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Gemäß §30 (12) der Ordnung des Fachbereichs Physik an der Johann Wolfgang Goethe-
Universität für den Bachelor- und Masterstudiengang Physik vom 24.04.2013 versichere ich,
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Abstract

In this work possibly existing tetraquarks consisting of two heavy anti-bottom quarks and
two light up/down quarks are studied. Lattice QCD is used to compute effective potentials
for the anti-bottom quarks in the Born-Oppenheimer approximation. These potentials are
used in a nonrelativistic coupled channel Schrödinger equation that includes effects due to
the heavy anti-bottom spin. We discuss solutions to this equation to investigate the existence
of a bound state. Indications for a tetraquark state with I(JP ) = 0(1+) are found.

v





Contents

1 Introduction 1

2 Heavy spin effects 3
2.1 Fierz transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Rearranging operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Choosing L and S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Coupled Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Solving the coupled Schrödinger equation 11
3.1 Block diagonal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Symmetry of the b̄b̄ wave function . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Analytical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Results 21
4.1 Fitting procedure and results . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Energy of the four quark system . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Further sources of systematic errors . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusion and Outlook 27

A Gamma matrices 29

vii





Chapter 1

Introduction

According to the current understanding of quantum chromodynamics (QCD) there is no
obvious reason why the usual mesons and baryons, the former consisting of a quark-antiquark
pair and the latter of three quarks, are the only possible hadrons. However, confirming the
existence or non-existence of exotic hadrons has proven to be a very difficult problem.

One possibility for exotic multiquark states are tetraquarks, which are mesons consisting
of four valence quarks. There are several hadronic resonances, e.g. the light scalar mesons
σ, κ, f0(980) and a0(980) [1], which are tetraquark candidates. However these mesons have
quantum numbers and masses that are consistent with the two quark picture. This makes
it hard to find definitive proof of their tetraquark nature.

The recent tetraquark candidates Z±c and Z±b have electrical charge of ±1 which can be
explained by I = 1 and masses and decay products that indicate the presence of cc̄ and bb̄
pairs. While the Z±b so far has only been claimed by the BELLE collaboration [2], Z±c has
been observed by several other collaborations [3, 4, 5, 6, 7, 8, 9, 10].

It is undoubtedly interesting to get a better theoretical understanding of these results
to correctly interpret them and also to guide future investigations. Theoretical studies of
tetraquarks however pose a challenging problem: usually they are open to meson-meson
decay and are complex relativistic four body systems. Studying tetraquark systems with bb̄
pairs as claimed by BELLE with lattice QCD would be very difficult since they couple to
several decay channels.

In this thesis we therefore extend the technical simpler studies done in [11, 12]. There,
the existence/non-existence of tetraquarks with two heavy b̄ quarks in the presence of two
lighter quarks was investigated. In this work we will focus on the case where the light quarks
are degenerate u/d quarks. We will give a short summary of the aspects of these studies
which are relevant for this project.

To avoid technical difficulties, bound states rather then resonances are investigated. Since
the b̄ quarks are much heavier than the light u/d quarks they are treated nonrelativistic and
the Born-Oppenheimer approximation [13] is employed: for the light quarks the b̄ quarks
are regarded as static color sources. Once the energy of the light quarks is computed using
lattice QCD from first principles it is used as an effective potential for the heavy b̄ quarks
in a nonrelativistic Schrödinger equation.

The energy of the effective potential for the spatial separation r = |~r1 − ~r2| of the b̄
quarks is obtained from the exponential decay of the correlation functions

C (t, r) =
〈
Ω
∣∣∣O†(t, r)O(0, r)

∣∣∣Ω〉 (1.1)
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CHAPTER 1. INTRODUCTION

of four quark creation operators

O(t, r) = (S)αβ (L)γδ
(
Q̄α (~r1) q(1)

γ (~r1)
) (
Q̄β (~r2) q(2)

δ (~r2)
)

(1.2)

at sufficiently large tmin ≤ t ≤ tmax. Here Q̄ denotes a static antiquark operator approxi-
mating the b̄ quark, q(1)q(2) ∈ {uu, dd, (ud + du)/

√
2, (ud − du)/

√
2} depending on isospin

and the Greek indices denote spin degrees of freedom. In the static approximation the spin
of the heavy quarks are irrelevant, so different choices for the matrix S which couples the
heavy spin degrees of freedom lead to the same potential. Therefore the matrix L which
couples the light degrees of freedom in spinor space determines spin and parity of the state.
For a detailed discussion of the lattice calculations see [14, 15].

The lattice QCD results of course provide the energy of the potentials only for a limited
number of discrete separations r. To use them in a Schrödinger equation these results have
to be interpolated and extrapolated by an appropriate fit function. Finding such a function
necessitates a qualitative understanding of the four quark system.

The pair of heavy antiquarks is immersed in a cloud of two light quarks. For small
distances r the diquark interaction of the heavy antiquarks is the main contribution to the
potential. The diquark potential has a Coulomb-like −α/r behavior for small separations,
whereas for large separations it is linear and confining. In our case, however, at larger sepa-
rations the interaction is screened by the light quarks. When the antiquarks are separated
far enough one is essentially dealing with two bottom mesons. In [11, 12] L was chosen in
a way that these bottom mesons are pseudoscalar B and/or vector B? mesons, which are
the lightest mesons containing a b̄ quark [1]. In the static limit these mesons are degenerate
because the spin interaction between the light and heavy quarks is neglected.

These considerations suggest the following fit function for the b̄b̄ potentials:

V (r) = −α
r

exp
(
−
(
r

d

)p)
+ V0. (1.3)

The exponential function mediates the screening due to the light quarks and V0 is included
to account for two times the mass of the static-light meson.

Using the most attractive potential from [14, 15] in a Schrödinger equation for the b̄
quarks results in a bound state with binding energy

Ebind = 93+43
−47 MeV. (1.4)

As mentioned above already, effects due to heavy spin have been neglected in these
considerations. These effects, however, could be of the same order as the binding energy, as
one can estimate e.g. by the mass difference of the B and B? meson, mB? −mB ≈ 46 MeV.
The aim of this thesis is to extend the strategy that has been outlined in this section to
include consequences of heavy spin.
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Chapter 2

Incorporating heavy spin effects

In principle effects due to heavy spin could be included by computing corrections to the
potentials using lattice QCD. For the standard quark-antiquark potential this has been
pioneered in [16, 17]. However, we expect this to be extremely difficult for a four quark
system.

Alternatively, to incorporate the mass difference of the B and the B? mesons due to
heavy spin one can add the mass difference in appropriate cases to the asymptotic value V0
of the fit function (1.3) after the fitting procedure. The advantage of this method is that no
new (expensive) lattice calculations have to be made.

