Asymptotically Safe Lorentzian Gravity

Stefan Rechenberger

Uni Mainz

28.02.2011

arXiv:1102.5012v1 [hep-th]
with Elisa Manrique and Frank Saueressig
Outline

1. Motivation
2. CDT, Horava Gravity and Asymptotic Safety
3. Causal functional RG equation
4. Results
5. Conclusion
Motivation

Classical GR reaches its limits close to space-time singularities

- Black Holes
- Big Bang

Solution probably lies within a theory of Quantum Gravity
Motivation

Classical GR reaches its limits close to space-time singularities

- Black Holes
- Big Bang

Solution probably lies within a theory of Quantum Gravity

different approaches to a theory of QG

- String Theory
- Loop Quantum Gravity
- Causal Dynamical Triangulations
- Horava Gravity
- **Asymptotic Safety**
- ...
Motivation

Classical GR reaches its limits close to space-time singularities

- Black Holes
- Big Bang

Solution probably lies within a theory of Quantum Gravity

different approaches to a theory of QG

- String Theory
- Loop Quantum Gravity
- Causal Dynamical Triangulations
- Horava Gravity
- Asymptotic Safety
- ...

which one is correct?
lack of experimental data
⇒ nobody helps us to decide which is the best approach
lack of experimental data
⇒ nobody helps us to decide which is the best approach

Best thing to do: compare different approaches
Causal dynamical triangulations (arXiv:1004.0352v1 [hep-th])

- discretization of gravitational path integral $\int \mathcal{D}g_{\mu\nu} e^{iS_{\text{grav}}}$
- summing over piecewise flat geometries
- modeling space-time geometries by gluing together simplices (higher dimensional generalizations of triangles)
- important: causal structure
Causal dynamical triangulations (arXiv:1004.0352v1 [hep-th])

- discretization of gravitational path integral $\int Dg_{\mu\nu} e^{iS_{\text{grav}}}$
- summing over piecewise flat geometries
- modeling space-time geometries by gluing together simplices (higher dimensional generalizations of triangles)
- important: causal structure

Horava Gravity (arXiv:0901.3775v2 [hep-th])

- different scaling of space and time
- UV: Lorentz invariance is broken
- IR: Lorentz invariance reestablished
- maybe connection to CDT due to global time foliation (arXiv:1002.3298v2 [hep-th])
Asymptotic Safety (Living Rev. Relativity 9, (2006))

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
Asymptotic Safety (Living Rev. Relativity 9, (2006))

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
- already found for
 - pure Einstein Hilbert action
 - f(R) gravity
 - gravity coupled to a scalar field
 - gravity with extra dimensions
 - bimetric truncations
 - ...
Asymptotic Safety (Living Rev. Relativity 9, (2006))

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
- already found for
 - pure Einstein Hilbert action
 - f(R) gravity
 - gravity coupled to a scalar field
 - gravity with extra dimensions
 - bimetric truncations
 - ...

strong evidence that nature might be asymptotically safe
Asymptotic Safety (Living Rev. Relativity 9, (2006))

- non-trivial fixed point (for UV completion)
- finite dimensional critical surface (for predictability)
- already found for
 - pure Einstein Hilbert action
 - $f(R)$ gravity
 - gravity coupled to a scalar field
 - gravity with extra dimensions
 - bimetric truncations
 - ...

 strong evidence that nature might be asymptotically safe

- so far only Euclidean space-time has been studied
- Lorentzian space-times are necessary for comparison with CDT and HG
Causal functional RG equation

Starting point: Einstein Hilbert action

\[S_{EH} = \frac{1}{16\pi G_N} \int d^D x \sqrt{\gamma} (-R + 2\Lambda) \]

- \(G_N \) ... Newton constant
- \(D \) ... space-time dimension
 \((D = d + 1) \)
- \(\gamma \) ... metric
- \(R \) ... curvature scalar of space-time
- \(\Lambda \) ... cosmological constant
Causal functional RG equation

Starting point: Einstein Hilbert action

\[S_{EH} = \frac{1}{16\pi G_N} \int d^D x \sqrt{\gamma} (-R + 2\Lambda) \]

- \(G_N \) ... Newton constant
- \(D \) ... space-time dimension \((D = d + 1)\)
- \(\gamma \) ... metric
- \(R \) ... curvature scalar of space-time
- \(\Lambda \) ... cosmological constant
Motivation CDT, HG, AS

