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A Brief Review of General Relativity

• Page 28, Eq. (1.115). Change

vx =
vx

′
+ V

1 + vx′V
, vy =

Wvy
′

1 + vx′V
, vz =

Wvz
′

1 + vx′V
.

→

vx =
vx

′
+ V

1 + vx′V
, vy =

vy
′

W (1 + vx′V )
, vz =

vz
′

W (1 + vx′V )
.

• Page 32, Eq. (1.140). Change

LφV T = φLV T ,

→

LφV T = φLV T − VLTφ ,

• Page 32, Eq. (1.141). Change

LV φ = V ν∂νφν =
dφ

dλ
,

→

LV φ = V ν∂νφ =
dφ

dλ
,

• Page 33, four lines before Eq. (1.147). Change
...not all bases are such that eµ · eν 6= ηµν
→
...not all bases are such that eµ · eν = ηµν

• Page 38, Eq. (1.174). Change

Lη ξ = Lξ η = 0 ,

→
Lη ξ = −Lξ η = 0 ,



A Brief Review of General Relativity vii

• Page 43, Eq. (1.196). Change

d2(xµ + ξµ)

dλ2
+ Γµαβ(x+ ξ)

d(xα + ξµ)

dλ

d(xβ + ξµ)

dλ
= 0 .

→

d2(xµ + ξµ)

dλ2
+ Γµαβ(xµ + ξµ)

d(xα + ξα)

dλ

d(xβ + ξβ)

dλ
= 0 .

• Page 44, Eq. (1.202). Change

Rα[βγδ] = 2(Rαβγδ +Rαδβγ +Rαγδβ) = 0 .

→
3!Rα[βγδ] = 2(Rαβγδ +Rαδβγ +Rαγδβ) = 0 .

• Page 45, Eq. (1.207). Change

Γrθθ = − sin θ cos θ , Γθrθ = cot θ .

→

Γθφφ = − sin θ cos θ , Γφθφ = cot θ .

• Page 45, Eq. (1.208). Change

Rrθθr = − 1

R2
S

gθθ = − sin2 θ , Rrθθr =
1

R2
S

grr = 1 ,

→

Rθφφθ = − 1

R2
S

gφφ = − sin2 θ , Rφθφθ =
1

R2
S

gφφ = 1 ,

• Page 45, after Eq. (1.208). Change
while the Ricci scalar is simply R = 1/R2

S
.

→
while the Ricci tensor is Rij = gij/R

2
S

and the Ricci scalar is simply given by R =
2/R2

S
.

• Page 48, Eq. (1.220). Change

Rµν = 8π

(
Tµν −

1

2
Tgµν +

1

4π
Λgµν

)
,

→
Rµν = 8π

(
Tµν −

1

2
Tgµν +

1

8π
Λgµν

)
,

• Page 49, one line after Eq. (1.223). Change
...the coordinate time runs slower than the proper time.
→
...the proper time runs slower than the coordinate time.



viii A Brief Review of General Relativity

• Page 51, Eq. (1.229). Change

d

dτ

[(
1− 2M

r

)−1
dr

dτ

]
= r

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

→

d

dτ

[(
1− 2M

r

)−1
dr

dτ

]
= r

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]

− M

r2

[(
dt

dτ

)2

+

(
1− 2M

r

)−2(
dr

dτ

)2
]
,
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A Kinetic-Theory Description of
Fluids

• Page 77, Eq. (2.30). Change

S(t) := −k
B
V H(t) = −k

B
V

∫
f(t, ~x, ~u) ln(f(t, ~x, ~u)) d3u ,

→

S(t) := −k
B
V H(t) = −k

B
V

∫
f(t, ~u) ln(f(t, ~u)) d3u ,

• Page 79, after Eq. (2.39). Change
“...through the evolution of the momentum flux ρvj (i.e., the rate of change of linear
momentum per unit time and unit area), ...”
→
“...through the flux of the momentum density tensor ρvivj + Pij (i.e., the rate of change
per unit time and unit area orthogonal to the i-th direction of the j-th component of the
linear momentum), ...”

• Page 80, after Eq. (2.42). Change
“...unlike the kinetic energy, 1

2ρv
ivi,...”

→
“...unlike the kinetic energy density, 1

2ρv
ivi,...”

