball(p, ϕp, pz)JLz(pr) e
iLzϕpeipzz. (3.16)

Thus, an infinte number of momentum values contributes to an operator with definite angular
momentum Lz.
As a result, operators can, in general, be constructed to have either definite momentum p or
definite angular momentum Lz. Except for states without angular momentum, Lz = 0, which
can be projected to vanishing momentum.

3.4 Decay threshold

If the energy of the hybrid static potential is sufficiently high, it can decay into its groundstate
and a glueball. The operator used to compute a hybrid static potential on the lattice will have
non-zero overlap with such a decay state yielding inaccurate results for the hybrid potential. The
aim is to determine the separation distance beyond which lattice results of hybrid static poten-
tials can be trusted or if they are contaminated by the contribution of a decay state containing
the ordinary static potential and a glueball. So, we take a look at the energy needed for a decay
and determine the separation for hybrid static potentials below which they exceed this energy
threshold. To estimate this, we consider precise results for hybrid static potentials in different
channels from an elaborate study in SU(3) [7].

The glueball accompanying the ordinary static potential between the quark-antiquark pair in a
finite volume has mass m and momentum ~p, which is discretized on a lattice with spatial volume
L3 according to ~p = 2π

L (nx, ny, nz), ni ∈ Z.
The energy of the state is given by the energy of the ordinary static potential depending on r,
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VΣ+
g

(r), and the mass and momentum of the glueball, m and ~p,

E = VΣ+
g

(r) +
√
m2 + ~p2. (3.17)

If ~p = 0, the glueball state can only have zero angular momentum Lz with respect to the z-axis
following Section 3.3. In this case, the energy added to the ordinary potential is given by the
mass of the glueball.
For angular momentum Lz different from zero, the glueball has to carry some momentum p 6= 0

in the xy-plane. The minimal momentum in a finite volume with periodic boundaries is p = 2π
L .

To get an estimate of the separation distance where the minimum threshold energy is reached,
we consider the lowest possible energy of a glueball with non-zero momentum,

Eglueball =

√
m2 +

(
2π
L

)2
. (3.18)

Due to the inverse dependence on the finite volume size L, the threshold becomes larger for small
box sizes and smaller for large volume lengths.

Figures 3.1 - 3.2 illustrate the threshold energies. Data points denote lattice potential results
from [7]. Moreover, Σ+

g , Πu and Σ−u are shown together with a parametrization also derived in [7].

Based on Table 3.2, hybrid static potential Σ+
u can decay into ordinary static potential Σ+

g and
the lightest glueball with zero orbital angular momentum Lz = 0. In this case, the glueball
state has zero momentum, p = 0. Hence, a decay of Σ+

u into the lightest glueball is possible
when its energy exceeds the energy of the ordinary static potential and the glueball mass of
m0++ ≈ 4.21/r0 [28], VΣ+

g
(r) +m0++ . This is illustrated in Figure 3.1a. The necessary energy is

plotted as a dashed line.
It can be seen that the hybrid potential Σ+

u has enough energy for a decay into a zero-momentum
glueball already at relatively large quark-antiquark separations, rcrit ≈ 0.9r0. The first excitation
of the ordinary static potential, Σ+

g
′, also displayed in Figure 3.1a, exceeds the threshold energy

for a decay at a distance of rcrit ≈ 0.4r0.
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(b) Σ−u , Σ−g

Figure 3.1: Lattice data for excited static potentials. Dashed lines represent the energy of a
combination of ordinary static potential with an additional zero-momentum glueball
VΣ+

g
+ Eglueball(p = 0). Glueball 0++ in the left plot, 2++ on the right hand side.
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(c) ∆g
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(d) ∆u

Figure 3.2: Lattice data for hybrid static potentials. Dashed lines represent the energy of a com-
bination of ordinary static potential with an additional nonzero-momentum glueball
VΣ+

g
(r)+

√
m2

0++ + p2 depending on different volume lengths L = 0.5, 1.0, 1.5 fm and
L =∞ corresponding to vanishing momentum p = 0.

According to Section 3.2.1, a hybrid potential with quantum numbers Lz = 0 and ε = − cannot
decay into a glueball with quantum numbers 0++ and the ordinary static potential. This applies
to Σ−u and Σ−g . They can decay into 2++- or 0−+-glueball. Since these glueballs are heavier than
0++, the threshold is higher. In Figure 3.1b, the threshold is shown as a dashed line for the next
lightest glueball 2++ which has a mass of m2++ ≈ 5.85/r0 [28].
The threshold is not reached until very small separations, rcrit ≈ 0.1r0 for Σ−u and rcrit < 0.25r0

for Σ−g . Therefore, a decay of Σ−u and Σ−g does not concern the results for hybrid static potentials
at quark-antiquark separations computed in [7].