In order to accomplish this in a sensible way we need to interpret the meson-meson
structure generated by the qqQ̄Q̄ potential creation operators. To achieve this, we refine the
method that was used to explain the asymptotic behavior of the potentials in [14, 15]. This
means we express the qqQ̄Q̄ potential creation operators in terms of static-light bilinears.
As a mathematical means to this end we introduce Fierz transformations.

2.1 Fierz transformations
We start by defining the sixteen 4× 4 matrices

ΓS := 1, ΓVµ := γµ, ΓTµν := 1
2 [γµ, γν ] := γµγν µ < ν, ΓAµ := γµγ5, ΓP := γ5, (2.1)

these matrices are labeled with the numbers one to sixteen in the obvious manner and will
be referred to as Γ-matrices from now on. We will show that these matrices form a basis for
C4×4.

First, note that these matrices can be seen as representatives for any product of gamma
matrices in the following sense: for any (s1, s2, s3, s4) ∈ N4 and α ∈ {±1} there is an
α′ ∈ {±1} and a ∈ {1, . . . , 16} such that

α
4∏

µ=1
γsµµ = α′Γa, (2.2)

this can be seen easily by using the anti-commutation relations of the gamma matrices
(cf. equation (A.1)). From this and by using the anti-commutation relations again we can
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CHAPTER 2. HEAVY SPIN EFFECTS

conclude that 1

(Γa)2 = χaa1 where
(
χab

)
:= 15×5 ⊕−110×10 ⊕ 11×1, (2.3)

tr(Γa) = 0 if Γa 6= ΓS = 1, (2.4)

and that for every pair (a, b) ∈ {1, . . . , 16}2 there exists a c ∈ {1, . . . , 16} such that one can
choose α ∈ {±1} to fulfill

ΓaΓb = αΓc. (2.5)
The Γ-matrices are proportional to their inverses (see equation (2.3)) and pairwise linear

independent and therefore
ΓaΓb 6= α1 ∀ α ∈ C if a 6= b. (2.6)

Denoting the inverse of Γa by Γa equation (2.3) implies

Γa =
16∑
a=1

χabΓb. (2.7)

Taking all this in consideration we now can show that the Γa-matrices are linear inde-
pendent and therefore, since dim (C4×4) = 16 (as a vector space over C), form a basis for
C4×4. To this end, suppose that

16∑
a=1

λaΓa = 0 (2.8)

for some λa ∈ C. Multiplying this equation by Γb and taking the trace results in
16∑
a=1

λa tr (ΓbΓa) = 0. (2.9)

The trace is equal to four if Γb = Γa = (Γa)−1 and zero otherwise due to equations (2.4)
to (2.7). So,

4
16∑
a=1

λaδ
a
b = 0 (2.10)

⇒ λb = 0, (2.11)
which shows the linear independence. This of course implies that any M ∈ C4×4 can be
expanded in terms of the Γ-matrices and the coefficients for this expansion can be computed
using the same logic as above:

M = 1
4

16∑
a=1

tr (ΓaM) Γa, (2.12)

or, in components:

Mαβ = 1
4

16∑
a=1

4∑
γ,δ=1

Mδγ (Γa)γδ (Γa)αβ . (2.13)

Looking at the last equation one can see that the Γ-matrices fulfill the following completeness
relation:

δαγδβδ = 1
4

16∑
a=1

(Γa)αβ (Γa)δγ . (2.14)

This completeness relation can be used to derive Fierz identities.
1At the moment, we do not use the Einstein summation convention.
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CHAPTER 2. HEAVY SPIN EFFECTS

2.2 Rearranging operators
If not mentioned otherwise, summation over repeating indices is implied from now on. To
relate the qqQ̄Q̄ potential to B(?)B(?) creation operators we are interested in a Fierz identity
of the following kind:

SαβLγδ
(
ψ1
αψ

2
γ

) (
ψ3
βψ

4
δ

)
=
∑
λ

(
ψ1M1(λ)ψ2

) (
ψ3M2(λ)ψ4

)
. (2.15)

Since our focus is solely on algebraic manipulations in spinor space we are using generic
labels for the fermion operators.

To derive the identity, one separates indices by inserting Kronecker deltas and uses the
completeness relation (2.14)

SαβLγδ
(
ψ1
αψ

2
γ

) (
ψ3
βψ

4
δ

)
= Sα′βLγ′δδαα′δγγ′

(
ψ1
αψ

2
γ

) (
ψ3
βψ

4
δ

)
(2.16)

= 1
4Sα

′βLγ′δ(Γa)αγ(Γa)γ′α′

(
ψ1
αψ

2
γ

) (
ψ3
βψ

4
δ

)
(2.17)

= 1
4
(
ψ1
α(Γa)αγψ2

γ

) (
ψ3
β(ST )βα′(ΓTa )α′γ′Lγ′δψ

4
δ

)
(2.18)

= 1
4
(
ψ1(Γa)ψ2

) (
ψ3(ST )(ΓTa )Lψ4

)
. (2.19)

Deploying again the fact that the Γ−matrices form a basis we can expand:

(ST )(ΓTa )L = 1
4 tr

(
Γb(ST )(ΓTa )L

)
Γb. (2.20)

If we now define the matrix

G(S, L)ab = 1
16 tr

(
Γb(ST )(ΓTa )L

)
(2.21)

and the vector

Ψ(ij)
a = ψiΓaψj, (2.22)

we have the following identities:

SαβLγδ
(
ψ1
αψ

2
γ

) (
ψ3
βψ

4
δ

)
= 1

16 tr
(
Γb(ST )(ΓTa )L

) (
ψ1(Γa)ψ2

) (
ψ3(Γb)ψ4

)
(2.23)

=
(
Ψ(12)

)T
G(S, L)Ψ(34). (2.24)

Using the defining property of the charge conjugation matrix equation (A.5) one can
show that

(Γa)T = ξab CΓbC−1 where (ξab ) := 11×1 ⊕−110×10 ⊕ 15×5. (2.25)
Defining

ωac := χabξ
b
c (2.26)

and writing

L =: CL̃, (2.27)
ST =: S̃C−1, (2.28)
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CHAPTER 2. HEAVY SPIN EFFECTS

we eventually arrive at the following expression for G:

G(S, L)ab = 1
16ωacχbd tr

(
ΓdS̃ΓcL̃

)
(2.29)

= ± 1
16 tr

(
ΓbS̃ΓaL̃

)
(2.30)

2.3 Choosing L and S

As mentioned in chapter 1 the matrix L couples the light spin degrees of freedom in the
qqQ̄Q̄ potential creation operators and therefore completely determines to which potential
the superposition of meson-meson operators in equation (2.23) corresponds to. The different
possibilities for L. Besides the restriction for S that

tr
(
S
(
1+ γ4

2

)
S
(
1+ γ4

2

))
6= 0 (2.31)

must be fulfilled (otherwise the corresponding correlator vanishes [18]), it does not influence
the potential. The matrix S does however affect the interpretation of the meson content of
the static potential creation operators.2 We are now interested in the possible choices for S
and L such that the meson operators correspond to the pseudoscalar/vector mesons B or
B?.