• Page 80. Change Eq. (2.51)

〈~u2〉 =
3kBT

m
− 〈~u〉2 =

3kBT

m
− ~v2 ,

→
〈~u2〉 =

3kBT

m
+ 〈~u〉2 =

3kBT

m
+ ~v2 ,

• Page 81, Eq. (2.47). Change

ε =
3

2

kBT

m
, p =

2

3

ε

nm
= nkBT ,

→

ε =
3

2

k
B
T

m
, p =

2

3
nmε = nk

B
T ,



x A Kinetic-Theory Description of Fluids

• Page 83, Eq. (2.54). Change

f0(u) = 4πnu2

(
m

2πk
B
T

)3/2

exp

(
− mu2

2k
B
T

)
.

→

4πu2f0(u) = 4πnu2

(
m

2πk
B
T

)3/2

exp

(
− mu2

2k
B
T

)
.

• Page 84, Fig. 2.5. Change the labels on the axes: v → u.
• Page 84, Eq. (2.59). Change

T =
mn

3k
B

∫
(~u− ~v)2f0 d

3u =
m

3k
B

〈(~u− ~v)2〉 .

→
T =

m

3nkB

∫
(~u− ~v)2f0 d

3u =
m

3kB

〈(~u− ~v)2〉 .

• Page 84, last paragraph of Sect. 2.2.4. Change
“(Problem 1 is dedicated to showing...)”
→
“(Problem 4 is dedicated to showing...)”

• Page 86, after Eq. (2.70). Change
“...represents the flux of energy per unit surface and unit time, i.e., the Newtonian energy
flux density vector.”
→
“...represents the rate of change of energy per unit time and unit area, i.e., the Newtonian
energy density flux.”

• Page 90, after Eq. (2.82). Change
“...and recalling that p′x = 0 in the local Lorentz rest frame...”
→
“...and recalling that px′ = 0 in the local Lorentz rest frame...”

• Page 90, last line. Change
“The relativistic Maxwell–Boltzmann equation can then be obtained...”
→
“The relativistic Boltzmann equation can then be obtained...”

• Page 91, Eq. (2.88). Change

K :=
√

(p1)α(p2)α −m4c4 .

→
K :=

√
(p1)α(p2)α −m2c2 .

• Page 91, after Eq. (2.88). Change
“Note that the collisionless Maxwell-Boltzmann equation, namely (2.86) with...”
→
“Note that the collisionless Boltzmann equation, namely (2.86) with...”



A Kinetic-Theory Description of Fluids xi

• Page 95, second line of Sec. 2.3.4. Change

“...we multiply the relativistic Maxwell–Boltzmann equation (2.86) by...”
→
“...we multiply the relativistic Boltzmann equation (2.86) by...”

• Page 95, after Eq. (2.110). Change

“...can be transformed into a volume integral in momentum space...”
→
“...can be transformed into a surface integral in momentum space...”

• Page 97, second line of Sec. 2.3.6. Change

“...is a solution of the relativistic Maxwell–Boltzmann equation (2.86)...”
→
“...is a solution of the relativistic Boltzmann equation (2.86)...”

• Page 107, Eq. (2.168). Change

c2s :=

(
∂p

∂e

)
s

,

→

c2s := c2
(
∂p

∂e

)
s

,

• Page 108, Eq. (2.171). Change

c2s =
1

h
(c2s)N .

→
c2s =

c2

h
(c2s)N

.

• Page 108, Eq. (2.175). Change

G >
3

2
c2s ,

(
G <

3

2
c2s

)
.

→

G >
3

2

c2s
c2
,

(
G <

3

2

c2s
c2

)
.

• Page 108, Eq. (2.172) and (2.173). Change

c2s =
1

h

(
dp

dρ

)
s

=

(
d lnh

d ln ρ

)
s

,

=
1

h

[(
∂p

∂ρ

)
ε

+
dε

dρ

(
∂p

∂ε

)
ρ

]
=

1

h

[(
∂p

∂ρ

)
ε

+
p

ρ2

(
∂p

∂ε

)
ρ

]
.

(2.1)

(2.2)

→



xii A Kinetic-Theory Description of Fluids

c2s =
c2

h

(
dp

dρ

)
s

= c2
(
d lnh

d ln ρ

)
s

,

=
c2

h

[(
∂p

∂ρ

)
ε

+
dε

dρ

(
∂p

∂ε

)
ρ

]
=
c2

h

[(
∂p

∂ρ

)
ε

+
p

ρ2

(
∂p

∂ε

)
ρ

]
.