Figure 3.2 shows hybrid static potentials and thresholds for a decay into a non-zero momentum
0++-glueball depending on different lengths of finite volume, L = 0.5, 1.0, 1.5 fm and infinite
volume L =∞, which corresponds to p = 0. Here, one can read off the critical separations where
a decay into the ordinary static potential and a glueball becomes possible.
Πu is shown with a parametrization derived in [7]. It is the lowest hybrid static potential, hence,
one has to go to very short separations of rcrit < 0.2r0 to exceed the threshold energy for a decay.
For a decay into a glueball with higher momentum and in a smaller finite volume, the distance
has to be decreased even further.
Πg has not enough energy for a decay into a glueball in a large finite volume above rcrit ≈ 0.5r0.
Other hybrid static potentials lie higher so that some of them exceed the threshold energy at
relatively large separations and small L.

26



CHAPTER 3. DECAY OF EXCITED STATIC POTENTIALS INTO GLUEBALLS

Λεη Πu Πg ∆g ∆u Σ+
g
′

Σ+
u Σ−u Σ−g

rcrit/r0 0.2 0.5 0.5 1.1 0.4 0.9 0.1 0.25

Table 3.3: Largest approximate separation distance rcrit of hybrid static potentials Λεη below
which lattice results might be contaminated due to a decay into a glueball and the
ordinary static potential Σ+

g . For Πu, Πg, ∆g and ∆u, the estimate of rcrit is given
for the case of an infinite volume L→∞ (for details see the discussion).

∆g reaches the threshold energy at rcrit ≈ 0.4r0 for a finite volume size of L = 1.5 fm, whereas
one would have to go to very short quark-antiquark distances to attain the threshold for a very
small volume of length L = 0.5 fm.
The same observation can be made for hybrid static potential ∆u, it exceeds the threshold en-
ergy for a volume size of L = 1.5 fm at rcrit ≈ 0.8r0 and for volume with length L = 1 fm at
rcrit ≈ 0.5r0.

In conclusion, according to the evaluation carried out in this section, the lowest hybrid static
potential has not enough energy for a glueball decay at separations computed in [7]. However,
due to the small lattice spacings studied in this thesis, we get close to the critical distance where
the minimal threshold energy is reached, even with the very small lattice volume.
The second lowest hybrid static potential Σ−u is not affected by a decay into the lightest glueball.
On the contrary, the energy of other hybrid static potentials, in particular, higher lying potentials
like Σ+

u ,∆g and ∆u, is sufficient for a decay into the lightest glueball with low momentum at
commonly computed separation distances. Therefore, results from large finite volumes and at
small quark-antiquark distances, which are below the estimates given in Table 3.3, should be
treated with caution due to a possible decay.
The contamination of lattice results can be avoided by including the operator for the combined
trial state of glueball and ordinary static potential in the analysis (cf. Section 3.2). The com-
putation of a correlation matrix of operators for the hybrid potential and the combined state
of glueball and groundstate potential will help to extract accurate lattice results for the hybrid
potential. As a preparation for this study, the computation of static potentials and the lightest
glueball at small lattice spacings is investigated separately in the final part of this thesis.
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Lattice results
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4 Static potentials at small lattice spacings

The ordinary static potential Σ+
g together with the lowest hybrid static potential Πu is computed

in SU(2) pure gauge theory on four lattice ensembles with different lattice couplings β. Lattice
parameters are presented in Table 4.1. The lattice volume (T/a) × (L/a)3 is chosen such that
the spatial extent in physical units is L > 0.5 fm.
Gauge field configurations are obtained with a Monte Carlo heatbath algorithm with Wilson
plaquette action (see Chapter 2). Thermalization and autocorrelation time are checked with the
plaquette variable for each ensemble. Finally, measurements are performed on Nmeas configura-
tions, which are separated by 100 Monte Carlo updates and also binned to ensure that results
are mostly uncorrelated.
In the end, statistical errors for all observables are determined via a jackknife analysis, which is
explained in Section 2.2.

Wilson loops (2.17) and (2.27) are computed from APE-smeared gauge links. Furthermore, they
are averaged over all lattice sites and all three spatial directions. Finally, we compute the effective
potential

aVeff(r, t) = ln

(
W (r, t)

W (r, t+ a)

)
. (4.1)

The large time limit of this function is given by the potential aV (r) which is commonly extracted
by fitting a constant to the effective potential at large t/a. Since excited states still contribute to
the effective potential at the measured temporal separations, we also perform a least squares fit
with the three-parameter function, which contains exponential contributions from excited states,

aVeff(r, t) = aV (r) + C(r) exp(−∆V (r)t), (4.2)

with aV , C and ∆V as fit parameters.

