The Strange Baryon-Baryon Interaction

Jürgen Schaffner-Bielich

Institut für Theoretische Physik

GOETHE UNIVERSITY FRANKFURT AM MAIN

Chiral Group Meeting
Frankfurt, June 6, 2016
1. Hyperon-Nucleon Interaction: Hypernuclei
2. Baryon-Baryon Interactions: Dibaryons
3. Finding Strange Matter
Hyperon-Nucleon Interaction: Hypernuclei

Baryon-Baryon Interactions: Dibaryons

Finding Strange Matter
Baryon octet and decuplet

- eightfold way: baryons have three quarks
- lowest multiplets: octet (spin 1/2) and decuplet (spin 3/2)
- baryon mass increases with number of strange quarks (strangeness)
- nucleon (no s-quark): $m_N = 940$ MeV → nuclear chart
Hyperons with one s-quark: $m_\Lambda = 1116$ MeV, $m_\Sigma^+ = 1189$ MeV, $m_\Sigma^0 = 1193$ MeV, $m_\Sigma^- = 1197$ MeV

Hyperons with two s-quarks: $m_\Xi^0 = 1314$ MeV, $m_\Xi^- = 1321$ MeV

Hyperon with three s-quarks: $m_\Omega^- = 1672$ MeV (spin 3/2, Pauli principle!)

Bound system with nucleons and hyperons: hypernuclei!
First hypernuclear event

- first hypernuclear measurement: 1953 by Danysz and Pniewski from cosmic ray emulsion event
- unique double-star feature on emulsion plate: one from hypernuclear production, one from hypernuclear decay!
Danysz and Pniewski

Polish postcard commemorating Danysz and Pniewski (check out the stamp!)
Hypernuclear production mechanism

- hypernuclei produced by incoming K^- beam
- nucleon transformed to a hyperon: $K^- + n \rightarrow \Lambda + \pi^-$
- measurement by outgoing π^-
- prominent feature: recoilless production, Λ is produced at rest inside nucleus!
Light hypernuclei

- emulsion data up to mass number $A = 15$
- good measurement of Λ binding energies
- increases linearly with mass number
Hypernuclear spectra and levels

- peak structure in pion spectra
- related to single-particle levels of hypernucleus!
- first surprise: tiny spin-orbit splitting for $^{16}_{\Lambda}O$
Hyperon-Nucleon Interaction: Hypernuclei

Baryon-Baryon Interactions: Dibaryons

Finding Strange Matter

Nuclear and hypernuclear levels in $^{17}_\Lambda$O

- hyperon potential (dotted) is shallower than nucleon potential (solid line)
- Coulomb potential: dot-dashed line
- spin-orbit splitting for hyperons is much smaller than for nucleons
Heavy hypernucleus $^{89}\Lambda Y$

- modern spectroscopy of hypernuclei via reaction: $\pi^+ + n \rightarrow \Lambda + K^+$
- several hypernuclei measured up to $^{208}\Lambda$Pb, measured shells: s, p, d, f, g and h!
- measured with pion, kaon or electron beams or in emulsion
- spin–orbit splitting smaller than experimental resolution
- fit to single particle energies: $U_\Lambda = -27$ MeV for $A \to \infty$
- note: only for the Λ (besides nuclei) do we know its in-medium properties!
many light hypernuclei observed in emulsion experiments (up to $A=15$)

heavier systems measured spectroscopically
Hyperon-Nucleon Interaction: Hypernuclei

Baryon-Baryon Interactions: Dibaryons

Finding Strange Matter

HypHI program at GSI (Take Saito et al.)

