Does time matter?
Asymptotically Safe Lorentzian Gravity

E. Manrique, S. Reichenberger and F. Saueressig
Institut für Physik, Staudingerweg 7, D-55128 Mainz, Germany

Quantum Gravity:
- No experimental data available!
- But many theories:
 - String Theory
 - Loop Quantum Gravity
 - Causal Dynamical Triangulations (CDT)
 - Random Gravity (RG)
 - Asymptotic Safety (AS)
 - ...
- Are they describing the same physics?
- Or do we have to choose different formulations?
- Comparison of Asymptotic Safety to CDT ≈ AS with causal structure?
- RG ≈ AS with broken Lorentz symmetry?

Foliation of Spacetime
- time slicing \(t(x) \) such that \(\partial_t \) is future-directed, timelike VF
- \(\Sigma_x \) = spatial slices with coordinate \(x^a \)
- parameterized curve \(\gamma(t) \) with \(y(t) = y(t) \)
- \(n^a = \frac{\gamma'(t)}{\sqrt{-g^{ab}\gamma(t)\gamma'(t)}} \)
- \(n^a \approx \frac{\sqrt{-g^{ab}\gamma(t)\gamma'(t)}}{\gamma'(t)} \)
- change of coordinates: \(x^t \rightarrow (r, y) \)
 \(dr^2 = \gamma_{
\mu} d\nu^\mu d\nu^\nu + \gamma_{\mu} d\nu^\nu d\nu^\mu \)
 with induced spatial metric: \(\gamma_{\mu\nu} = \gamma_{ab}\gamma_{\mu a}\gamma_{\nu b} \)
- theory described by \((N^a, N^\nu) \) instead of \(\gamma_{ab} \)
- \(C = 1 \) = Euclidean instead of \(-C = 1 \) = Lorentzian

Exact RG Equation
Effective average action \(\Gamma_{\langle\rangle} \) interpolates between the microscopic action \(\langle A \rangle \) and the effective action \(A = 0 \):

\[\partial_t \Gamma_{\langle\rangle} = \frac{1}{2} \text{Str} \left(\left(\Gamma^{(2)} + R_0 \right)^{-1} \partial_t R_0 \right) \]

Practical computations:
- Expansion of \(\Gamma_{\langle\rangle} \):
 \[\Gamma_{\langle\rangle} = \sum_i a_i O_i \]
 \(O_i \in \{ \phi^\dagger, \phi, (\partial_\mu \phi)^\dagger \} \)
- Flow of \(\phi \) given by \(\beta \) functions: \(\partial_\mu \phi = -\lambda(\phi, \phi, \ldots) \)

Asymptotic Safety
A nonperturbatively renormalizable theory can be achieved by using an UV fixed point of the RG flow:
- Fixed Point: Vanishing of all \(\beta \) functions.

\[\partial \phi = B_i (\phi, \phi, \ldots) \]
- In the vicinity of a fixed point \(\phi_0 \): linearized flow equations:
 \[\partial \phi = \tilde{B}_i (\phi, \phi, \ld\ldots) \]
- Critical exponents \(\lambda_i \) : positive eigenvalues of \(B_i \).
- \[\text{Hadamard} \rightarrow 0 \] (irrelevant directions) \(\rightarrow \) blue arrows.
- \[\text{Hadamard} \rightarrow \infty \] (irrelevant directions) \(\rightarrow \) green arrows.
- Relevant directions determine the number of physical parameters to be fixed.
- Irrelevant directions determine the number of predictable physical parameters.

Truncation

General Einstein-Hilbert transition \(\text{see [3]} \)

\[S = \frac{1}{16\pi G_N} \int d^dx \sqrt{-g} \left(-R + 2\Lambda \right) \]

dimensional constant \(\Lambda \) and \((p - 1) \) scalar, scalar curvature \(R \)

Fixed Points
Compact Time Scenario
- \(T = \frac{1}{\hbar} \) constant \(k_\hbar m_\hbar = -m_\hbar \Rightarrow m_\hbar = 0 \)
- In this limit all trapezoidal functions decrease
- \(0.00316 < \Lambda < 0.00319 \) \(T = \frac{1}{\hbar} \)

Non-Compact Time Scenario
- \(\text{choose} \ m = \hbar = \text{const} \ (e.g. \ 2\hbar) \) \(T \sim \frac{1}{\hbar} \)
- \(\text{all trapezoidal terms stay finite} \)
- \text{fixed point exists for both signatures}

Flow towards IR
- \(\text{Euclidean flow} \)
- \(\text{Star} \)

Geometric Cutoff
- compactly time direction on a circle \(\text{circumference} T \)
- \(\text{diagonal} \) transformation in time direction

\[\phi(x) = \sum_{\nu = 0}^\infty \phi(\nu) \left(e^{2\nu T} \right) \Rightarrow \phi(x) = \frac{1}{T} \int_0^T \phi \left(\frac{x}{T} e^{2\nu T} \right) \]
- flow equations (similar Kaluza-Klein masses: \(m = \hbar \))
- kinetic \(k_\hbar \gamma_{\mu\nu} = \gamma_{\mu\nu}(\phi, \phi, \ldots) \)
- \(k_\hbar a_{\mu\nu} = \gamma_{\mu\nu}(\phi, \phi, \ldots) \)
- \(k_\hbar d_{\mu\nu} = \gamma_{\mu\nu}(\phi, \phi, \ld\ldots) \)
- \(k_\hbar x^2 > 0 \) (hyperbolic functions)
- \(k_\hbar x^2 > 0 \) \(\Rightarrow \) trapezoidal functions

References