4.1 Ordinary static potential Σ+
g

The ordinary static potential Σ+
g between a static quark and antiquark is an observable that

is simple to compute on the lattice. Parallel to the hybrid static potential, the groundstate

β (T/a)× (L/a)3 Nmeas

2.50 48× 243 2520
2.70 48× 243 1000
2.85 48× 263 2520
3.00 48× 343 2390

Table 4.1: Lattice ensembles.
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is computed on all lattice ensembles. As will be discussed in the following, difficulties in the
computation of static potentials ocurring at small lattice spacings are already indicated in the
analysis of the groundstate potential. Furthermore, the ordinary static potentials obtained from
different lattices serve as the basis for the subtraction of the static quark self-energy which is
distinct for each lattice ensemble.
In Figure 4.1, we present the effective potentials computed at β = 2.50, 2.70, 2.85 and 3.00 in
lattice units at temporal separations t = 1a . . . 11a in separate plots. From these plots, we see
that the signal-to-noise ratio for larger lattice spacing decreases faster with t/a. The growth of
noise is expected because the separation in physical units t is much larger than on fine lattices.
For the smallest lattice spacing, which corresponds to the largest coupling β = 3.00, it already
gets difficult to extract the plateau for the ordinary potential. This is illustrated in Figure 4.2,
where Veff(r = 6a, t) is shown exemplarily for β = 2.50 and β = 3.00. Whereas one can identify a
plateau in the lattice data of the effective potential at lattice coupling β = 2.50 before the signal
is hidden by noise, the effective potential derived at β = 3.00 seems to not reach a plateau at
the computed temporal separations. Comparing the temporal separation in physical units, the
plateau at small β is identified at t ≈ 0.5 fm, whereas aVeff(r/a, t) at β = 3.00 is only computed
up to t ≈ 0.17 fm.
As a result, the fit estimate of the potential value could be too high. Probably, the temporal
separation in physical units is not large enough so that the effective potential, in particular at
larger r/a, is still dominated by excited states. Since this difficulty appears already for the
simpler observable, it is expected to be a main problem in the analysis of hybrid static potential.
This will be discussed in the following section.
To compensate this adverse effect at small lattice spacings, we perform a three-parameter fit
with Equation (4.2) which contains a term for the contribution of higher states. This yields
reasonable results for the ordinary static potential.

The final results from fitting the effective potentials for the ordinary static potentials, aVΣ+
g

(r/a),
are shown in Figure 4.3 for each ensemble separately. Results from different fits are compared.
It can be seen at larger r/a that results extracted via fitting a plateau lie slightly higher than the
value obtained from the fit of Equation (4.2). Here, it is obvious that the plateau fits overestimate
the potential value aV (r/a), therefore, we consider the results from the three-parameter fit for
the ordinary static potential in the following.
At small β, which corresponds to large lattice spacings, the static potential shows the linear rise
which is expected at such physical distances. At large β, i.e. small lattice spacings, the attractive
1/r-like behavior is visible.

The lattice data can be parametrized with the Cornell potential given by Equation (2.12). A
least squares fit between r = 2a and 12a at each lattice ensemble yields the parameters listed in
Table 4.2.

Lattice spacing The lattice spacing can be determined through the fit parameters according
to Equation (2.35). Results are also listed in Table 4.2.
For better comparison to the other lattice spacing estimates at large β, we add our results to
Figure 2.3 shown in Section 2.5. This is shown in Figure 4.4. Our estimates of a(β = 2.50)
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(d) β = 3.00

Figure 4.1: Effective potentials aVeff(r, t) for Σ+
g .
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(b) β = 3.00.

Figure 4.2: Veff(r = 6a, t) at two different lattice spacings.

β α a2σ χ2
red a [fm]

2.50 0.2787(21) 0.03474(22) 0.8 0.0794(2)
2.70 0.2462(50) 0.00998(36) 0.6 0.0422(7)
2.85 0.2197(18) 0.00441(15) 0.4 0.0278(4)
3.00 0.1953( 8) 0.00262( 6) 1.0 0.0212(2)

Table 4.2: Parameters and reduced χ2 of the fit with Cornell potential (2.12) to lattice data
at different β. From these parameters the lattice constant a has been computed via
Equation (2.35), identifying r0 = 0.5 fm.
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(d) β = 3.00

Figure 4.3: Ordinary static potential aV (r/a) in lattice units at different β.

and a(β = 2.70) are approximately equal to the estimates of [27]. The deviation to the gradient
flow scale setting function increases with larger β. Neither the interpolating function from [26]
nor the solutions of the renormalization group equation can describe all our data points. Hence,
lattice spacings determined from either of the methods at large β should be treated with caution.