Causal FRGE

Results Conclusion

- split of space-time
 \[M^D = M^d \times S^1 \]
- \(\Sigma \) ... spatial slices
- \(n^a \) ... vector orthonormal to \(\Sigma \)
- \(N \) ... lapse function
- \(N^a \) ... shift vector
- split of space-time
 \[M^D = M^d \times S^1 \]
- \(\Sigma \) ... spatial slices
- \(n^a \) ... vector orthonormal to \(\Sigma \)
- \(N \) ... lapse function
- \(N^a \) ... shift vector
- \(\sigma_{ij} \) ... spatial metric

\[
\gamma_{\mu\nu} = \begin{pmatrix}
\epsilon N^2 + N_i N^i & N_j \\
N_j & \sigma_{ij}
\end{pmatrix}
\]

\[
ds^2 = \epsilon N^2 d\tau^2 + \sigma_{ij} \left(dx^i + N^i d\tau \right) \left(dx^j + N^j d\tau \right)
\]
technical remarks

- choose background: $\bar{N} = 1$, $\bar{N}_i = 0$ and $\bar{\sigma}_{ij}$ unit sphere
- gauge fixing: $N = 0$ and $N_i = 0 \Rightarrow$ only spatial fluctuations
- purely spatial regulator: $R_k(\Delta)$ with $\Delta = \bar{\sigma}^{ij} \bar{D}_i \bar{D}_j$
technical remarks

- choose background: $\bar{N} = 1$, $\bar{N}_i = 0$ and $\bar{\sigma}_{ij}$ unit sphere
- gauge fixing: $N = 0$ and $N_i = 0 \Rightarrow$ only spatial fluctuations
- purely spatial regulator: $R_k(\Delta)$ with $\Delta = \bar{\sigma}^{ij} \bar{D}_i \bar{D}_j$
- Fourier expand fluctuations along the time direction
 - sum over Matsubara frequencies (as in finite temperature field theory)
 - finite circle (length T) acts as IR cutoff
 - finite sum acts as UV cutoff
technical remarks

- choose background: $\bar{N} = 1$, $\bar{N}_i = 0$ and $\bar{\sigma}_{ij}$ unit sphere
- gauge fixing: $N = 0$ and $N_i = 0 \Rightarrow$ only spatial fluctuations
- purely spatial regulator: $R_k(\Delta)$ with $\Delta = \bar{\sigma}^{ij}\bar{D}_i\bar{D}_j$
- Fourier expand fluctuations along the time direction
 - sum over Matsubara frequencies (as in finite temperature field theory)
 - finite circle (length T) acts as IR cutoff
 - finite sum acts as UV cutoff
- transverse traceless decomposition and field redefinitions
technical remarks

- choose background: $\bar{N} = 1$, $\bar{N}_i = 0$ and $\bar{\sigma}_{ij}$ unit sphere
- gauge fixing: $N = 0$ and $N_i = 0 \Rightarrow$ only spatial fluctuations
- purely spatial regulator: $\mathcal{R}_k(\Delta)$ with $\Delta = \bar{\sigma}^{ij}\bar{D}_i\bar{D}_j$
- Fourier expand fluctuations along the time direction
 - sum over Matsubara frequencies (as in finite temperature field theory)
 - finite circle (length T) acts as IR cutoff
 - finite sum acts as UV cutoff
- transverse traceless decomposition and field redefinitions

inserting this ansatz into the Wetterich equation

$$k \partial_k \Gamma_k = \frac{1}{2} \text{STr} \left[k \partial_k \mathcal{R}_k \left(\Gamma_k^{(2)} + \mathcal{R}_k \right)^{-1} \right]$$

projection \Rightarrow flow equations for g_k and λ_k
\[k \partial_k g_k = \beta_g(g, \lambda; m), \quad k \partial_k \lambda_k = \beta_\lambda(g, \lambda; m) \]

dimensionless Kaluza-Klein mass \(m = \frac{2\pi}{T_k} \)
Results

\[k \partial_k g_k = \beta_g(g, \lambda; m), \quad k \partial_k \lambda_k = \beta_\lambda(g, \lambda; m) \]

dimensionless Kaluza-Klein mass \(m = \frac{2\pi}{T_k} \)

carry out sums over Matsubara frequencies analytically:

\[\sum_n \frac{1}{n^2 + x^2} = \frac{\pi}{x \tanh(\pi x)}, \quad x^2 > 0 \quad \text{(hyperbolic functions)} \]