- exploration of the whole hypernuclear chart for light systems!
- determination of the hypernuclear drip-line
- note: hyperons stabilize nuclei, ^8Be is unbound, but $^9\Lambda\text{Be}$ is bound!
- evidence for $^6\Lambda\text{H}$ by the FINUDA collaboration (2012)!
Hyperons decay mainly by weak interactions: conserves baryon number and charge but changes strangeness by one unit

- $\Lambda \rightarrow p + \pi^-(64\%), \quad n + \pi^0(36\%)$
- $\Sigma^+ \rightarrow p + \pi^0(52\%), \quad n + \pi^+(48\%)$
- $\Sigma^0 \rightarrow \Lambda + \gamma \text{ (electromagnetic)}$
- $\Sigma^- \rightarrow n + \pi^-$
- $\Xi^0 \rightarrow \Lambda + \pi^0$
- $\Xi^- \rightarrow \Lambda + \pi^-$

typical lifetime: $\tau \approx 10^{-10}$ seconds
Hyperons in the medium can also decay non-mesonically:

- $\Lambda + N \rightarrow N + N$, $\Sigma + N \rightarrow N + N$
- $\Xi + N \rightarrow \Sigma + N$ or $\Lambda + N$, $\Lambda + \Lambda \rightarrow \Sigma + N$ or $\Lambda + N$...

- nonmesonic decay dominates already for moderate mass number!
- hypernuclear lifetime saturates around 200 ps
Sigma-atomic states

- Σ^- bound mainly by Coulomb forces to a nucleus
- slight shift of energy levels due to strong interactions
- Σ-potential is attractive at low densities but repulsive inside the nucleus → no bound Σ-hypernuclear states
(Mares, Friedmann, Gal, Jennings 1995)
Hyperon-Nucleon Interaction: Hypernuclei

Baryon-Baryon Interactions: Dibaryons

Finding Strange Matter

Sigma hypernuclei

![Graph showing counts/2 MeV vs. energy (MeV).](image)

(Bart et al., PRL 83 (1999) 5238)

- older data: peaks in Σ-hypernuclear spectra, bound states?
- recent data: no peaks, strongly repulsive Σ-potential needed to explain spectrum!
indirect measurement of Σ-nucleon potential by (π^-, K^+) reaction on ^{28}Si: $U_\Sigma \approx +30$ MeV

- depends also on imaginary part of the potential (absorption)

- combining with Σ-atomic data: need density dependent potential (attractive at low densities, repulsive in the nuclear core)

(Harada and Hirabayashi 2005)
Xi hypernuclei (Dover and Gal 1983)

- first bound Ξ hypernucleus seen in 1959
 (Wilkinson, Lorant, Robinson, Lokanathan, PRL 3 (1959) 397)
- incoming pion beam produces first star
- two short tracks towards south and north: two hypernuclei emitted!
- interpretation: $^8\Xi$B with $B_{\Xi} = 8.1 \pm 1.2$
 (corrected for modern value of m_Ξ)
- Ξ reacts via $\Xi + N \rightarrow \Lambda + \Lambda$ to form two hypernuclei

<table>
<thead>
<tr>
<th>Hypernucleus</th>
<th>B_{Ξ} [MeV]</th>
<th>$B_{\Xi0}$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^8He</td>
<td>8.1* ± 1.2</td>
<td>14.2 ± 1.8</td>
</tr>
<tr>
<td>^1B</td>
<td>9.2 ± 2.2</td>
<td>0.4 ± 2.8</td>
</tr>
<tr>
<td>^1B</td>
<td>18.1 ± 3.2</td>
<td>−4.3 ± 3.8</td>
</tr>
<tr>
<td>^1B</td>
<td>16.0 ± 4.7</td>
<td>11.1 ± 5.3</td>
</tr>
<tr>
<td>^1B</td>
<td>16.0 ± 5.5</td>
<td>−4.5 ± 6.1</td>
</tr>
<tr>
<td>^1B</td>
<td>23.2 ± 6.8</td>
<td>13.3 ± 7.4</td>
</tr>
</tbody>
</table>
Xi hypernuclear potential