The lattice spacing needs to be set to enable the comparison of lattice results in physical units.
Because the potential contains the self-energy of static quarks on the lattice, we shift the values
by a relative constant so that the potential parametrizations coincide in their overlap region.
Additionally, we shift all potentials such that VΣ+

g
(2r0) = 0. This shift is derived from the

parametrization (2.12) of lattice data at β = 2.50.
The parametrizations are shown together with lattice data computed at different β in Figure
4.5. In Figure 4.5a, a(β) is set according to the gradient flow scale setting function, whereas, in
Figure 4.5b, the lattice spacings is set to the estimates in Table 4.2.
When lattice spacings are set to the larger estimates (Tab. 4.2), the long-distance behavior of
all parametrizations approximately fit the lattice data at large r. This is not the case, when we
set the lattice spacing to the smaller estimates (Tab. 2.3). Here, the slope of the short-distance
parametrization deviates from the long-distance parametrization. This seems to support our
lattice spacing estimates. However, it only relies on lattice data at very small separations.
As discussed earlier, one needs potential data at separations up to r0 to gain reliable parameters
for the scale setting via Equation (2.35). At large β, this requires the computation of large
lattices.
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[27]

[26]

4.2

Figure 4.4: Different parametrizations of a(β) with data points from the scale setting in [27]
and our results from Table 4.2 on a logarithmic scale. Renormalization group equa-
tions (RGE) at one, two and three loop order are shown with dashed lines. The
interpolating function from a scale setting via gradient flow is shown as a solid line.
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(a) Scale setting via gradient flow.
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(b) Scale setting via Σ+
g -parametrization.

Figure 4.5: Ordinary static potential Σ+
g computed at different β. Fits of Cornell potential to

data points are shown as dashed lines.
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4.2 Hybrid static potential Πu

Next, we investigate the lowest hybrid static potential Πu at small lattice spacings. As mentioned
before, this observable is more complicated and shows larger statistical errors which complicates
the extraction of the potential at small lattice spacings.

In Figure 4.6, the effective potentials are shown for each of the four lattice ensembles with
β = 2.50, 2.70, 2.85 and 3.00.
Similar to the previous discussion, statistical errors increase with physical distance. Hence, the
large time behavior of effective potentials at smaller β is hidden by large errors.
However, at β = 2.50 most excited states are suppressed already for smaller t/a, so that rea-
sonable potential values can be extracted through a fit of the three-parameter function given in
Equation (4.2) with fit parameters aV (r), C(r) and ∆V (r). At our smallest lattice coupling,
results correspond to the plateaus, which are identified in a one-parameter fit with aV (r) as the
only fit parameter, within errors. Results from one- and three-parameter fits are compared in
Figure 4.7.
In contrast to small β, the contribution of excited states is clearly visible in the effective potentials
at larger lattice couplings. The effective potentials at β = 2.85 and 3.00 do not reach a plateau
at the calculated temporal separations, especially at large spatial separations, r/a. This was
already observed for the ordinary static potential.
In addition, the large time behavior of Veff(r/a, t/a) is hidden in noise which grows for complicated
observables, as well.
On the one hand, fitting a constant definitly overestimates the potential. On the other hand, a fit
with the three-parameter function (4.2) is reasonable only if the next higher state contributes to
the effective potential. If many excited states are still dominant, the results of a three-parameter
fit vary with the choice of fit range. Due to statistical errors, it is not possible to fit the effective
potentials at large t/a, where excited states might be suppressed sufficiently. The only possibility
to perform a reasonable fit is to consider the region of smaller statistical errors at small t/a.
The results lie below the one-parameter fit at small r/a, but might also underestimate the true
potential value. At larger r/a, results approach the values from a one-parameter fit. Particularly,
at β = 2.85 and β = 3.00, this effect can be seen in the data points at large r/a (Fig. 4.7c and
4.7d).
One could argue that the shape of the three-parameter fit results originates in a mixing with a
decay of Πu into the lowest glueball. But, owing to the reviewed difficulties in the application of
the three-parameter fit (4.2) to the effective potential at small lattice spacings, this interpretation
should be treated with caution.
Results from a one-parameter fit indicate the expected increase at small quark-antiquark dis-
tances [8], although values are probably shifted due to the contamination of excited states.

In Figure 4.8, data is shown in physical units. In the following, we compare results obtained
from one- and three-parameter fits to the effective potential (shown in Fig. 4.8 at the top and
bottom, respectively) and a scale setting via the gradient flow function and our lattice spacing
results listed in Table 4.2 (left and right hand side of Fig. 4.8, respectively).
The relative shifts of the hybrid potentials are set similar to the ordinary static potential because
the self-energy of static quarks is assumed to be the same on one lattice ensemble irrespective of
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(d) β = 3.00

Figure 4.6: Effective potentials aVeff(r/a, t/a) for Πu.
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(d) β = 3.00

Figure 4.7: Ordinary static potentials aV (r/a) in lattice units for each β.
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(a) Scale setting via gradient flow:
a(2.50) = 0.0774 fm
a(2.70) = 0.0408 fm
a(2.85) = 0.0257 fm
a(3.00) = 0.0165 fm
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(b) Scale setting via ordinary static potential:
a(2.50) = 0.0795 fm
a(2.70) = 0.0422 fm
a(2.85) = 0.0278 fm
a(3.00) = 0.0212 fm

Figure 4.8: Lattice data of static potentials Σ+
g and Πu at different lattice spacings in physical

units.
Top: Results from one-parameter fit to effective potentials. Bottom: Results from
three-parameter fit. Left: Scale setting via gradient flow. Right: Scale setting via
ordinary static potential fit. Dotted lines between lattice data points are shown to
guide the eye.