(2.3)

(2.4)

• Page 116, Eq. (2.232). Change

c2s =
p(5ρh− 8p)

3ρh(ρh− p)
,

→

c2s = c2
p(5ρh− 8p)

3ρh(ρh− p)
,

• Page 117, Eq. (2.234). Change

c2s =
γε(γ − 1)

c2 + γε
=

(
h− c2

h

)
(γ − 1) =

γp

ρh
.

→
c2s =

c2γ(γ − 1)ε

c2 + γε
=

[
c2(h− c2)

h

]
(γ − 1) =

c2γp

ρh
.

• Page 118, footnote 34. Change

“A fluid obeying the ideal-fluid equation of state with ε = 0 would also have a zero
temperature and could provide a reasonable model for a cold and old neutron star.”
→
“A fluid obeying a general polytropic equation of state can have, at least mathematically,
ε = 0, although such a choice would be difficult to justify from a physical point of
view. However, if the polytropic transformation is isentropic, then the specific internal
energy is fully determined and is proportional to the rest-mass density [cf. Eq. (2.248)
and discussion around it]. A polytropic and isentropic equation of state is often used to
obtain a reasonable approximation for a cold and old neutron star.”.

• Page 119, after Eq. (2.247)
Put differently, a polytropic equation of state is equivalent to an ideal-fluid equation of
state only under those isentropic transformations for which the adiabatic index of the
fluid γ is the same as the adiabatic index of the polytrope Γ.”
→
“Put differently, if a fluid obeys the ideal-fluid equation of state and is isentropic, then
its equation of state can also be written in a polytropic form [cf., Eq. (2.242)], with
polytropic exponent Γ = γ; in this case, the polytropic exponent is also the adiabatic
index. On the other hand, if a fluid obeys the polytropic equation of state and is isentropic,
then it is at least formally possible to express the pressure as p = ρε(Γ − 1) [cf., Eq.
(2.228)]. However, this does not necessarily mean that such a fluid obeys an ideal-fluid
equation of state. For this to be the case, Γ must be the ratio of the specific heats cp/cV
and the specific internal energy must be a function of the temperature only.”



A Kinetic-Theory Description of Fluids xiii

• Page 119, Eq. (2.249). Change

c2s =
Γp

ρh
=

Γ(Γ− 1)p

ρ(Γ− 1) + Γp
=

(
1

ΓKρΓ−1
+

1

Γ− 1

)−1

.

→

c2s = c2
Γp

ρh
= c2

Γ(Γ− 1)p

ρ(Γ− 1) + Γp
= c2

(
1

ΓKρΓ−1
+

1

Γ− 1

)−1

.
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Relativistic Perfect Fluids

• Page 139, before Eq. (3.28). Change

J µ̂ : flux of rest-mass current density in the µ̂-direction,

→
J µ̂ : flux of rest-mass density current in the µ̂-direction,

• Page 139, before Eq. (3.29). Change

T µ̂ν̂ : flux of µ̂-momentum in the ν̂-direction,

T î0̂ : flux of î-momentum in 0̂-th direction (̂i-momentum density),

→
T µ̂ν̂ : flux of µ̂-momentum density in the ν̂-direction,

T î0̂ : flux of î-momentum density in 0̂-th direction ,

• Page 139, (3.29). Change the second line as follows:

T 0̂î = T 0̂î = 0 ,

→
T 0̂î = T î0̂ = 0 ,

• Page 146, Eq. (3.69). Change

Lu(huµ) = −1

ρ
∇µp−∇µh .

→

Lu(huµ) = −1

ρ
∇µp = −∇µh .

• Page 146, Eq. (3.71). Change

Lu(huµξ
µ) = −ξ

µ∇µp
ρ

− ξµ∇µh = −1

ρ
Lξp−Lξh ,

→

Lu(huµξ
µ) = −ξ

µ∇µp
ρ

= −1

ρ
Lξp = −Lξh ,



Relativistic Perfect Fluids xv

• Page 146, before Eq. (3.72). Change
“and thus use the condition (3.65) with Lup = 0 and Luh = 0, to finally obtain”
→
“and thus use the condition (3.65) with Lξp = 0 to finally obtain”

• Page 146, after Eq. (3.72). Change
Note the similarity between expression (3.72) and the corresponding equation (1.185)
along geodesic trajectories, i.e., Lu(uµξ

µ).
→
Note the similarity between expression (3.72) and the corresponding equation (1.185)
along geodesic trajectories, i.e., Lu(uµξ

µ) = 0.
• Page 155, caption of Fig. 3.4. Change

... Show with blue solid lines
→
... Shown with blue solid lines

• Page 177, Eq. (3.253). Change

Pαβ
R

:=

∫
IνN

αNβdνdΩ .