- double strangeness exchange reaction: \((K^{-}, K^{+})\) deposits two units of strangeness into the nucleus!
- indirect measurement of \(\Xi\)-nucleon potential by \((K^{-}, K^{+})\) reaction on \(^{12}\text{C}\): \(U_{\Xi} \approx -14\ \text{MeV}\) (Khaustov et al. (E885 collaboration) 2000)
- relativistic potential: \(U_{\Xi} \approx -18\ \text{MeV}\)
Xi-14N Hypernucleus Event

(Nakazawa et al. 2015)

- E373 experiment at KEK
- production process: $\Xi^- + ^{14}$N $\rightarrow ^{10}$ΛBe + 5He
- binding energy of $B_{\Xi^-} = 4.38 \pm 0.25$ MeV
Hyperon-Nucleon Interaction: Hypernuclei

Baryon-Baryon Interactions: Dibaryons

Finding Strange Matter

Hypernuclei

- **1963 Danysz et al.:** $^{10}_{\Lambda\Lambda}\text{Be} \rightarrow ^9_{\Lambda}\text{Be} + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 4.3 \pm 0.4$ MeV
- **1966 Prowse:** $^{6}_{\Lambda\Lambda}\text{He} \rightarrow ^5_{\Lambda}\text{He} + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 4.7 \pm 0.6$ MeV
- **1991 E176 (KEK):** $^{13}_{\Lambda\Lambda}\text{B} \rightarrow ^{13}_{\Lambda}\text{C} + \pi^-$, $\Delta B_{\Lambda\Lambda} = 4.8 \pm 0.7$ MeV
 (Dover, Millener, Gal, Davis 1991)
- **2001 E373 (KEK):** $^{6}_{\Lambda\Lambda}\text{He} \rightarrow ^5_{\Lambda}\text{He} + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 1.0 \pm 0.2$ MeV!
- **2001 E906 (BNL):** $^{4}_{\Lambda\Lambda}\text{H} \rightarrow ^4_{\Lambda}\text{He} + \pi^-$ or $^{7}_{\Lambda\Lambda}\text{Li}$ (Randeniya and Hungerford 2007)

- $\Lambda\Lambda$ interaction is weakly attractive
- total binding energy of two Λ’s: $B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}(^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}(^{A-1}_{\Lambda})$
- additional bond energy: $\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}(^{A}_{\Lambda\Lambda}Z) - 2B_{\Lambda}(^{A-1}_{\Lambda})$
Updated world data on $\Lambda\Lambda$ hypernuclei (2011)

<table>
<thead>
<tr>
<th>event</th>
<th>$A^Z_{\Lambda\Lambda}$</th>
<th>$B^{exp}_{\Lambda\Lambda}$</th>
<th>$B^{CM}_{\Lambda\Lambda}$</th>
<th>$B^{SM}_{\Lambda\Lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E373-Nagara</td>
<td>^6He</td>
<td>6.91 ± 0.16</td>
<td>6.91 ± 0.16</td>
<td>6.91 ± 0.16</td>
</tr>
<tr>
<td>E373-DemYan</td>
<td>^{10}Be</td>
<td>14.94 ± 0.13</td>
<td>14.74 ± 0.16</td>
<td>14.97 ± 0.22</td>
</tr>
<tr>
<td>E176-G2</td>
<td>^{11}Be</td>
<td>17.53 ± 0.71</td>
<td>18.23 ± 0.16</td>
<td>18.40 ± 0.28</td>
</tr>
<tr>
<td>E373-Hida</td>
<td>^{11}Be</td>
<td>20.83 ± 1.27</td>
<td>18.23 ± 0.16</td>
<td>18.40 ± 0.28</td>
</tr>
<tr>
<td>E373-Hida</td>
<td>^{12}Be</td>
<td>22.48 ± 1.21</td>
<td>−</td>
<td>20.72 ± 0.20</td>
</tr>
<tr>
<td>E176-E2</td>
<td>^{12}B</td>
<td>20.02 ± 0.78</td>
<td>−</td>
<td>20.85 ± 0.20</td>
</tr>
<tr>
<td>E176-E4</td>
<td>^{13}B</td>
<td>23.4 ± 0.7</td>
<td>−</td>
<td>23.21 ± 0.21</td>
</tr>
</tbody>
</table>