Formulating this aim in the notation of the preceding section we are interested in the
possible choices for S and L such that

G(S, L)ab = 0 if a ∈ K or b ∈ K, (2.32)

and
G(S, L)ab 6= 0 for at least one (a, b) ∈ A2 (2.33)

with the sets
K := {1, 5, 6, 7, 9, 12, 13, 14} , (2.34)

and
A := {1, . . . , 16} \K. (2.35)

To facilitate the discussion we introduce the projectors

P± := 1± γ4

2 = 1± γ4

2 , (2.36)

it is easy to check (and thereby justify calling them projectors) that

P2
± = P±, (2.37)

P±P∓ = 0, (2.38)
P+ + P− = 1. (2.39)

This enables us to write C4×4 as the direct sum of the P±-invariant subspaces P± := P±C
4×4:

C4×4 = P+ ⊕ P−. (2.40)
2Different choices of S of course only lead to changes which vanish in the static limit, e.g. B to B?

6



CHAPTER 2. HEAVY SPIN EFFECTS

Now note that
P± = P± span

(
{Γa}a∈A∪K

)
= span

(
{P±Γa}a∈A∪K

)
, (2.41)

of course {P±Γa}a∈A∪K is no basis, since the elements are not linear independent. A basis
can be obtained by removing linear dependent matrices. By direct calculation one can show
that for any a ∈ K there is a unique b ∈ K \ {a} such that P±Γa is linear dependent on
P±Γb. An analogous statement can be made for A. Therefore both subspaces have same
dimension and can both be split into two four dimensional subspaces:

P± = P+
± ⊕ P−± , (2.42)

C4×4 = P+
+ ⊕ P−+ ⊕ P+

− ⊕ P−− , (2.43)
P+

+ = span
(
{P+Γa}a∈K

)
, (2.44)

P−+ = span
(
{P+Γa}a∈A

)
, (2.45)

P+
− = span

(
{P−Γa}a∈A

)
, (2.46)

P−− = span
(
{P−Γa}a∈K

)
. (2.47)

The main property of these subspace that we will utilize is that

v+
± ∈ P+

± ⇒ v+
± = P±v

+
± = v+

±P+ (2.48)

and
v−± ∈ P−± ⇒ v−± = P±v

−
± = v−±P−, (2.49)

which can easily be understood from the fact that

a ∈ A⇒ P±Γa = ΓaP∓ (2.50)

and
b ∈ K ⇒ P±Γb = ΓbP±. (2.51)

We can now analyze the condition imposed on S by (2.31), which can be rewritten as

tr (SP+SP+) 6= 0. (2.52)

S will be given in the form of equation (2.28), using equation (A.1) for C one can show that

PT± = CP∓C−1 (2.53)

and therefore S̃ must fulfill
tr
(
S̃P−C−1S̃P−C−1

)
6= 0. (2.54)

For s+
± ∈ P+

± we have that

s+
±P− = P±s

+
±P− (2.55)

= s+
±P+P− (2.56)

= 0. (2.57)
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This means that for S̃ = s+
± condition (2.54) is not fulfilled.

In the chiral representation P−C−1 ∈ P+
− and therefore for s±− ∈ P±− :

P−C−1s±− = P−C−1P−s
±
− (2.58)

= C−1P+P−s
±
− (2.59)

= 0. (2.60)

So setting S̃ = s±− must also be avoided in the representation we are using (cf. Appendix A).
In conclusion we restrict ourself to S̃ ∈ P−+ .
Similar arguments can be made for L̃ (which is related to L via equation (2.27)) by demanding
that equations (2.32) and (2.33) are fulfilled. Let s−+ ∈ P−+ , then

l++ ∈ P+
+ ⇒ tr

(
Γbs−+Γal++

)
= 0 if b ∈ A, (2.61)

l−− ∈ P−− ⇒ tr
(
Γbs−+Γal−−

)
= 0 if a ∈ A, (2.62)

l+− ∈ P+
− ⇒ tr

(
Γbs−+Γal+−

)
= 0 if a ∈ A or b ∈ A, (2.63)

in contradiction to equation (2.33). In contrast, for l−+ ∈ P−+

tr
(
Γbs−+Γal−+

)
= 0 if a ∈ K or b ∈ K. (2.64)

Therefore equation (2.32) is fulfilled in this case and equation (2.33) is also true because the
left hand side of equation (2.23) is not zero. Hence both S̃ and L̃ will be chosen such that
they are elements of P−+ . Consequently we give a possible basis B for this subspace (by using
equation (2.45)):

B = {(1+ γ4) γ1, (1+ γ4) γ2, (1+ γ4) γ3, (1+ γ4) γ5} . (2.65)

For L̃ ∈ B the corresponding potentials have been computed in [14, 15], by evaluating3

equation (2.23) for L̃, S̃ ∈ B we are now able to interpret their B(?)B(?) content. Introducing
the following abbreviations:

Sαβ :=


[(1+ γ4) γ5C−1]Tαβ
[(1+ γ4) γ1C−1]Tαβ
[(1+ γ4) γ2C−1]Tαβ
[(1+ γ4) γ3C−1]Tαβ

 , (2.66)

B(i) (~r) :=


B(i) (~r)
B?,(i)
x (~r)

B?,(i)
y (~r)

B?,(i)
z (~r)

 :=


Q̄ (~r) (1+ γ4) γ5q

(i) (~r)
Q̄ (~r) (1+ γ4) γ1q

(i) (~r)
Q̄ (~r) (1+ γ4) γ2q

(i) (~r)
Q̄ (~r) (1+ γ4) γ3q

(i) (~r)

 (2.67)

3this can be efficiently done by using a CAS like Maxima [19]
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and

T :=



1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0
0 0 1 0 0 0 0 1 −1 0 0 0 0 −1 0 0
0 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0 0
0 0 0 1 0 0 1 0 0 −1 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 −1 0 0 −1 0 0 0 0 0 0 −1 0 0 −1 0
−1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1
0 1 0 0 −1 0 0 0 0 0 0 1 0 0 −1 0
−1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 −1 0 0 −1 0 0 1 0 0 0
0 0 −1 0 0 0 0 −1 −1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1 −1 0 0 0 0 1 0 0
0 0 0 −1 0 0 −1 0 0 −1 0 0 −1 0 0 0
−1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 −1 0


(2.68)

we get the result
Sαβ [C (1+ γ4) γ5]γδ

(
Q̄α (~r1) q1

γ (~r1)
) (
Q̄β (~r2) q(2)

δ (~r2)
)

Sαβ [C (1+ γ4) γ1]γδ
(
Q̄α (~r1) q1

γ (~r1)
) (
Q̄β (~r2) q(2)

δ (~r2)
)

Sαβ [C (1+ γ4) γ2]γδ
(
Q̄α (~r1) q1

γ (~r1)
) (
Q̄β (~r2) q(2)

δ (~r2)
)

Sαβ [C (1+ γ4) γ3]γδ
(
Q̄α (~r1) q1

γ (~r1)
) (
Q̄β (~r2) q(2)

δ (~r2)
)

 = T


B(1) (~r1)B(2) (~r2)
B?,(1)
x (~r1)B(2) (~r2)

B?,(1)
y (~r1)B(2) (~r2)

B?,(1)
z (~r1)B(2) (~r2)


(2.69)

The operators in (2.67) excite states that for large t correspond to B(?) mesons.