36



CHAPTER 4. STATIC POTENTIALS AT SMALL LATTICE SPACINGS

the observable.
We expect the hybrid static potentials at different lattice ensembles to coincide in their overlap
regions. However, as discussed before, contamination by excited states causes a positive shift of
lattice results. Since the situation becomes worse at smaller lattice spacings, the shift of data for
short distances is greater. Results obtained from a one-parameter fit lie especially much higher
than results from a three-parameter fit to the effective potential.
Comparing scale settings, it can be observed that the much smaller value of a (β = 3.00) on
the left hand side causes a greater displacement of the lattice data relative to the data obtained
at smaller β. In the right plots, the relative shifts of lattice data of one lattice coupling to the
next smaller one are comparable in size, which militates in favor of our determinations of lattice
spacings. However, due to the difficulties in extracting the potential, one cannot rule out the
smaller estimate. The lattice spacing might lie between both values. Therefore, the reliable de-
termination of the lattice spacing at large β has to be one of the next steps in future investigations.

We assume the main source of error at small lattice spacing to be the fact that effective potentials
do not reach their plateaus which already shows up for the ordinary static potential. Despite the
positive shift in the hybrid static potential due to contributing excited states, the results indicate
the expected repulsive behavior at small separations [8]. To get precise results for hybrid static
potentials at small lattice spacings requires more measurements at larger temporal distances.
Besides increasing the temporal distance, the groundstate overlap of hybrid operators could be
improved further and better algorithms could be applied to improve potential results.
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5 Glueballs at small lattice spacings

In the following, the mass computation of the lightest glueball 0++ at small lattice spacings is
presented. This serves as a preparatory step for the analysis of correlation matrices to obtain
lattice results for hybrid static potentials at short quark-antiquark distances, which are not
contaminated due to a possible glueball decay.
Measurements are performed at three different lattice couplings, β = 2.50, 2.85 and 3.00. The
lattice ensembles are the same as in the computation of static potentials, see Table 4.1.
Before the mass is extracted from a fit to the effective mass,

ameff(t) = ln

(
C(t)

C(t+ a)

)
, (5.1)

the operator smoothing is optimized on all three lattices. The aim is to minimize the contribution
from excited glueball states.

5.1 Optimization of blocking and smearing steps

Smearing and blocking, as explained in Section 2.4.2, can be combined in various ways to optimize
the operator. The simplest combination is smearing of gauge links before performing a blocking
procedure.
There are four parameters which can be chosen in the smoothing procedure. Two of them are the
weight factors for the staples in the smearing and blocking equations, αs and αb, respectively.
The other two parameters are the smoothing steps, Ns and Nb.
An increase of the weight factors can show a similar effect as an increase of the smearing or
blocking steps. Hence, the weight factors are fixed to αs = 0.5 and αb = 0.5. The smearing steps
Ns and the level of blocking Nb are left to be optimized aiming at an improved glueball operator
overlap with the groundstate.

For each of the three lattice ensembles, the values Ns and Nb are varied to find the combination
which minimizes the effective mass at t = 0. These computations were performed on a smaller
subset of configurations than the final analysis of glueball mass. The results, meff(t = 0), are
presented in Figures 5.1a -5.1c. Each line corresponds to a fixed blocking level Nb. Fixing Nb,
meff(t = 0) is plotted against the level of smearing Ns.
It can be clearly seen that blocking of gauge links up to a certain level reduces the effective mass
considerably. Whereas, smearing is able to adapt the operator size on a finer scale. This is the
case at all lattice spacings.

For the lattice ensemble with β = 2.50 and lattice volume 48× 243, the parameter Nb is varied
from zero to four, Ns ranges from zero to eight. The lowest values are achieved with three times
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(a) β = 2.50, T × L3 = 48a× (24a)3.
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(b) β = 2.85, T × L3 = 48a× (26a)3.

���

���

���

���

���

���

���

�� �� �� ��� ��� ���

� �
�
��
��
��
�
��

��

������

������

������

������

������

������

������

(c) β = 3.00, T × L3 = 48a× (34a)3.