$\dagger B^{SM}_{\Lambda\Lambda}(^{10}\text{Be}) = 2B^0_{\Lambda}(^{9}\text{Be}) + 4[\bar{V}(^{9}\Lambda\text{Be}) - \bar{V}_{\text{average}}] + <V_{\Lambda\Lambda}>_{\text{SM}}.$

- All E176 entries refer to a single event, see NPA 828 (2009) 191.

(Gal and Millener 2011)

- three modern events, comparison to shell model and cluster model calculations
- only uniquely identified double Λ hypernucleus: $^6\Lambda\Lambda\text{He}$!
Summary of Hypernuclear Systems

NΛ: attractive \rightarrow Λ-hypernuclei for $A = 3 - 209$
$U_\Lambda = -30$ MeV at $n = n_0$

NΣ: $^4_\Sigma$He hypernucleus bound by isospin forces
Σ^- atoms: potential is repulsive

NΞ: attractive \rightarrow 7 Ξ hypernuclear events
$U_\Xi = -28$ MeV at $n = n_0$
quasi-free production of Ξ: $U_\Xi = -18$ MeV

ΛΛ: attractive \rightarrow 5 ΛΛ hypernuclear measurements

YY: Y = Λ, Σ, Ξ, unknown!

hypernuclear programs at:
DaΦne, JLab, J-PARC, MAMI, and PANDA, HYPHI @FAIR!
PANDA at GSI: Measurement of double Λ hypernuclei

1. Hyperon-antihyperon production at threshold

2. Slowing down and capture of Λ- in secondary target nucleus

3. γ-spectroscopy with Ge-detectors

- production of Ξ via antiproton beam on nuclei
- capture of Ξ in another nucleus
- γ-spectroscopy of produced double-Λ hypernucleus
Content

1. Hyperon-Nucleon Interaction: Hypernuclei

2. Baryon-Baryon Interactions: Dibaryons

3. Finding Strange Matter
Multi-Quark States: Some History (incomplete)

- multi-quark states already mentioned by Gell-Mann in 1964
- strange four-quark states ($qsq̄s$): Jaffe 1977
- heavy tetraquarks ($QQq̄q̄$): Ader, Richard, Taxil 1982
- pentaquarks with charm ($qqqs̄c$): Lipkin 1987 and Gignoux, Silvestre-Brac, Richard 1987
- ... light pentaquark ($qqqq̄s$) in chiral soliton model: Diakonov, Petrov, Polyakov 1997
- light pentaquark in diquark model: Jaffe and Wilczek 2003
Classification of Strange Dibaryons

<table>
<thead>
<tr>
<th>$-S \backslash Z$</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>nn</td>
<td>np</td>
<td>pp</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Σ^-n</td>
<td>Λn</td>
<td>Λp</td>
<td>Σ^+p</td>
</tr>
<tr>
<td>2</td>
<td>$\Sigma^-\Sigma^-$</td>
<td>Ξ^-n</td>
<td>$\Lambda\Lambda$</td>
<td>Ξ^0p</td>
<td>$\Sigma^+\Sigma^+$</td>
</tr>
<tr>
<td>3</td>
<td>$\Xi^-\Sigma^-$</td>
<td>$\Xi^-\Lambda$</td>
<td>$\Xi^0\Lambda$</td>
<td>$\Xi^0\Sigma^+$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\Xi^-\Xi^-$</td>
<td>$\Xi^0\Xi^-$</td>
<td>$\Xi^0\Xi^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\Xi^-\Omega^-$</td>
<td>$\Xi^0\Omega^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$\Omega^-\Omega^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ordering according to lowest sum of vacuum masses for given strangeness S and charge Z)