2.4 The coupled channel Schrödinger equation
The lattice potentials are spherically symmetric and parametrized by the fit function (1.3),
where r = |~r2 − ~r1| and ~r1 and ~r2 are the positions of the b̄ quarks. For details about the
fitting procedure see section 4.1. There are two different potentials, V5 for L = C (1+ γ4) γ5
and Vj for L = C (1+ γ4) γj, j = 1, 2, 3. These potentials can be thought of as the potentials
between two b̄ quarks in the presence of two light u/d quarks.

We now want to use these potentials in a Schrödinger equation for the two heavy b̄ quarks

HΨ (~r1, ~r2) = EΨ (~r1, ~r2) , (2.70)

that includes the mass difference of B and B? due to heavy spin, to see if they form a bound
state.

We start by setting V0 = 0 since we will include the asymptotic value according to
equation (2.69).

The wave function Ψ has sixteen components which correspond to the meson operators
on the right hand side of equation (2.69). The Hamiltonian can be split in a free and an
interacting part, H = H0 + Hint. The free part of the Hamiltonian contains the masses of
the B(?) mesons (as replacement for V0) and the kinetic energy of the b̄ quarks:

9



CHAPTER 2. HEAVY SPIN EFFECTS

H0 = M ⊗ 14×4 + 14×4 ⊗M + ~p 2
1

2mb

116×16 + ~p 2
2

2mb

116×16, (2.71)

where
M = diag (mB,mB? ,mB? ,mB?) . (2.72)

For the masses the following values were used: mB = 5279 MeV, m?
B = 5325 MeV [1] and

mb = 4977 (as used in quark models [20])
The interacting part consists of the potential matrix

V = diag (V5, Vj, Vj, Vj)⊗ 14×4 (2.73)

and relates it to the components of the wave function via the matrix T (equation (2.68)) in
analogy to equation (2.69):

Hint = T−1V T. (2.74)

The aim of the next section will be to solve equation (2.70).

10



Chapter 3

Solving the coupled Schrödinger
equation

In the first section of this chapter we bring the Schrödinger equation (2.70) to a block-
diagonal form by rearranging its components according to total spin J . The advantage of
this form is twofold: on the one hand, the maximal block size in this form is 2 × 2 and
therefore simplifies the solution of the equation. On the other hand, it also allows for an
implementation of the correct symmetrization of the b̄b̄ Wave function, which was neglected
so far due to the usage of static quarks for the lattice computation.

Eventually we derive boundary conditions a physically sensible solution should have and
present our method to numerically solve the equation.

3.1 Block diagonal form
We now use the following notation: the first component of the wave function will be denoted
BB, the second by BB? and so on analogous to the meson operators in equation (2.69).
Furthermore we define the abbreviation

~B? =

B
?
x

B?
y

B?
z

 . (3.1)

We also define the 16× 16 matrix

(a↔ b)ij := δij − δaiδaj − δbiδbj + δaiδbj + δbiδaj, (3.2)

which, when applied to a vector, switches the ath element with the bth element of the vector,
i.e.

(1↔ 2)


BB
BB?

x
...

 =


BB?

x

BB
...

 (3.3)

Our first step in order to introduce a change of basis according to total spin J consists
of defining the following matrix

R = (7↔ 8)(8↔ 9)(9↔ 10)(10↔ 11)(11↔ 12)(12↔ 13)(6↔ 7)(7↔ 8)(8↔ 9), (3.4)

11



CHAPTER 3. SOLVING THE COUPLED SCHRÖDINGER EQUATION

which introduces row switches which have the following effect

U


BB
B?
xB

B?
yB

B?
zB

 =



BB

B ~B?

~B?B

B?
x
~B?

B?
y
~B?

B?
z
~B?


. (3.5)

Next, we define a transformation so that the individual mesons are eigenvalues of the z-
component of their spin operator. Denoting Bjz

j the meson with spin j and spin projection
quantum number along z-axis jz one has

B0
0

B1
1

B0
1

B−1
1

 =


B

2
√

π
3Y
−1

1

(
B?
x, B

?
y , B

?
z

)
2
√

π
3Y

0
1

(
B?
x, B

?
y , B

?
z

)
2
√

π
3Y

1
1

(
B?
x, B

?
y , B

?
z

)

 =


1 0 0 0
0 − 1√

2 −
i√
2 0

0 0 0 1
0 1√

2 − i√
2 0


(
B
~B?

)
=:
(

1
z

)(
B
~B?

)
, (3.6)

where we have defined the 3× 3 matrix z and Y jz
j denotes a spherical harmonic in Cartesian

coordinates at r = 1 employing the Condon-Shortley phase [21]. Therefore the transforma-
tion acting on the sixteen component wave function is

Z :=


1

z
z

z ⊗ z

 , (3.7)

with the effect

Z



BB

B ~B?

~B?B

B?
x
~B?

B?
y
~B?

B?
z
~B?


=



BB

B ~B1
~B1B

B1
1
~B1

B0
1
~B1

B−1
1
~B1


, (3.8)

where

~B1 =

 B1
1

B0
1

B−1
1

 . (3.9)

In the next step we introduce the 9 × 9 matrix c which makes the decomposition 1 ⊗ 1 ∼=
0⊕ 1⊕ 2 of SU(2) representations explicit, i.e. it contains the appropriate Clebsch-Gordan
coefficients. In the CAS Maxima [19] this matrix can be computed by the commands
load("clebsch_gordan");
c_list:[];
for J in [0,1,2] do (

c_list: append(c_list,reverse(makelist(flatten(
reverse((makelist(reverse(makelist(
clebsch_gordan(1,1,m1,m2,J,M),m2,-1,1)),m1,-1,1)))),M,-J,J))));

c_matrix:apply(’matrix,c_list);

12



CHAPTER 3. SOLVING THE COUPLED SCHRÖDINGER EQUATION

which leads to

c :=



0 0 1√
3 0 − 1√

3 0 1√
3 0 0

0 1√
2 0 − 1√

2 0 0 0 0 0
0 0 1√

2 0 0 0 − 1√
2 0 0

0 0 0 0 0 1√
2 0 − 1√

2 0
1 0 0 0 0 0 0 0 0
0 1√

2 0 1√
2 0 0 0 0 0

0 0 1√
6 0

√
2√
3 0 1√

6 0 0
0 0 0 0 0 1√

2 0 1√
2 0

0 0 0 0 0 0 0 0 1



. (3.10)

Defining

C :=
(
17×7

c

)
(3.11)

the desired change of basis is
S := CZR. (3.12)

The transformed Hamiltonian H̃ = SHS−1 leads to independent simpler coupled channel
equations corresponding to definite total spin J :
• a single 2× 2 coupled channel equation corresponding to J = 0 with the Hamiltonian

H̃0,J=0 =
(

2mB 0
0 2mB?