Figure 5.1: Effective glueball mass r0meff(t = 0) depending on the level of blocking Nb and
smearing Ns.
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blocking. In Figure 5.1a, meff(t = 0) calculated with Nb = 4 is shown, as well. Obviously, this
worsens the groundstate overlap because the effective mass increases drastically.
We choose Ns = 8 to be the level of smearing used in the following computation of glueball mass,
which results in the lowest effective mass in our analysis.
At β = 2.85, we add one more level of smearing, such that Ns = 0, ..., 10. meff(t = 0) with Nb = 4

lies lower than the results from less blocking steps. For Nb = 4, the smearing level Ns = 4 is
chosen because higher smearing levels do not minimize the effective mass further within error.
In Figure 5.1c, at β = 3.00, it can be seen that blocking gauge links five times reduces the mass
slightly in comparison to four times blocked gauge links. As before, the effective mass stays con-
stant within error when more than 16 smearing steps are performed. Hence, we choose Ns = 16

for the following computations.

As discussed before, the blocking procedure elongates gauge links from which the glueball op-
erator is computed. Their length after Nb blocking steps is lB = 2Nba. If the length of one
blocked link, lB/a, exceeds the lattice extensions L/a, it winds around the lattice, hence, the
same original gauge links contribute more than once due to periodic boundary conditions.
Four times blocking yields a gauge link length of lB = 24a = 16a. One more level would result
in a length of lB = 25a = 32a. We note that the lattice extent at β = 2.50 and 2.85 is L = 24a

and L = 26a, respectively. Consequently, Nb = 4 is the highest possible blocking level for the
two lattice ensembles without gauge link paths winding around the lattice. In the case of the
finest lattice with L/a = 34 lattice sites, Nb = 5 is the largest blocking level. As can be seen
in Figure 5.1b and 5.1c, where higher blocking steps are shown as dashed lines, further blocking
increases the effective mass. This effect could either originate in the paths winding around the
lattice or be caused by the size of the operator exceeding the physical size of the glueball’s wave
function. This is discussed in the following, based on a scale setting according to Table 4.2.

Smearing and blocking add contributions of neighboring gauge links to approach the physical
size of the glueball’s wave function. Whereas single-link smearing enlarges the size on a fine
scale, blocking doubles the gauge link length in each step, increasing the operator volume faster.
At β = 2.50, the chosen blocking level, Nb = 3, yields an operator with extension lB = 8a ≈
0.6 fm in each spatial direction. The next higher level yields a spatial length of lB = 24a ≈ 1.3 fm,
which drastically worsens the groundstate overlap. Furthermore, results with lB = 22a ≈ 0.3 fm
decrease to a similar low effective mass as with Nb = 3 if they are smeared sufficiently. Thus,
one can infer that the optimal operator extension is 0.3 fm < l� 1.3 fm.
At higher lattice coupling β = 2.85, the operator has a spatial extension of lB = 24a ≈ 0.4 fm
when choosing Nb = 4. The next level yields a length of lB = 25a ≈ 0.9 fm. This would narrow
the optimal operator size to a length between 0.3 fm and 0.9 fm. However, it cannot be excluded
that the increase in the effective mass is caused by the gauge link winding around the lattice.
Therefore, lB = 25a ≈ 0.9 fm sets a conditional upper boundary.
As expected, five blocking steps are necessary on the finer lattice, at β = 3.00. Nb = 5 at
β = 3.00 means a gauge link length of lB = 32a ≈ 0.7 fm. The slightly higher effective mass with
an operator extent of lB = 24 ≈ 0.3 fm confirms the lower boundary.
In summary, we can determine the optimal glueball operator size to be 0.3 fm < l� 1.3 fm. This
specifies only a coarse range but it coincides with the typical glueball size (cf. e.g. [29]).
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(c) β = 3.00

Figure 5.2: Effective glueball mass computed at different β (lines between lattice data to guide
the eye). Literature value r0m0++ ≈ 4.21 [28] is shown as a dashed horizontal line.
Result r0m0++ extracted via a three-parameter fit is presented with errorband in
green. The fit range is delimited by vertical lines.

5.2 Glueball mass

The glueball operator given in Equation (2.30) is computed on three lattice ensembles with
β = 2.50, 2.85 and 3.00, respectively, applying the optimal smoothing scheme determined in
Section 5.1. We average the operator over the lattice volume yielding the rest mass of the
lightest glueball, m0++ .
Lattice results for the effective mass r0meff(t) are presented in Figure 5.2.
As it is expected for the glueball observable, the statistical errors grow rapidly with time. Thus,
a plateau in the effective mass at β = 2.50 is difficult to identify. Therefore, we perform a three-
parameter fit, which includes a term for the contribution of excited states, similar to Equation
(4.2). Fitting the three-parameter function to the first data points, where errors are still small,
yields a reasonable mass at all β. Results are listed in Table 5.1 and illustrated in Figure 5.2
with an errorband. Glueball masses obtained in this work coincide within errors with the glue-
ball mass from literature, r0m0++ ≈ 4.21 calculated in [28], when we identify the lattice spacings
with our estimates from Table 4.2.
In conclusion, the single- and double-link smearing applied in the computation of glueball op-
erator seem to suppress excited states sufficiently. Hence, the effective mass approaches the
groundstate mass already at very small times.
In comparison to static potentials, the small lattice spacings in temporal direction ease the
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β 2.50 2.85 3.00