→

Pαβ
R

:= hαγ h
β
δ T

γδ
R

= hαγ h
β
δ

∫
IνN

γNδdνdΩ .

• Page 179, footnote 26. Change
“Multifluids of this type as sometimes also referred to as...”
→
“Multifluids of this type are sometimes also referred to as...”
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Linear and Nonlinear Hydrodynamic
Waves

• Page 200, Eq. (4.54). Change

det(At − λAx) = 0 ,

→
det(Ax − λAt) = 0 ,

• Page 213, Fig. 4.5. The tangents to the fluidlines on either side of the rarefaction tail
should be exactly the same and not as shown.

• Page 216, below Eq. (4.114). Change
“ It is also convenient to rewrite the continuity equation (4.112) and the conservation of
energy (4.113)”
→
“ It is also convenient to rewrite the continuity equation (4.112) and the conservation of
momentum (4.113)”

• Page 217, first paragraph. Change
“The classical Hugoniot adiabat is readily obtained from (4.118) after recalling that in
the Newtonian limit h

N
= 1 + ε+ p/ρ ≈ 1”

→
“The classical Hugoniot adiabat is readily obtained from (4.118) after recalling that in
the Newtonian limit h = 1 + ε+ p/ρ ≈ 1”

• Page 216. Change Eq. (4.117) as follows

(hbWbvb)
2 − (haWava)2 = −

(
ha
ρa

+
hb
ρb

)
JpK .

→
(hbWbvb)

2 − (haWava)2 =

(
ha
ρa

+
hb
ρb

)
JpK .

• Page 221, Eq. (4.138). Change

W 2
ab =

(3ea + eb)(3eb + ea)

16e1e2
=

4

9
W 2
aW

2
b ,

→

W 2
ab =

(3ea + eb)(3eb + ea)

16eaeb
=

4

9
W 2
aW

2
b ,



Linear and Nonlinear Hydrodynamic Waves xvii

• Page 222, after Eq. (4.141), the expression for the shock velocity should be modified as
follows:

V ±
S

= ρbWbvb/(ρbWb ± ρa)

→
V ±

S
= ρbWbvb/(ρbWb ∓ ρa)

• Page 225, Fig. 4.11, panel on bottom right. The labels in the spacetime diagram should
be corrected as follows:
R← → R→ and S→ → S←.

• Page 229, last sentence in the first paragraph should be modified as follows:

These values mark the transition from one wave pattern to another one, and that are
directly computed from the initial conditions (Rezzolla and Zanotti, 2001).
→
These values mark the transition from one wave pattern to another one, and are directly
computed from the initial conditions (Rezzolla and Zanotti, 2001).
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Reaction Fronts: Detonations and
Deflagrations

• Page 284, problem 2. Change
“Derive the inequalities (5.4)–(5.6) across a reaction front [Hint: start from the laws of
conservation of momentum and energy (4.114)–(4.113)].
→
“Derive the inequalities (5.4)–(5.6) across a reaction front [Hint: start from the laws of
conservation of momentum and energy (4.113)–(4.114)].
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Relativistic Non-Perfect Fluids

• Page 297, Eq. (6.73). Change: χ→ χt
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Formulations of the Einstein–Euler
Equations

• Page 337, Eq. (7.100). Change

Γ̃ijk = Γijk −
1

3
(δijΓ

m
km + δikΓmjm − γjkγilΓmlm) = Γijk + 2(δij∂k lnφ+ δik∂j lnφ− γjkγil∂l lnφ) ,

→

Γ̃ijk = Γijk −
1

3
(δijΓ

m
km + δikΓmjm − γjkγilΓmlm) = Γijk + δij∂k lnφ+ δik∂j lnφ− γjkγil∂l lnφ ,

• Page 339, Eq. (7.108). Change

(3)

R+K2 = KijKij + 4πE = ÃijÃ
ij +

1

3
K2 + 4πE ,

→
(3)

R+K2 = KijKij + 4πE = ÃijÃ
ij +

1

3
K2 + 16πE ,

• Page 339, last two lines:
(note that γ̃ij and Ãij , have only five independent components each since they are trace-
less)
→
(note that γ̃ij and Ãij , have only five independent components each since they have traces
that are equal to 3 or 0, respectively)