)
+
(
~p 2

1
2mb

+ ~p 2
2

2mb

)
12×2, (3.13a)

H̃int,J=0 = 1
4

(
V5(r) + 3Vj(r)

√
3 (V5(r)− Vj(r))√

3 (V5(r)− Vj(r)) 3V5(r) + Vj(r)

)
, (3.13b)

the wave function is related to the original wave function via

Ψ̃J=0 =
(

BB

(1/
√

3) ~B 2

)
; (3.14)

• five identical 1×1 equations corresponding to J = 2 (degeneracy due to jz = −2, 1, 0, 1, 2)
with the Hamiltonian

H̃2,J=2 = 2mB? + ~p 2
1

2mb

+ ~p 2
2

2mb

, (3.15)

and the wave functions

Ψ̃jz
J=2 = 2

√
2π
15Y

jz
2

(
B?
x, B

?
y , B

?
z

)
; (3.16)

• three identical (degeneracy due to jz = −1, 0, 1) 3 × 3 coupled channel equations
corresponding to J = 1 with the Hamiltonian

H̃0,J=1 =

m
? +m 0 0

0 m? +m 0
0 0 2m?

+
(
~p 2

1
2mb

+ ~p 2
2

2mb

)
13×3 (3.17)

H̃int,J=1 = 1
4

 V5(r) + 3Vj(r) Vj(r)− V5(r)
√

2 (V5(r)− Vj(r))
Vj(r)− V5(r) V5(r) + 3Vj(r)

√
2 (Vj(r)− V5(r))√

2 (V5(r)− Vj(r))
√

2 (Vj(r)− V5(r)) 2 (V5(r) + Vj(r))

 (3.18)
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and the wave functions

Ψ̃jz
J=1 =


BBjz

1
Bjz

1 B

−
√

2/2
(
~B1 × ~B1

)
jz

 . (3.19)

Symmetrization of the first and anti-symmetrization of the second component
BBjz

1
Bjz

1 B

−
√

2/2
(
~B1 × ~B1

)
jz

→


Bjz
1 B +BBjz

1
Bjz

1 B −BB
jz
1

−
√

2/2
(
~B1 × ~B1

)
jz

 , (3.20)

leads to further simplifications: H̃int,J=1 is split into

– a 1× 1 matrix (corresponding to the symmetric part)

H ′int,J=1,1×1 = Vj(r) (3.21)

and
– a 2× 2 matrix (corresponding to the anti-symmetric part)

H ′int,J=1,2×2 = 1
2

(
V5(r) + Vj(r) Vj(r)− V5(r)
Vj(r)− V5(r) V5(r) + Vj(r)

)
. (3.22)

3.2 Symmetry of the b̄b̄ wave function
So far we have not specified if we are using potentials from the isosinglet (I = 0) or isotriplet
channel (I = 1), i.e. if we are using q1q2 = ud − du or q1q2 ∈ {uu, dd, ud+ du} in equa-
tion (1.2). As it will turn out, the four Hamiltonians (3.13), (3.15), (3.21) and (3.22) are
physically sensible only for specific isospin respectively.

This has to do with the fact that the b̄ quarks are fermions and therefore their wave
function must be anti-symmetric under exchange, which leads to the Pauli-Principle. This
has been neglected in the lattice computations since the ¯̄b quarks are treated as spinless color
sources which can be distinguished by their position.

We expect that in the ground state the b̄ quarks form a spatially symmetric s-wave, as
well as the light quarks. Now assume that the light quarks are antisymmetric in flavor space,
i.e. I = 0. According to the decomposition 3⊗ 3 ∼= 3̄⊕ 6 of SU(3)-representations they are
either in the antisymmetric 3̄ or the symmetric 6 representation in color space. Assuming 3̄
they must be antisymmetric in spin space due to the Pauli-Principle, which means they have
spin 0. The four quark system must form a color singlet, so in this case the b̄ quarks must
be in the antisymmetric 3 representation in color space. Since b̄b̄ can only be symmetric in
flavor space this means they have spin 1, so the four quark system has spin 1. Applying this
logic to all possible combinations of quantum numbers leads to Table 3.1.

Combination one and two in Table 3.1 both have total spin 1 and therefore correspond
to the 2× 2 Hamiltonian (3.22). Combination four leads to total spin 0, 1 and 2. Therefore
combination four together with combination three are associated to the 2 × 2 Hamiltonian
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CHAPTER 3. SOLVING THE COUPLED SCHRÖDINGER EQUATION

qq b̄b̄

combination flavor spin color color flavor spin

1 asym (I = 0) asym (0) asym (3̄) asym (3) sym sym (1)

2 asym (I = 0) sym (1) sym (6) sym (6̄) sym asym (0)

3 sym (I = 1) asym (0) sym (6) sym (6̄) sym asym (0)

4 sym (I = 1) sym (1) asym (3̄) asym (3) sym sym (1)

Table 3.1: Possible combinations of quantum numbers / representations and the associated
symmetries of the wave function

(3.13) and the two 1 × 1 Hamiltonians (3.21) and (3.15) are both related to combination
four.

For I = 1 the potential Vj is attractive, however in similar studies it has proven to be
too weak to generate a bound state [12]. Since V5 is repulsive for I = 1 we do not expect to
find any bound states in this case.

In the case of I = 0 Vj is (weakly) repulsive and V5 is attractive enough to generate a
bound state when heavy spin effects are neglected [12, 11]. We therefore study for the rest
of this thesis the I = 0 and J = 1 coupled channel equation. Since both B and B? have
negative parity the four quark system has positive parity.

3.3 Analytical considerations
Defining

W1(r) := V5(r) + Vj(r) +mB +mB? , (3.23)
W ?

1 (r) := W1(r) +mB? −mB (3.24)

and
W2(r) := Vj(r)− V5(r), (3.25)

the I = 0 and J = 1 coupled channel equation can be written as(
− ~2

2mb

(∆1 + ∆2)12×2 +
(
W1(r) W2(r)
W2(r) W ?

1 (r)

))
Ψ̃J=1,2×2 = EΨ̃J=1,2×2. (3.26)

Ultimately, this equation will be solved numerically. It is, however, beneficial to get some
analytical insights before attempting to do so. This is done by employing (and generalizing
to the 2 × 2 case if necessary) some well known results from ordinary quantum mechanics
[22, 23].