\(x^2 < 0 \) analytic continuation leads to trigonometric functions
Results

\[k \partial_k g_k = \beta_g(g, \lambda; m), \quad k \partial_k \lambda_k = \beta_\lambda(g, \lambda; m) \]

dimensionless Kaluza-Klein mass \(m = \frac{2\pi}{T_k} \)

carry out sums over Matsubara frequencies analytically:

\[\sum_n \frac{1}{n^2 + x^2} = \frac{\pi}{x \tanh(\pi x)}, \quad x^2 > 0 \quad (\text{hyperbolic functions}) \]

\(x^2 < 0 \) analytic continuation leads to trigonometric functions

<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>(\lambda < \lambda^{(1)} < 0)</th>
<th>(\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2)</th>
<th>(\lambda^{(2)} < \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>hyperbolic</td>
<td>mixture</td>
<td>trigonometric</td>
</tr>
<tr>
<td>−1</td>
<td>trigonometric</td>
<td>mixture</td>
<td>hyperbolic</td>
</tr>
</tbody>
</table>
\[m = \frac{2\pi}{Tk} \quad T = \text{const} \]

\[\Rightarrow \quad k \partial_k m_k = -m_k \quad \Rightarrow \quad m_k^* = 0 \]
\[m = \frac{2\pi}{Tk} \quad T = \text{const} \]

\[\Rightarrow \quad k \partial_k m_k = -m_k \quad \Rightarrow \quad m_k^* = 0 \]

in this limit all trigonometric functions diverge

\[
\begin{array}{|c|c|c|c|}
\hline
\epsilon & \lambda < \lambda^{(1)} < 0 & \lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2 & \lambda^{(2)} < \lambda \\
\hline
+1 & \text{hyperbolic} & \text{mixture} & \text{trigonometric} \\
-1 & \text{trigonometric} & \text{mixture} & \text{hyperbolic} \\
\hline
\end{array}
\]
\[m = \frac{2\pi}{Tk} \quad T = const \]

\[\Rightarrow k\partial_k m_k = -m_k \quad \Rightarrow \quad m_k^* = 0 \]

in this limit all trigonometric functions diverge

<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>(\lambda < \lambda^{(1)} < 0)</th>
<th>(\lambda^{(1)} < \lambda < \lambda^{(2)} = 1/2)</th>
<th>(\lambda^{(2)} < \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>hyperbolic</td>
<td>mixture</td>
<td>trigonometric</td>
</tr>
<tr>
<td>-1</td>
<td>trigonometric</td>
<td>mixture</td>
<td>hyperbolic</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) NGFP only for \(g_* < 0 \) in Euclidean signature!
\[m = \text{const.}(e.g. 2\pi) \implies T \propto \frac{1}{k} \]
\[m = \text{const.}(e.g.2\pi) \implies T \propto \frac{1}{k} \]

if \(m > \sqrt{5/2} \) trigonometric terms stay finite for \(\lambda^{(1)} < \lambda < \lambda^{(2)} \)

<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>(g_*)</th>
<th>(\lambda_*)</th>
<th>(g_\lambda_)</th>
<th>(\theta_{1,2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>0.19</td>
<td>0.31</td>
<td>0.059</td>
<td>1.07 (\pm) 3.31(i)</td>
</tr>
<tr>
<td>−1</td>
<td>0.21</td>
<td>0.30</td>
<td>0.063</td>
<td>0.94 (\pm) 3.10(i)</td>
</tr>
</tbody>
</table>
Motivation

CDT, HG, AS

Causal FRGE

Results

$m = \text{const.} (\text{e.g.} 2\pi) \implies T \propto \frac{1}{k}$

if $m > \sqrt{5/2}$ trigonometric terms stay finite for $\lambda^{(1)} < \lambda < \lambda^{(2)}$

<table>
<thead>
<tr>
<th>ϵ</th>
<th>g_*</th>
<th>λ_*</th>
<th>$g_* \lambda_*$</th>
<th>$\theta_{1,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+1$</td>
<td>0.19</td>
<td>0.31</td>
<td>0.059</td>
<td>$1.07 \pm 3.31i$</td>
</tr>
<tr>
<td>-1</td>
<td>0.21</td>
<td>0.30</td>
<td>0.063</td>
<td>$0.94 \pm 3.10i$</td>
</tr>
</tbody>
</table>

Euclidean Lorentzian

Stefan Rechenberger (Uni Mainz)

Asymptotically Safe Lorentzian Gravity
FP for Euclidean and Lorentzian signature
- characteristics are similar
- also similar to covariant formulation
- time circle collapses toward UV
- signature does NOT matter in UV
- formulation prepares ground for comparison to other theories
Thank you for your attention!

Questions?