(JS, C.Greiner, Stöcker 1992, JSB, Dover, Gal, Millener, C.Greiner, Stöcker 1993, 1994)
Hyperon-Nucleon scattering data

(Nagels, Rijken, Yamamoto 2015)

- total Λp cross sections (left), elastic $\Sigma^\pm p$ cross section (middle), inelastic $\Sigma^\pm p$ cross section (right)
- model fits for different Nijmegen models
 (NSC: Nijmegen soft core, ESC: Extended soft core)
- ingredients: one boson exchange of meson nonets, pomeron and odderon exchange, two pseudoscalar exchange, meson pair exchange
Baryon-baryon potentials: SU(3) symmetry

- classify states according to SU(3)
- coupling of two octets:
 \[8 \times 8 = 1 + 8 + 8 + 10 + 10^* + 27 \]
- NN has bound state in \(^3S_1 - ^3D_1\) (deuteron) \(\rightarrow \{10^*\}\)
- NN has quasi-bound state in \(^1S_0\) \((E = +90 \text{ keV}) \rightarrow \{27\}\)
- SU(3) symmetry: bound states in all pure \(\{10^*\}\)
- broken SU(3): quasi-bound states become bound as hyperons are heavier than nucleons

TABLE XIII. SU(3) content of the different interaction channels. \(S\) is the total strangeness and \(I\) is the isospin. The upper half refers to the space-spin symmetric states \(^3S_1, ^1P_1, ^3D_1, \ldots\), while the lower half refers to the space-spin antisymmetric states \(^1S_0, ^3P_1, ^1D_2, \ldots\).

<table>
<thead>
<tr>
<th>(S)</th>
<th>(I)</th>
<th>Channels</th>
<th>SU(3) irreps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(NN)</td>
<td>{10*}</td>
</tr>
<tr>
<td>-1</td>
<td>1/2</td>
<td>(\Lambda N, \Sigma N)</td>
<td>{10*}, {8}_a</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>(\Sigma N)</td>
<td>{10}</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>(\Xi N)</td>
<td>{8}_a</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(\Xi N, \Sigma \Sigma)</td>
<td>{10}, {10*}, {8}_a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\Sigma \Lambda)</td>
<td>{10}, {10*}</td>
</tr>
<tr>
<td>-3</td>
<td>1/2</td>
<td>(\Xi \Lambda, \Xi \Sigma)</td>
<td>{10}, {10*}</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>(\Xi \Sigma)</td>
<td>{8}_a</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>(\Xi \Xi)</td>
<td>{10}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(S)</th>
<th>(I)</th>
<th>Channels</th>
<th>SU(3) irreps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(NN)</td>
<td>{27}</td>
</tr>
<tr>
<td>-1</td>
<td>1/2</td>
<td>(\Lambda N, \Sigma N)</td>
<td>{27}, {8}_a</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>(\Sigma N)</td>
<td>{27}</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>(\Lambda \Lambda, \Xi N, \Sigma \Sigma)</td>
<td>{27}, {8}_a, {1}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(\Xi N, \Sigma \Lambda)</td>
<td>{27}, {8}_a</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(\Sigma \Sigma)</td>
<td>{27}</td>
</tr>
<tr>
<td>-3</td>
<td>1/2</td>
<td>(\Xi \Lambda, \Xi \Sigma)</td>
<td>{27}, {8}_a</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>(\Xi \Sigma)</td>
<td>{27}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(\Xi \Xi)</td>
<td>{27}</td>
</tr>
</tbody>
</table>