At first, we introduce center of mass and relative coordinates

~rCM = mb

2 (~r1 + ~r2) , (3.27)

~r = ~r1 − ~r2. (3.28)
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This splits equation (3.26) into two independent equations. The eigenstates of the center
of mass equation are simply free-particle eigenstates and do not influence the binding energy.
The equation for the relative coordinates reads(

− ~2

2µ∆12×2 +
(
W1(r) W2(r)
W2(r) W ?

1 (r)

))
ψ(~r) = Eψ(~r), (3.29)

where µ = mb/2 denotes the reduced mass.
Utilizing spherical symmetry of the potentials we make the ansatz

ψ(~r) = χ(r)
r

= 1
r

(
χ1(r)
χ2(r)

)
, (3.30)

for the ground state. This leads to the following ordinary differential equation for χ:

Dχ = Eχ, (3.31)

where

D =
− ~2

2µ
d2

dr2 +W1(r) W2(r)
W2(r) − ~2

2µ
d2

dr2 +W ?
1 (r)

 . (3.32)

3.3.1 Boundary conditions
Note that for a solution χ with real E the complex conjugate χ∗ also is a solution with the
same eigenvalue because

• the derivative commutes with complex conjugation,

• equation (3.31) is linear and

• the entries in D which are no differential operators are real.

If χ has both complex and imaginary part, χ and χ∗ are linear independent and one can
obtain two real, linear independent solutions with the same eigenvalue by

χ̃1 = χ+ χ∗, χ̃2 = i (χ− χ∗) . (3.33)

Furthermore, if χ is purely imaginary, then

χ̃ = −iχ (3.34)

is a real solution with the same eigenvalue. Therefore, one can restrict the solution space to
purely real functions without loss of generality, which we will do henceforth.

Furthermore, we demand that D is hermitian with respect to the functions of the solution
space.1 This means that for two solutions u = (u1, u2) and v = (v1, v2) the following equation
must hold: ∫ ∞

0
〈u,Dv〉 dr =

∫ ∞
0
〈Du, v〉 dr, (3.35)

1We ignore some mathematical subtleties here, namely that there is an important distinction between a
self-adjoint operator and a hermitian operator

16



CHAPTER 3. SOLVING THE COUPLED SCHRÖDINGER EQUATION

where 〈·, ·〉 denotes the usual scalar product on R2.
Ignoring the differential operators in D the matrix is symmetric and therefore equa-

tion (3.35) implies (using partial integration):

(u1v
′
1 + u2v

′
2)|∞0 = (v1u

′
1 + v2u

′
2)|∞0 . (3.36)

For the wave function to be normalizable the solutions will vanish for r →∞ so the condition
we are left with is

u1(0)v′1(0) + u2(0)v′2(0) = v1(0)u′1(0) + v2(0)u′2(0). (3.37)

To ensure this for arbitrary functions in the solution space we have to impose the following
property on functions χ of the solution space:

(χ1(0) = 0 ∨ χ′1(0) = 0) ∧ (χ2(0) = 0 ∨ χ′2(0) = 0) . (3.38)

Now, if χ′1(0) = 0 and χ1(0) = c 6= 0 the asymptotic behaviour of χ1 as r → 0 is

χ1 ∼ c. (3.39)

This means that the first component of ψ behaves as

ψ1 ∼
c

r
(3.40)

which will result in a component proportional to δ(r) when ∆ is applied. Since none of the
potentials in equation (3.29) contains a delta function and the argumentation applies to χ2
analogously the boundary conditions for χ are

χ(0) =
(

0
0

)
, χ(∞) =

(
0
0

)
. (3.41)

3.3.2 Asymptotic behavior
Since χ(0) = 0 it is not necessary for χ′(0) to be zero in order to fulfill equation (3.38).
With a bit more work however, we can also derive values for χ′(0) or, in other words, the
asymptotic behavior of solutions as r → 0.

Note that equation (3.31) is an ODE with analytic coefficients that have a singularity for
r = 0, we therefore make the ansatz

χ1(r) = rs1
∞∑
k=0

akr
k, a0 6= 0 (3.42)

χ2(r) = rs2
∞∑
k=0

bkr
k, b0 6= 0. (3.43)

The potentials can be expanded in the following way:

2µ
~
·W (?)

i (r) = r−1
∞∑
k=0

w
(?)
i,k r

k, w
(?)
i,0 6= 0.2 (3.44)

2w?
1,k = w1,k for k 6= 1 and w?

1,1 = w1,1 +mB? −mB due to equation (3.24)
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Inserting this into equation (3.31) leads to the equations

0 = s1 (s1 − 1) a0r
s1−2 +

(
s2

1a1 + a0w1,0
)
rs1−1

+ rs1
∞∑
k=0

{
[k(k + s1 + 3) + s1(s1 + 1) + 2] ak+2 −

k+1∑
n=0

anw1,k+1−n + εak

}
rk

+ rs2−1
∞∑
k=0

(
k∑

n=0
bnw2,k−n

)
rk,

(3.45)

0 = s2 (s2 − 1) b0r
s2−2 +

(
s2

2b1 + b0w
?
1,0

)
rs2−1

+ rs2
∞∑
k=0

{
[k(k + s2 + 3) + s2(s2 + 1) + 2] bk+2 −

k+1∑
n=0

bnw
?
1,k+1−n + εbk

}
rk

+ rs1−1
∞∑
k=0

(
k∑

n=0
anw2,k−n

)
rk,

(3.46)

where ε = 2µ
~ E. These equations must be fulfilled simultaneously for all r ∈ (0,∞). There

are now several possibilities:

1. s1 − 2 = s2 + a, where a ∈ {−1, 0} ∪N,

2. case one with the roles of s1 and s2 interchanged and

3. none of the above.

In the first case, one has s2 = s1 − 2− a and equation (3.46) reads

0 = (s1 − 2− a) (s1 − 3− a) b0r
s1−4−a +

(
(s1 − 2− a)2 b1 + b0w

?
1,0

)
rs1−3−a

+ rs1−2−a
∞∑
k=0

{
[k(k + s1 + 1− a) + (s1 − 2− a)(s1 − 1− a) + 2] bk+2

−
k+1∑
n=0

bnw
?
1,k+1−n + εbk

}
rk

+ rs1−1
∞∑
k=0

(
k∑

n=0
anw2,k−n

)
rk.