• Page 345, first term in Eq (7.131). Change

DjΘij = 0 ,

→
DjΘij = 0 ,

• Page 345, Eq (7.132). Change

Σij := Θij −
1

3
γijΘklΘ

kl =
1

2
γ1/3Ltγ̄ij ,

→
Σij := Θij −

1

3
γijΘklγ

kl =
1

2
γ1/3Ltγ̃ij ,



Formulations of the Einstein–Euler Equations xxi

• Page 345, after Eq (7.132). Change
where γ̄ij := γ−1/3γij is the conformal metric.
→
where γ̃ij := γ−1/3γij is the conformal metric.

• Page 345, first term in Eq (7.133). Change

DjΣij = 0 ,

→
DjΣij = 0 ,

• Page 354, first line. Change
“constraint decouples from the Hamiltonian constraint and it is possible to solve the latter
to obtain the three vectors V̄ i”
→
“constraint decouples from the Hamiltonian constraint and it is possible to solve the
former to obtain the three vectors V̄ i”

• Page 354, fourth line. Change
“The calculation of initial data via the solution of the constrains simplifies considerably
if”
→
“The calculation of initial data via the solution of the constraints simplifies considerably
if”

• Page 356, first sentence before Eq. (7.180). Change
“we further introduce the conformal metric γ̄ [cf., Eq. (7.152)], such that”
→
“we further introduce the conformal metric γ̃ [cf., Eq. (7.152), although we here use a
tilde rather than a bar to be closer to the notation of Bonazzola et al. (2004)], such that”

• Page 356, Eq. (7.180). Change

f := det(fij) = γ̄ := det(γ̄ij) ,

→
f := det(fij) = γ̃ := det(γ̃ij) ,

• Page 356, Eq. (7.181). Change

ψ = (γ/γ̄)1/12 = (γ/f)1/12 .

→
ψ = (γ/γ̃)1/12 = (γ/f)1/12 .

• Page 384, second equation in Exercise 7. Change

DiDjφ = − 1

2φ
D̃iD̃j +

1

2φ2
∂iφ∂jφ .

→

DiDjφ = D̃iD̃jφ+
2

φ
∂iφ∂jφ−

1

φ
γij∂

kφ∂kφ .
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Numerical Relativistic
Hydrodynamics: Finite-Difference
Methods

• Page 393, Eq. (8.16). Change

ε
(h)
j = C̃hp̃j +O(hp̃j+1) ,

→
ε
(h)
j = Chpj +O(hpj+1) ,

• Page 393, Eq. (8.30). Change

p̃ :=
logR(h, k)

log(h/k)
,

→
p̃ :=

log |R(h, k)|
log(h/k)

,

• Page 395, the 7th line before Eq. (8.34). Change

“...its application across a time interval ∆t introduces an associate truncation error εj(h).”
→
“...its application across a time interval ∆t introduces an associated truncation error ε(h).”

• Page 406, Eq. (8.87). Change

ũ(x, t) = e−εk
2teik[x−(v+βk2)t] ,

→
ũ(x, t) = e−εk

2teik[x−(λ+βk2)t] ,
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Numerical Relativistic
Hydrodynamics: HRSC Methods

• Page 439. The following note should be added:
Note that ρ∗,L is different from ρ∗,R, thus reproducing the contact discontinuity and
justify that the Riemann solver is complete.
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Relativistic Hydrodynamics of
Non-Selfgravitating Fluids

• Page 518, Eq. (11.84). Change

dW
W

=
M

r2W
dr +

u

W
du .

→
dW
W

=
M

r2W2
dr +

u

W2
du .
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Relativistic Hydrodynamics of
Selfgravitating Fluids

• Page 596, 12th line after Eq. (12.13)
“M = 2.01± 0.4M�” → “M = 2.01± 0.04M�”

• Page 597, caption of Fig. 12.1
“M = 2.01± 0.4M�” → “M = 2.01± 0.04M�”

• Page 601, second term in Eq. (12.31). Change

H2
0 =

1

R2
i

[
1− ε(1 + w

R
)2

wi

]
.

→
H2

0 =
1

R2
i

[
1− ε(1 + wi)

2

wi

]
.

• Pagr 601, second paragraph, change:
... the energy density ρ(r) and the pressure p(r) ...
→
... the energy density e(r) and the pressure p(r) ...

• Page 606, second but last line:
“K = 100” → “K = 164”
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