(Stoks and Rijken 1999)
Baryon-baryon potentials: Nijmegen soft-core models

- Nijmegen soft core model NSC97a-f (newer versions of extended soft-core model: ESC04-08)
- one-boson exchange model for pseudoscalar, scalar, and vector mesons
- uses SU(3) flavour symmetry
- fitted to NN and NY scattering data
- predictions for dibaryons (Stoks, Rijken 1999):

 \[\Sigma^+ p, \Sigma^- n: \text{quasibound state}\]
 \[\Sigma^+ \Sigma^+, \Sigma^- \Sigma^-: E_b = -1.5 \text{ to } -3.2 \text{ MeV}\]
 \[\Xi^0 \Sigma^+, \Xi^- \Sigma^-: E_b = -2 \text{ to } -17 \text{ MeV}\]
 \[\Xi^0 \Xi^0, \Xi^0 \Xi^-: E_b = +1 \text{ to } -16 \text{ MeV}\]
 \[\Xi^- \Xi^-: \text{less bound by } \approx 1 \text{ MeV}\]

update: N\Xi(3S_1, I = 1) with \(E_b = 1.56 \text{ MeV}\)
(ESC08, Nagels, Rijken, Yamamoto 2015)
Baryon-baryon potentials: Quark-meson models

- quark-meson exchange model
- uses confinement potential for quarks
- SU(3) symmetry for quark-meson coupling constants
- describes light hypernuclei
- predictions for dibaryons
 (Fujiwara, Suzuki, Nakamoto 2007):

 no bound states
Baryon-baryon potentials: chiral effective models

- one-boson exchange of pseudoscalar mesons plus contact terms
- uses SU(3) symmetry, low-energy constants
- fixed to NN and NY scattering data
- predictions for dibaryons
 (Haidenbauer and Meißner 2010):

\[
\begin{align*}
\Xi^0 \Lambda: & \quad E_b = -0.43 \text{ MeV or quasibound} \\
\Xi^0 \Sigma^+: & \quad E_b = -2.23 \text{ to } -6.15 \text{ MeV} \\
\Xi \Xi: & \quad E_b = -2.56 \text{ to } -7.28 \text{ MeV}
\end{align*}
\]

results depend on cutoff
News from Lattice Data on Dibaryons

- HALQCD collaboration (Inoue et al. 2010, 2011): bound H-dibaryon with $B_H = 26$ MeV (for $m_{ps} = 469$ MeV, $N_f = 3$)

- NPLQCD collaboration (Beane et al. 2010, 2011): bound H-dibaryon with $B_H = 13.2(1.8)(4.0)$ MeV and bound ($\Xi^-\Xi^-)_b$ state with $B_{\Xi\Xi} = 14.0(1.4)(6.7)$ MeV (for $m_{\pi} = 390$ MeV, $N_f = 2 + 1$)

- Haidenbauer and Meißner 2011: either \Lambda\Lambda is unbound (HALQCD) or a resonant state 5 MeV below ΞN threshold (NPLQCD)

- Shanahan, Thomas, Young 2011, 2013: H dibaryon unbound by 26 ± 11 MeV at physical pion mass
nΣ^- state on the Lattice

- scattering length for singlet and triplet $nΣ^-$ (left plots)
- repulsive potential at nonvanishing density (right plot)
- at unphysical pion mass of $m_\pi \sim 390$ MeV
- comparison to Nijmegen model, Jülich model and effective field theory

(See Beane et al. 2012)
Hypernuclei on the Lattice

(Beane et al. 2013)

- Light nuclei and hypernuclei on the lattice
- at unphysical pion mass of $m_\pi \sim 800$ MeV and in SU(3) flavor symmetry
Dibaryon on the Lattice

- bound $\Xi^-\Xi^-_b$ state with $B_{\Xi\Xi} = 14.0(1.4)(6.7)$ MeV (for $m_\pi = 390$ MeV)
- extrapolation to physical pion mass: $\Xi\Xi$ dibaryon bound by $-2.56 \cdots - 7.27$ MeV!
- NSC97a-f: Nijmegen OBE model, HM: Haidenbauer and Meißner chiral EFT, Miller: SU(3) flavor symmetry arguments
Dibaryons close to physical point

- preliminary $N_f = 2 + 1$ lattice calculation at $(m_\pi, m_K) \simeq (146, 525)$ almost at physical masses
- phase shifts (left) and potential (right) for $\Xi\Xi$
- $\Xi\Xi$ interaction with strong attraction but not enough for a bound state
Content