(Nb, Ns) (3, 8) (4, 4) (5, 16)

am0++ 0.62(8) 0.23(2) 0.17(2)

r0m0++ 3.9(5) 4.2(3) 4.0(4)

Table 5.1: Glueball masses extracted from a fit to the effective mass at different β. The optimized
levels of blocking and smearing used in the computation of glueball operator are
denoted by Nb and Ns, respectively. Scales are set according to Table 4.2.

computation of glueball mass as statistical errors are small. The physical size of the glueball’s
wave function can be adjusted on a coarse and fine scale by applying a combination of blocking
and smearing of gauge links.
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6 Conclusion

6.1 Summary

The aim of this work was the study of hybrid static potentials at small separations. The decay
into a glueball and the ordinary static potential Σ+

g was discussed, which is energetically allowed
at short quark-antiquark distances. In the course of this, the construction of glueball operators
with angular momentum Lz and transformation properties similar to hybrid static potentials
was shown in detail. This lead to the statement that hybrid static potentials Πu,Πg,∆g,Σ

+
u ,∆u

and the first excitation of Σ+
g are allowed to decay into the lightest glueball. Σ−u and Σ−g are

not affected by a decay into a 0++-glueball due to the transformation properties of its creation
operator.
For all channels, we examined the critical distance below which the minimum energy for the two
decay products is reached and lattice results might be incorrect due to a decay (cf. Table 3.3).

The ordinary static potential Σ+
g and the lowest hybrid static potential Πu were computed at

four different lattice couplings, β = 2.50, 2.70, 2.85 and 3.00.
Besides the uncertainty in the determination of lattice scales at large β, the identification of
plateaus in the effective potentials due to the small temporal extension at small lattice spacings, in
particular for the hybrid potential, proved to be a main difficulty. Lattice results were compared
for different fit methods and scale settings.
Additionally, we computed the mass of the lightest glueball 0++ at three different lattice cou-
plings, β = 2.50, 2.85 and 3.00 with smoothed operators. For each lattice coupling, we found
the optimal combination of subsequent smearing and blocking levels of gauge links used in the
computation of the glueball operator. Moreover, the resulting glueball masses coincide within
errors with the value from literature [28].

6.2 Outlook

This work provides the basis for an analysis of correlation matrices of hybrid potential operators
and operators for a combined state of glueball and ordinary static potential. This will allow the
reliable computation of hybrid static potentials at short quark-antiquark distances on the lattice
without a contamination due to a possible glueball decay.
As a next step, an attempt should be made to improve the identification of plateaus in effective
potentials at small lattice spacings. This could be achieved either by an improvement of the
operator overlap to the groundstate, better algorithms or an increase of temporal separations.
This can be attained e.g. through the simulation of anisotropic lattices with at > as.
Furthermore, the problem of scale setting at large β should be overcome e.g. by performing a
scale setting via the gradient flow similar to [26].
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A Cylindrical wave expansion of plane waves

A.1 Solution of free Schrödinger equation in cylindrical
coordinates

We consider a free particle. Its wavefunction can be found by solving the free time-independent
Schrödinger equation

−1

2m
∆Ψ(~r) = EΨ(~r). (A.1)

In cylindrical coordinates, the wavefunction depends on r, ϕ and z, Ψ(~r) = Ψ(r, ϕ, z). The
Schrödinger equation in cylindrical coordinates is

−1

2m

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2

]
Ψ(r, ϕ, z) = EΨ(r, ϕ, z). (A.2)

The wavefunction is separated in its variable dependence, the separation ansatz is

Ψ(r, ϕ, z) = R(r)Φ(ϕ)Z(z). (A.3)

Separation of variables yields

−1

2m

[
1

rR(r)

∂

∂r

(
r
∂

∂r
R(r)

)
+

1

r2Φ(ϕ)

∂2

∂ϕ2
Φ(ϕ) +

1

Z(z)

∂2

∂z2
Z(z)

]
= E. (A.4)

The terms in brackets can be set equal to −|~k|2.
Only the third term in brackets depends on the variable z, so it has to be constant independently.
Reordering yields

1

Z(z)

∂2

∂z2
Z(z) = −|~k|2 − 1

rR(r)

∂

∂r

(
r
∂

∂r
R(r)

)
− 1

r2

∂2

∂ϕ2
Φ(ϕ) (A.5)