(3.47)

Since 4 + a > 3 and the coefficients multiplied by different powers of r must vanish inde-
pendently we can infer that s1 = 2 + a or s1 = 3 + a in this case (note that b0 6= 0). The
former means s2 = 0, which is against the boundary conditions. One therefore is left with
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s1 = 3 + a and s2 = 1. Inserting this into equation (3.45) results in

0 =
2+a∑
k=0

(
k∑

n=0
bnw2,k−n

)
rk

+ (3 + a) (2 + a) a0r
1+a +

(
(3 + a)2 a1 + a0w1,0

)
r2+a

+ r3+a
∞∑
k=0

{
[k(k + 6 + a) + (3 + a)(4 + a) + 2] ak+2 −

k+1∑
n=0

anw1,k+1−n + εak

}
rk

+ r3+a
∞∑
k=0

(
k+3+a∑
n=0

bnw2,k+3+a−n

)
rk,

(3.48)

which implies that if 1 + a > 0 then b0 = 0, because w2,0 6= 0. Since b0 6= 0 by construction,
we are left with the possibility that a = −1. Looking at equation (3.48) this means that
b0w2,0+2a0 = 0. This implies that b0 is determined by a0 and hence that there are not enough
parameters to enforce the boundary conditions for both χ1 and χ2 as r →∞. Therefore we
can conclude that case 1 is not possible and case 2 can be disregarded using the same
argumentation. Case 3 directly implies that s1 = s2 = 1 (si = 0 violates the boundary
conditions) and therefore the solutions behave linear approaching 0:

χ(r) ∼
(
Ar
Br

)
as r → 0. (3.49)

3.4 Numerical solution

One possibility to solve equation (3.31) numerically is to employ the shooting method. To
this end, one integrates equation (3.31) using e.g. the Runge-Kutta-Fehlberg method start-
ing with the correct asymptotic behavior (3.49) at tiny r = ε > 0 3 to r = rmax with
sufficiently large rmax & 10fm. This integration is used as an input for a multidimensional
root solver to find parameters A/B 4 and E such that also χ1(rmax) = χ2(rmax) = 0 is
fulfilled. Multidimensional root finding is in general much harder than the one dimensional
case, where global convergence can be ensured. In fact, all multidimensional root finding
algorithms from [24] fail to converge for our problem even when very good initial guesses are
provided. We therefore present a method which reduces the problem of finding the energy
E to a one dimensional problem.5

To this end, let χ1 and χ2 denote the solutions to equation (3.31) with the asymptotic
behavior (note that one cannot expect these solutions to fulfill the boundary conditions at

3The potentials have a singularity for r = 0.
4Normalization can be ensured afterwards.
5It will be apparent that this method does not only work for the two dimensional case but also for

arbitrary dimensions. To minimize notational clutter we concentrate on the two dimensional case. Also, the
method described in the next section to determine A and B only works in the two dimensional case.
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rmax):

χ1(r) ∼
(
r
0

)
as r → 0 and (3.50)

χ2(r) ∼
(

0
r

)
as r → 0. (3.51)

Due to the linearity of the Schrödinger equation χ := Aχ1 +Bχ2 also solves equation (3.31).
This solution has the asymptotic behavior

χ(r) ∼
(
Ar
Br

)
as r → 0. (3.52)

We are interested in energies such that A and B can be chosen to ensure χ(rmax) = 0, or, in
other words that

χ(rmax) = Aχ1(rmax) +Bχ2(rmax) =
(

0
0

)
(3.53)

has a nontrivial solution. This is possible if and only if

det
(
χ1(rmax), χ2(rmax)

)
= 0. (3.54)

Therefore, it is enough to vary only E until equation (3.54) is fulfilled in order to find
eigenvalues for equation (3.31). To determine A/B one then solves the homogeneous linear
system equation (3.53).

Numerical Caveats
Even when E is determined to very high precision (∆E . 10−9) χ1 and χ2 become so
unstable beyond the classical turning point that equation (3.54) is never actually fulfilled
even approximately. Therefore, in practice, A/B can not be determined by solving a linear
system.

To circumvent this, after determining E one uses one dimensional root finding to find
A/B such that χ1(rmax) = 0 is fulfilled and repeats the same procedure for χ2. 6 If E has
been determined with sufficient precision the two values for A/B obtained using this method
are the same within error margins.

6Note that the lower indices mean we are talking about the first and second component of χ and not
about the solutions with the asymptotic behavior (3.50)
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Results

4.1 Fitting procedure and results
To describe the lattice potentials V lat(r) by continuous functions we use the strategy ex-
plained in [11], details on this method to estimate the statistical error can be found in [25].
We perform uncorrelated χ2 minimizing fits of equation (1.3). To this end we minimize

χ2 =
∑

r=rmin,...,rmax

(
V (r)− V lat(r)

∆V lat(r)

)
(4.1)

with respect to the parameters α, d, and V0 while keeping p = 2 fixed. Since V0 is discarded
afterwards (see section 2.4) we will ignore it for the rest of the discussion. ∆V lat denote the
statistical errors obtained by the Jackknife resampling process described in [12].

These fits are performed only for V5 in the isosinglet channel. The channel for Vj is
strongly screened and consistent with V lat = 0 for r > 2a. Therefore it is not possible to
perform a stable fit for Vj. We will discuss in 4.2 how to deal with this problem.

To estimate the systematic errors for V5 we perform a large number of fits where the
following parameters are varied:
• The range of the temporal separations tmin ≤ t ≤ tmax that are included when V lat(r) is

obtained from C(t, r). They are varied over the parameter area 4a ≤ tmin < tmax ≤ 9a.
If tmin is chosen small this might lead to a contamination by excited states, for large
tmin and tmax the statistical error increase significantly.

• The minimal and maximal distances between the b̄ quarks rmax that are included for
the χ2 minimizing fit. We choose rmin ∈ {2a, 3a} and rmax ∈ {8a, 9a, 10a}. Smaller
separation than 2a are avoided since V lat(r) are expected to suffer from substantial
lattice discretization errors for r < 2a.

By weighting each of the resulting fit parameters α5 and d5 by exp (−χ2/dof) a distribu-
tion for these values is constructed. The central values for α5 and d5 are then defined as the
medians of the distributions and the difference of the 16th/84th percentile to the medians
give the lower/upper systematic uncertainties. To combine the systematic errors with the
statistical errors the jacknife errors of the medians are added in quadrature. This results in

α5 = 0.35+0.05
−0.04 , (4.2a)

d5 = 0.42+0.08
−0.08 fm. (4.2b)
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The fit function (1.3) with these parameters can be seen in Figure 4.1.
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Figure 4.1: Parametrization of the b̄b̄ potential V5 in the isosinglet channel. Fit function
(1.3) with the parameters (4.2).

4.2 Energy of the four quark system
The energy of the system is given by the eigenvalue of equation (3.31). A bound state is
found if E < mB +m?

B and the binding energy in this case is Ebind = mB +m?
B − E.