1. Hyperon-Nucleon Interaction: Hypernuclei
2. Baryon-Baryon Interactions: Dibaryons
3. Finding Strange Matter
Timeline for strange matter detection

Timescales

Heavy-ion collision and strange matter:
- MEMO's
- Strangelets
- Short-lived
- Long-lived
- $E_{96}(H)$
- E_{64}, NASA

Hot & dense matter
- Reaction
- Separation
- Distillation

Strong interactions

Weak interactions

$$10^{-23} \quad 10^{-22} \quad 10^{-21}$$

$$10^{-10} \quad \Lambda \rightarrow N + \pi \quad 10^{-7} \quad 10^{-5} \quad 10^{-4} \quad t/s$$

$$Q \rightarrow Q' + \pi, N, Y$$

$$Q \rightarrow Q' + e + \nu_e$$

$$10^{-10} \quad 10^{-7}$$
Sensitivity range for detecting strange matter

(Dover, talk given at PANIC meeting 1991, preprint BNL-46322)

- rough coalescence estimate:
 production $\propto q^A \cdot \lambda^{\mid S\mid}$, $q = N_d/N_p$, $\lambda = N_Y/N_N$
- for a sensitivity of the experiment of 10^{-n}: $\mid S\mid + A \leq n + 3$
- includes (stable) dibaryon states!
Production of hypernuclei in heavy-ion collisions

- Production of $^3\Lambda\text{H}$ and $^4\Lambda\text{H}$ seen!
- Decay modes: $^3\Lambda\text{H} \rightarrow ^3\text{He} + \pi^-$, $^4\Lambda\text{H} \rightarrow ^4\text{He} + \pi^-$
- Historical note: last paper of Carl Dover (posthumous)!
Fishing hypernuclei out of the QGP at RHIC

- production of $^3\Lambda$H and its antiparticle seen
- measurement of invariant mass spectrum of π^- and 3He
- initiated follow-up experiments at GSI (FOPI) and LHC (ALICE)!
H-Dibaryon Production Rates at the LHC

Pb-Pb | $s_{NN} = 2.76$ TeV
13.8 million events (0-80% central)

- data
- syst. error
- injected signal ($m_H = 2.21$ GeV/c^2)
- syst. error ($m_H = 2.21$ GeV/c^2)
- injected signal ($m_H = 2.23$ GeV/c^2)
- syst. error ($m_H = 2.23$ GeV/c^2)

(Benjamin Doenigus for the ALICE collaboration, QM2012)

- production limit for H-Dibaryons from $Λpπ^−$ mass spectrum
- limit is about a factor 10 below prediction from statistical model!
Hypernuclear production at the LHC

(ALICE collaboration 2015)

- invariant mass distribution for $^3\text{He},\pi^-$
- $dN/dy \times B.R.(^3\Lambda\rightarrow ^3\text{He},\pi^-) = (3.86 \pm 0.77(\text{stat.}) \pm 0.68(\text{syst.})) \times 10^{-5}$
ΛΛ correlation function

ΛΛ correlation function measured by STAR (Au+Au at 200 AGeV)
fit with hydro expansion and correction from feed down from Σ^0 and other hyperons
residual suppression at high values of Q \sim 0.4 (?)
ΛΛ scattering parameters

(Ohnishi, Morita, Furumoto, 2016)

- Scattering parameters for ΛΛ for different interactions
- STAR data without feed down corrections
- Feed down corrections: yellow area (offset $\lambda = 0.67$)
- LL: Lednicky & Lyuboshits model
How to detect strange matter?

- unique opportunity to produce and study them in heavy-ion collisions
- tracking down strange dibaryons by:
 - (A) a direct look: exotic decay tracks in TPC
 - (B) backtracking: invariant mass spectra for bound dibaryons
 - (C) correlations: resonances seen in correlation functions, reveals interaction potential
- poised for discoveries!