= −k2
z . (A.6)

The solution for Z(z) is Z(z) = eikzz.
Now, separating ϕ-dependent terms results in

1

Φl(ϕ)

∂2

∂ϕ2
Φl(ϕ) = k2r2 − 1

Rl(r)
r
∂

∂r
(rRl(r)) (A.7)

= −l2, (A.8)

with k2 = |~k|2 − k2
z . Again, both sides depend on different variables. The solution for Φl(ϕ) is

Φl(ϕ) = eilϕ with l ∈ Z. Finally, the differential equation for the radial wavefunction can be
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written as
r
∂

∂r
(rRl(r)) +

[
k2r2 − l2

]
Rl(r) = 0. (A.9)

Replacing kr = ρ and interpreting Rl as a function of ρ, Rl(ρ), yields

1

ρ
∂ρ (ρRl(ρ)) +

[
1− l2

ρ2

]
Rl(ρ) = 0 (A.10)

which is the differential equation for Bessel functions. They are defined via

Jl(ρ) =
(ρ

2

)l ∞∑
j=0

(−1)j

j!Γ(l + j + 1)

(ρ
2

)2j
. (A.11)

A solution of the free Schrödinger equation (A.1) in cylindrical coordinates is

Ψ(~r) = Jl(kr)e
ilϕeikzz. (A.12)

with k2 + k2
z = |~k|2 being the squared momentum of the free particle which has energy E = |~k|2

2m .
If the transverse momentum k approaches zero, the Bessel function behaves like

Jl(kr → 0) ≈ 1

l!

(
kr

2

)l
(A.13)

Consequently, for vanishing momentum, the wavefunction is non-zero only if the angular mo-
mentum along the z-axis, l, of the free particle is l = 0.

A.2 Expansion of plane waves

Plane waves, ei~k~r, as a solution of the Schrödinger equation (A.1) can be expanded in terms of
basis functions. In cylindrical coordinates, the plane wave can be written as

ei
~k~r = eikzzei

~k⊥~r⊥ , (A.14)

where “⊥” denotes the components perpendicular to the cylinder axis, ~r⊥ = (r, ϕ) and ~k⊥ =

(k, ϕk). The z-independent part describes a plane wave travelling in the xy-plane. It can be
expanded in terms of Bessel functions (A.11) [30]:

ei
~k⊥~r⊥ =

∞∑
l=−∞

ilJl(kr)e
il(ϕ−ϕk). (A.15)

The complex conjugate is given by

e−i
~k⊥~r⊥ =

∞∑
l=−∞

(−i)lJl(kr)e−il(ϕ−ϕk). (A.16)

As a result, the plane wave can be written as

e−i
~k~r = e−ikzz

∞∑
l=−∞

(−i)lJl(kr)e−il(ϕ−ϕk). (A.17)
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A.3 Fourier transform of Jl(kr)eilϕ

With the definition
Φk,l(r, ϕ) = Jl(kr)e

ilϕ, (A.18)

Equation (A.17) is

e−i
~k~r = e−ikzz

∞∑
l=−∞

(−i)lΦk,l(r, ϕ)eilϕk . (A.19)

From this, the Fourier transform of Φk,l can be found through the following steps [30].
Both sides of the above equation are first multiplied by e−inϕk and then integrated over ϕk:

1

2π

∫ 2π

0
dϕk e

−inϕke−i
~k⊥~r⊥ =

1

2π

∫ 2π

0
dϕk

∞∑
l=−∞

(−i)lΦk,l(r, ϕ)ei(l−n)ϕk . (A.20)

With the orthogogonality relation

1

2π

∫ 2π

0
dϕei(l−n)ϕ = δln, (A.21)

we can extract an equation for the function Φk,n(r, ϕ):

Φk,n(r, ϕ) =
1

2π

∫ 2π

0
dϕk

[
ine−inϕk

]
ei
~k⊥~r⊥ . (A.22)

The insertion of 1 =
∫

dk k δ(k−k
′)

k yields

Φk,n(r, ϕ) =
1

2π

∫ 2π

0
dϕk

∫
dk k

[
ine−inϕk

δ(k − k′)
k

]
e−i

~k⊥~r⊥ (A.23)

=
1

2π

∫
d2k Φ̃k,n(k′, ϕk)e

−i~k⊥~r⊥ . (A.24)

So
Φ̃k,n(k′, ϕk) = ine−inϕk

δ(k − k′)
k

(A.25)

is the two-dimensional Fourier transform of Φk,l(r, ϕ) = Jl(kr)e
ilϕ. In summary, plane waves

with the same wave number k but differently shifted phases can be superposed to give the
cylindrical wave Φk,l. Furthermore, the function

√
kΦk,l(r, ϕ) serves as the basis for the polar

Fourier transform.
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