To be able to compute the energy we first have to discuss the values of the fit parameters
for Vj, which could not be determined in the previous section. The short range behavior
of the potentials is expected to be dominated by the interaction of the b̄ quarks. In the
attractive case (V5) they are expected to form a color triplet and in the repulsive case (Vj) a
color sextet. For both these multiplets one can compute the associated potentials in leading
order perturbation theory, which leads to:

V trip(r) = −2αs
3 r (4.3)

V sext(r) = αs
3 r, (4.4)

where αs denotes the coupling constant. This suggests the estimate αj = α5/2 and dj = d5.
Since this is a rough estimate only we will use the following strategy to gauge the influence

of αj and dj on the energy: denoting the central values for α5 and d5 from (4.2) by α5,c and
d5,c we make the following choices for αj and dj, which are consistent with the lattice data:
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αj ∈ {0, α5,c/4, α5,c/2} and (4.5a)
dj ∈ {d5,c/4, d5,c/2, d5,c} . (4.5b)

For each of these choices the energy for all fits from section 4.1 is computed, constructing
a distribution for the energy this way. The resulting distributions can then be compared for
the different values of αj and dj.

For αj = 0 the repulsive potential vanishes, this should lead to the largest binding energy.
Even in this case, however, one runs into the problem that some fits lead to no binding at
all.

Specifically, this happens for the fits with tmin = 8a and tmax = 9a. These fit have
the common feature that d5 is relatively small, which results in a shorter range of the
potential. To get a better understanding of the situation, see Figure 4.2, where effective
masses meff(t, r) = 1

a
log

(
C(t,r)

C(t+a,r)

)
are shown which are used to extract the potential V5.

As one can see, the statistical errors are significantly higher for tmin = 8 and tmax = 9
compared to the case where tmin = 5 and tmax = 8. Also the difference between meff(tmin, r)
and meff(tmax, r) is much larger in the former case, for a sensible extraction of the potential,
however, V (r) should be read off from a plateau of meff . On the other hand, on can argue
that these differences (especially when meff(tmax, r) is smaller) indicate, that the plateau for
tmin = 5a and tmax = 8a is contaminated with excited states. This however should mainly
influence V0, which is discarded anyway.

We therefore pursue the strategy that has been explained above without using the fits
with tmin = 8a and tmax = 9a, keeping, however, in mind that the reasoning to exclude them
is heuristic only. For αj = α5,c/2 and dj = d5 the resulting binding energy is

Ebind = 59+39
−42 MeV (4.6)

and in all other cases from (4.5)

Ebind = 60+39
−41 MeV. (4.7)

This shows that αj and dj only have little influence on the binding energy (about 1 −
2 MeV) and that the confidence level for this udb̄b̄ tetraquark state is around 1.5σ (with the
caveat that we had to exclude some fits).

A plot of the wave function χ and the associated radial probability density |χ1|2 + |χ2|2
for a specific choice for the parameters of V5 and Vj can be seen in Figure 4.3.

23



CHAPTER 4. RESULTS

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  2  4  6  8  10

m
ef

fe
ct

iv
e

T

effective masses, T0 = 1   (sector a)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  2  4  6  8  10

m
ef

fe
ct

iv
e

T

effective masses, T0 = 1   (sector a)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  2  4  6  8  10

m
ef

fe
ct

iv
e

T

effective masses, T0 = 1   (sector a)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  2  4  6  8  10

m
ef

fe
ct

iv
e

T

effective masses, T0 = 1   (sector a)

 0.6

 0.65

 0.7

 0.75

 0.8

 0  2  4  6  8  10

V

R

potential, T0 = 1   (sector a)

 0.6

 0.65

 0.7

 0.75

 0.8

 0  2  4  6  8  10

V

R

potential, T0 = 1   (sector a)

Figure 4.2: Effective masses and the resulting potential V5. In the first line the spatial
separation of the b̄ quarks is r = 2a, in the second line r = 4a. On the left side tmin = 5a
and tmax = 8a, on the right side tmin = 8a and tmax = 9a.
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Figure 4.3: Wave function χ and probability density to find the b̄ quarks at separation r. For
the potentials V5 and Vj the values (cf. equation (4.2)) α5 = 0.35 , d5 = 0.42 fm, αj = α5/2
and dj = d5 were chosen. The resulting binding energy is 51 Mev.
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4.3 Further sources of systematic errors
As indicated in [12] and [11] there are additional sources of systematic errors:

• The light u/d quarks are unphysically heavy in the lattice computations, corresponding
to a pion mass of mπ ≈ 340 MeV. Lighter masses for these quarks should enhance the
binding since they lead to B(?) mesons with larger radii and therefore reduce screening.

• The lattice results are not precise enough to resolve light meson exchange resulting
in long range interactions. Furthermore these interactions are suppressed due to the
unphysically heavy u/d quarks. Resolving this should also lead to larger binding energy.

• Finite volume effects are expected to be suppressed exponentially. This suppression
can be estimated by exp(−mπL), where L is the periodic spatial volume of the lattice.
In practice, even for simple quantities where statistical errors are much smaller than
for our calculations, mπ & 3 . . . 4 is usually sufficient for the finite volume effects to be
negligible compared to the statistical errors. Since mπL = 3.3 in our case, finite volume
effects are expected not to influence the result significantly. Furthermore, Figure 4.3
indicates that the spatial extension of the lattice L ≈ 1.9 fm is large enough to resolve
a tetraquark state.

• The mass difference between B and B? which is due to spin interactions between the
heavy and light quark has been taken into account. The spin interactions between the
b̄ quarks however have still been neglected. Since they are of the order 1/m2

b in quark
models they presumably have little influence on the result.
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Conclusion and Outlook

Comparing our results to the binding energies obtained in [11] shows that the inclusion of
heavy spin effects weakens the binding energy. Nevertheless we still have found indications
for a tetraquark state with I(JP ) = 0(1+).

In the near future we are planning to extrapolate to physical u/d quark masses. Pre-
liminary results confirm the expectation from section 4.3 that this should enhance binding.
Furthermore, it would be interesting to not only study bound states but also resonances.
Finally, once these investigations are finished for the qqb̄b̄ systems they can be extended to
qq̄bb̄ systems, which are more interesting from an experimental standpoint, especially in light
of the observations by the BELLE collaboration [2].
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Appendix A

Gamma matrices

We use the conventions of [26], the Euclidean gamma matrices γµ, µ = 1, 2, 3, 4 obey

{γµ, γν} = 2δµν1. (A.1)

If we define γ5 to be

γ5 =
4∏

µ=1
γµ, (A.2)

then equation (A.1) is extended to the cases where µ or ν are equal to five.
Throughout this thesis the chiral representation is employed. In this representation the

Euclidean gamma matrices have the following explicit form

γ1,2,3 =
(

0 −iσ1,2,3
iσ1,2,3 0

)
, γ4 =

(
0 12×2
12×2 0

)
, γ5 =

(
12×2 0

0 12×2

)
, (A.3)

and fulfill in addition to equation (A.1)

γµ = γ†µ = γ−1
µ . (A.4)

The defining equations for the charge conjugation Matrix C are

CγµC−1 = −γTµ , µ = 1, 2, 3, 4, (A.5)

which implies that in the chiral representation C is given (up to a phase factor) by

C = iγ2γ4. (A.6)
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